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Abstract: In this work, a novel series of pyridazinone derivatives (3–17) were synthesized and
characterized by NMR (1H and 13C), FT-IR spectroscopies, and ESI-MS methods. All synthesized
compounds were screened for their antibacterial activities against Staphylococcus aureus (Methicillin-
resistant), Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, and Acinetobacter baumannii.
Among the series, compounds 7 and 13 were found to be active against S. aureus (MRSA), P. aeruginosa,
and A. baumannii with the lowest MIC value range of 3.74–8.92 µM. Afterwards, DFT calculations of
B3LYP/6-31++G(d,p) level were carried out to investigate geometry structures, frontier molecular
orbital, molecular electrostatic potential maps, and gap energies of the synthesized compounds. In
addition, the activities of these compounds against various bacterial proteins were compared with
molecular-docking calculations. Finally, ADMET studies were performed to investigate the possibility
of using of the target compounds as drugs.

Keywords: synthesis; pyridazinone; DFT; antibacterial; molecular docking; ADMET

1. Introduction

Infections with certain bacteria can cause serious diseases such as pneumonia, tuber-
culosis, and meningitis. These infections are considered one of the most common causes
of persistent disease and affect millions of people with a very high level of morbidity and
mortality [1]. Antibiotic drugs used in the treatment of bacterial infections have been used
intensively, unconsciously, and excessively for many years, leading to the development
of resistance and the spread of resistant pathogens. Thus, antibiotic-resistant bacteria
are the main risk to human health and this resistance to antibiotic drugs has become a
major concern for researchers [2]. There is therefore an urgent need to develop and iden-
tify new antibiotic agents to combat resistant pathogens with a new mode of action and
broad-spectrum activities.

On other hand, the chemical and biological studies of pyridazine derivatives have
been of great interest for many years for medicinal and agricultural reasons due to their
large spectrum of biological properties including antimicrobial [3,4], antileishmania [5],
antiviral [6], anticancer [7], anti-tubercular [8], analgesic and anti-inflammatory [9,10],
anti-Alzheimer [11], antihypertensive [12], and anticonvulsant activities [13]. A substantial
number of pyridazinones have been reported to possess a wide variety of agrochemicals
such as pesticides [14–17] and recently, several pyridazinone derivatives have been reported
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as potent antibacterial agents (Figure 1, compound A) [18]. For instance, Abu-Hashem et al.
reported a new series of pyridazine derivatives as potent antimicrobial agents (Figure 1,
compound B) [19]. Interestingly, some pyridazinone-based drugs such as zardaverine,
emorfazone, imazodan, and levosimendan are already sold in clinical markets (Figure 1).
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Figure 1. Representative examples of biologically active drugs containing pyridazine moiety.

Theoretical calculations are among the popular methods of today with computational
calculations becoming both more practical and faster as they have been greatly influenced
by the developing technology. It has become crucial to know the influence of various
groups on the chemical structures in order to understand the links of these groups with
their biological properties [20–24].

Inspired with the aforementioned biological importance of these derivatives and in
resumption of our ongoing programs directed toward the development of novel hetero-
cyclic compounds that are potent therapeutic agents [25–29], we report herein the synthesis,
characterization, and antibacterial activities of a novel series of pyridazinone derivatives.
Firstly, the electronic and geometric characteristics of the synthesized compounds were
investigated by using DFT calculations with B3LYP/6-31++G(d,p) level. Afterwards, their
biological properties against various bacterial proteins such as the crystal structure of
Staphylococcus aureus (PDB ID: 1JIJ), the crystal structure of Pseudomonas aeruginosa PAO1
(PDB ID: 2UV0), and the crystal structure of Escherichia coli K-12 (PDB ID: 4WUB) were in-
vestigated. Thus, the newly synthesized compounds (3–17) were evaluated in vitro for their
antibacterial activities against S. aureus (methicillin resistant), Escherichia coli, A. baumannii,
P. aeruginosa, and S. typhimurium bacterial strains. In addition, the possibility of being used
as a drug was examined by examining the drug properties of bioactive molecules using
ADMET analysis.

2. Results and Discussion
2.1. Chemistry

The synthesis of compounds (3–17) was carried out following to the steps shown in
Scheme 1. Pyridazin-3(2H)-one (1), which served as a starting material in this study, was
prepared via a one-step synthetic route from 4-oxo-4-phenylbutanoic acid and hydrazine
hydrate in accordance with the published procedure [30]. Subsequently, compounds (3–7)
were obtained by the condensation reaction of pyridazin-3(2H)-one (1) with aromatic
aldehydes 2a–e [31]. Then, compounds (3–7) were condensed with ethyl bromoacetate in
refluxing ethanol in the presence of sodium methoxide as base to afforded esters (8–12) in
71–92% yields [32]. Finally, the esters (8–12) were converted to the corresponding acids
(13–17) by treating it with sodium hydroxide in dry ethanol, followed by in situ acidification
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with diluted hydrochloric acid [33,34]. The target pyridazin-3(2H)-one derivatives (3–17)
(Table 1) were obtained and the molecular structure were confirmed by FT-IR, 1H NMR,
13C NMR, and ESI-MS (FT-IR, NMR and ESI-MS spectra are given in the SI).
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Scheme 1. Synthetic route for preparation of pyridazinone derivatives (3–17). Reagents and condi-
tions: (a) NaOMe, dry ethanol, reflux, 6h; (b) ethyl bromoacetate, K2CO3, TBAB, dry THF, reflux 6h;
(c) 6N NaOH, Ethanol, reflux, 4h.

Table 1. Physical data of the synthesized compounds (3–17).

Compound R1 R2 R3 R4 Molecular Formula Mol. Wt (g/mol) Yield (%) m.p. (◦C)

3 H H CH3 H C18H16N2O 276.13 78 275–297
4 H H Cl H C17H13ClN2O 296.07 72 295–297
5 Cl H H Cl C17H12Cl2N2O 330.03 94 164–166
6 NO2 H H H C17H13N3O3 307.10 76 170–172
7 H H F H C17H13FN2O 280.10 58 279–281
8 H H CH3 H C22H22N2O2 346.17 71 120–122
9 H H Cl H C21H19ClN2O3 382.11 92 142–144

10 Cl H H Cl C21H18Cl2N2O3 416.07 78 80–82
11 NO2 H H H C21H19N3O5 393.13 85 175–177
12 H H F H C21H19FN2O3 366.14 88 73–75
13 H H CH3 H C20H18N2O3 334.13 90 170–172
14 H H Cl H C19H15ClN2O3 354.08 84 174–176
15 Cl H H Cl C19H14Cl2N2O3 388.04 89 140–142
16 NO2 H H H C19H15N3O5 365.10 80 102–104
17 H H F H C19H15FN2O3 338.11 86 187–189
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2.2. Antibacterial Activity

The title compounds (3–17) were screened for their antibacterial activities against
Gram-positive isolate (S. aureus (MRSA)), Gram-negative isolates (E. coli, S. typhimurium),
and Gram-negative nonfermenter isolates (P. aeruginosa, A. baumannii). If the color of the
alamarBlue (indicator dye) in the wells turned pink, bacterial growth was interpreted as
continuing. If there was no live cell presence, no color change occurred. In the test, the
last well that did not change from blue to pink was accepted as the minimal inhibition
concentration (MIC) value. After evaluation, samples in the wells were inoculated on
blood-agar medium and checked the next day. Interpretation of MICs of standard bacterial
isolates compared to standard “Amikacin” were done according to Clinical and Labo-
ratory Standards Institute (CLSI) criteria. The MIC values of the compounds (3–17) are
shown in Table 2. Antibacterial activities of compound 13 was shown in Figure 2. In this
study, negative and positive controls were evaluated in the 7th and 8th well, respectively
(Figure 2).

Table 2. Antibacterial activity of the synthesized compounds (3–17).

Compound
MIC (µM/mL)

E. coli S. aureus (MRSA) S. typhimurium P. aeruginosa A. baumannii

3 >36.21 4.52 >36.21 36.21 >36.21
4 >33.77 > 33.77 >33.77 >33.77 >33.77
5 >30.30 >30.30 >30.30 >30.30 >30.30
6 >32.56 >32.56 >32.56 >32.56 >32.56
7 8.92 8.92 8.92 17.85 8.92
8 >28.88 >28.88 >28.88 28.88 28.88
9 >27.32 >27.32 >27.32 >27.32 >27.32

10 >25.00 >25.00 25.00 >25.00 25.00
11 >26.51 >26.51 >26.51 26.51 26.51
12 >28.57 >28.57 >28.57 >28.57 >28.57
13 29.94 7.48 29.94 7.48 3.74
14 >28.24 28.24 28.24 28.24 >28.24
15 >25.77 25.77 >25.77 6.44 6.44
16 NA a NA NA NA NA
17 >29.57 29.57 >29.57 14.78 >29.57

Amikacin <0.53 <0.53 <0.53 <0.53 <0.53
a NA. not active.
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As noted in Table 2, the MIC values of the tested compounds (3–17) indicated that most
compounds exhibited moderate to significant activity (MIC = 3.74–36.21 µM) in comparison
to the reference drug “Amikacin”. According to these results, some compounds (3, 10,
11, 14, 15, and 17) were found to have antibacterial activities against at least two bacteria,
albeit at high concentrations. Compounds 4, 5, 6, 9, and 12 showed poor or no activity at
concentrations studied against any of the bacteria. Two compounds, 7 and 13, were found
effective against all studied bacteria. Indeed, Compound 7 showed significant activity
with MIC value 7.8 µM against E.coli, S. aureus (MRSA), S. typhimurium, and A. baumannii.
In fact, compound 13 was found to exhibit the most potent in vitro antibacterial activity
against Gram-negative bacteria, with MICs of 3.74 and 7.48 µM against A. baumannii and P.
aeruginosa, respectively. Compound 3 was the most active compound against Gram-positive
bacteria with an MIC value of 4.52 µM against S. aureus (MRSA).

In order to perform a structure–activity relationship (SAR) study, the tested com-
pounds were divided into three series: the first series contained 4-(aryl)-6-phenylpyridazin-
3(2H)-one (3–7), with different substitutions (CH3, Cl, NO2, and F) on the aryl ring; the
second series of esters (8–12) resulted from the N-alkylation of compounds (3–7) by intro-
ducing the ethyl ester group; and the third series of acids (13–17) resulted from a hydrolysis
reaction of esters (8–12). It was observed from the results of antibacterial activity that the
compound with the fluro group at para position (compound 7) in its molecular structure
was more active against Gram-negative bacteria as compared to other derivatives in the
first series, which may have been due the fact that F group may have been involved in the
binding of the ligand with the receptor site of the bacteria. It can also be seen from the
antibacterial activity data that when we replaced the F group with electron-donating CH3
group (compound 3), an abrupt rise in activity was observed against the Gram-positive
bacterium (S. aureus (MRSA)). Thus, introduction of the ethyle ester group at the N-1
position of pyridazin-3(2H)-one ring (compounds 8 and 12) led to a fall in antibacterial
activity of the synthesized pyridazin-3(2H)-one derivatives (compounds 3 and 7). On the
other hand, the hydrolysis of the ester led to an increase in the antibacterial activity of
the synthesized derivatives (compounds 13 and 15) against Gram-negative bacteria (P.
aeruginosa and A. baumannii).

2.3. Theoretical Calculations

The theoretical calculations were compared with both the chemical properties of the
molecules and their biological properties. It provided important information before many
experimental studies were carried out [35]. The calculated quantum chemical parame-
ters of compounds (3-17) using B3LYP/6-31++G(d,p) Level are given in Table S1 (from
Supplementary Materials). There are important advantages to knowing the active sites of
the molecules and the influence of each group on their biological properties in order to syn-
thesize new molecules that are more effective and more active. Thus, numerous quantum
parameters have been calculated in the Gaussian calculations; among the most important of
these are HOMO (highest occupied molecular orbital), which shows the ability of molecules
to donate electrons [36], and LUMO (lowest unoccupied molecular orbital) which shows
the ability to accept electrons of molecules [37]. The optimized structure, HOMO, LUMO
and molecular electrostatic potential surface of all molecules (3–17) are given in Figure S1
(from Supplementary Materials). The optimized shapes of representative compounds 7
and 13 are given in Figure 3. The second and third images are HOMO and LUMO. In the
last image, the electrostatic potentials of the structures are given. In the molecule, there
are red-colored regions that are electron-rich regions and blue-colored regions that are
electron-poor. These two regions are the active regions of the molecule for both accepting
and donating electrons [38]. The computed quantum chemical descriptors based upon DFT
calculations of representative compounds 7 and 13 are presented in Table 3.
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Table 3. Quantum chemical descriptors based upon DFT calculations for compounds 7 and 13.

Compound Quantum Chemical Descriptors (e.V)

EHOMO ELUMO ∆E η µ ω ε χ

7 −6.20 −1.90 4.30 2.15 0.47 3.81 0.26 4.05
13 −6.06 −1.76 4.29 2.14 0.47 3.58 0.28 3.91

In general, it is known that when the value of the HOMO parameter of the molecules
is the most positive and the value of the LUMO parameter is the most negative, the activity
is the highest [35]. Considering the above explanations, if HOMO is the most positive
and LUMO the most negative, it will be the least among them. This will increase the
activity of the molecules. As a result of the calculations, many parameters have been
calculated and since each calculated parameter explains a different feature, each has a
different importance. Among the calculated parameters, it is seen that the molecule
with the most negative numerical value of the HOMO parameter of the molecules has
higher activity at B3LYP level; compound 13 has higher activity than other molecules.
Among these parameters, the ∆E energy gap value is another parameter that shows the
activity of the molecule. Molecules with the lowest ∆E energy gap have the highest
activities. Herein, no direct correlation with activity can be highlighted. One of the other
important parameters calculated is electronegativity, which shows the ability of atoms
in the molecule to attract bond electrons [36]. The higher the numerical value of this
parameter, the more the atoms in the molecule will attract the bond electrons, which will
decrease the activity of the molecule [37]. Herein is verified a direct correlation between
electronegativity and antibacterial activity, it is seen that compound 13 has higher activity
than other molecules. Hence, the bioactivity of this compound may be explained by the
ability of the biological target to receive electrons, which may be important for stabilization
of the active site. Two other important parameters are chemical hardness and its opposite,
which show the polarization and softness properties of molecules, respectively. Thus, hard
molecules are less reactive than soft molecules because they cannot easily give electrons to
an acceptor [39]. In this case, no direct correlation with the activity of these compounds
and these two calculated parameters can be highlighted. Although many parameters
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have been found as a result of theoretical calculations, very few of these parameters have
figural representations.

After the Gaussian calculations, the activities of the title molecules against bacterial
proteins were investigated. The activities of molecules were determined based on the
chemical interactions that occur between the molecules and proteins These interactions, are
hydrogen bonds, π-π bonds, and polar and hydrophobic interactions [40–42]. The binding
parameters for all compounds (3–17) are given in Table S2 (from Supplementary Materials).
As a result of docking studies, the interactions of the proteins and the active sites of
compounds 7 and 13 were determined (Figure 4). The binding parameters for 7 and 13 on S.
aureus (PDB ID: 1JIJ), P. aeruginosa PAO1 (PDB ID: 2UV0), and E. coli K-12 (PDB ID: 4WUB)
proteins are given in Table 4. These parameters give the value of the chemical interactions
(glide hbond, glide evdw, and glide ecoul) and the values obtained about the poses (glide
emodel, glide energy, glide einternal, and glide posenum) obtained from the interaction of
the title ligands with the studied proteins [40,41].
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Table 4. Numerical values of the docking parameters of compounds 7 and 13 against enzymes.

Compound Docking Parameters (kcal/mol)

Docking
Score

Glide
Evdw

Glide
Ecoul

Glide
Emodel

Glide
Einternal

Glide
Einternal

Glide
Einternal

Glide
Posenum

1JIJ

7 −7.12 −43.07 −1.87 −65.11 1.23 1.23 1.23 351
13 −7.31 −45.05 −3.71 −68.49 5.12 5.12 5.12 1

Amikacin −6.07 −28.77 −23.49 −78.46 10.46 10.46 10.46 372

2UV0

7 −4.52 −25.49 −0.40 −32.81 0.30 0.30 0.30 214
13 −5.69 −19.45 −5.00 −29.44 2.70 2.70 2.70 157

Amikacin −4.13 −22.71 −30.13 −65.36 21.50 21.50 21.50 252

4WUB

7 −5.74 −30.15 −0.69 −39.21 1.72 1.72 1.72 357
13 −4.65 −28.96 −1.29 −37.10 3.39 3.39 3.39 49

Amikacin −5.07 −16.41 −29.44 −70.26 6.21 6.21 6.21 362

Docking results against S. aureus (PDB ID: 1JIJ) protein indicated a well-conserved
binding region but with slightly different predicted best binding-energy values. The
best free-binding energy was found for compound 13 (−7.31 kcal/mol), followed by
compound (−7.12 kcal/mol), in comparison to the other investigated compounds; amikacin
(reference molecule) displayed favorable binding energy value (Table 4). The observed
trend in the binding free-energy was found to be consistent with the experimental activity
trend for the title molecules. When the interactions between proteins and molecules
are examined, in Figure 4a, it is seen that the carbonyl oxygen in the carboxylic acid
group attached to the pyridazine ring forms hydrogen bonds with the LYS 84 and HIE
50 proteins. Figure 4a shows the 2D interaction diagram of the 2UV0-13 docked structure.
In comparison to the other compounds studied, compound 13 showed the best binding
free-energy (−5.69 kcal/mol). As shown in Figure 4b, it is seen that the carbonyl oxygen
in the same group and the oxygen atom attached to it form a hydrogen bond with LYS 97
and a Pi-cation bond with ARG 96. Thus, compound 7 showed good least binding energy
of −5.74 kcal/mol against E. coli 4WUB protein. As shown in Figure 4c, it is seen that the
benzene ring on one side of the molecule makes a Pi−Pi stacking interaction with the HIE
83 protein. The observed trend in the binding free energy was found to be consistent with
the experimental activity trend for the title molecules.

Analyzing the physicochemical properties of the developed drug hits is a crucial step
in analyzing and determining their drug-likeness potential (Table S3, from Supplementary
Materials). For this reason, we evaluated the drug-likeness potential of compounds 7 and
13 through computing various descriptors, such as molar mass of molecules (mol_MW),
dipole moment (dipole), total solvent accessible surface area (SASA), volume, donorHB
(given hydrogen bond), accptHB (accepted hydrogen bond), globularity descriptor (glob),
predicted polarizability (QPpolrz), brain−blood (QPPMDCK) and intestinal−blood (QP-
PCaco) barriers of molecules, predicted skin permeability (QPlogKp), and number of
likely metabolic reactions (#metab) (Table 5) [43–45] according to the Lipinski’s rule of
five [46,47] and Jorgensen’s rule of three [48]. Molecular weights of the title compounds
ranged from 485.58 to 564.48 Da, with compounds 7 and 13 having molecular weights
less than 500 Da and obeying the first Lipinski rule for effective and safe drug delivery.
Lipinski’s second rule stipulates that drug-like compounds should not possess more than
five hydrogen-bond-donating groups. The two title compounds comply with this rule.
Hydrogen-bond-accepting groups in the compounds 7 and 13 are 2 and 4, respectively,
thus also meeting Lipinski’s third rule. Apart from all these above-mentioned parameters,
two important parameters are violations of Lipinski’s rule of five (RuleOfFive) [46,47] and
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violations of Jorgensen’s rule of three (RuleOfThree) [48]. The numerical value of this
important parameter is required to be zero, which is consistent with the values found
for both compounds (Table 5). Looking at all the calculated parameter values, we find
that these values are within the recommended range and it can be concluded that the title
molecules had drugability characteristics according to Lipinski’s rules. Thus, it can be
seen that there is no harm in the application of all molecules to human metabolism as a
theoretical drug.

Table 5. ADME properties of compounds of compounds 7 and 13.

Parameters 7 13 Reference Range

mol_MW 280 334 130–725
Dipole (D) 3.4 8.0 1.0–12.5

SASA 539 626 300–1000
FOSA 36 159 0–750
FISA 113 150 7–330
PISA 344 317 0–450

WPSA 47 0 0–175
Volume (A3) 918 1096 500–2000

donorHB 1 1 0–6
accptHB 2 4 2.0–20.0

glob (sphere = 1) 0.8 0.8 0.75–0.95
QPpolrz (A3) 31.9 37.5 13.0–70.0
QPlogPC16 9.8 11.9 4.0–18.0
QPlogPoct 13.4 16.9 8.0–35.0
QPlogPw 6.9 8.7 4.0–45.0

QPlogPo/w 4.0 4.3 −2.0–6.5
QPlogS −5.1 −5.4 −6.5–0.5

CIQPlogS −5.1 −5.5 −6.5–0.5
QPlogHERG −5.6 −4.1 *

QPPCaco (nm/sec) 846 95 **
QPlogBB −0.6 −1.2 −3.0–1.2

QPPMDCK (nm/sec) 744 49 **
QPlogKp −2.1 −2.7 Kp in cm/hr

IP (ev) 9.8 9.7 7.9–10.5
EA (eV) 1.2 1.2 −0.9–1.7
#metab 1 3 1–8

QPlogKhsa 0.6 0.4 −1.5–1.5
Human Oral Absorption 3 3 -

Percent Human Oral Absorption 100 88 ***
PSA 60 89 7–200

RuleOfFive 0 0 Maximum is 4
RuleOfThree 0 0 Maximum is 3

Jm 0.0 0.0 -
* concern below −5, ** <25 is poor and >500 is great, *** <25% is poor and >80% is high.

3. Materials and Methods
3.1. General Methods

TLC was used to follow the reactions using aluminum sheets with silica gel 60 F254.
Buchi−Tottoli apparatus was used to measure the melting points. The infrared spectra
were recorded by using Perkin-Elmer FT Pargamon 1000 PC Spectrophotometer (Cleveland,
OH, USA) covering field 400–4000 cm−1. 1H NMR and 13C NMR spectra were recorded
in DMSO-d6 on JNM-ECZ500R/S1 FT NMR SYSTEM (JEOL) (500 MHz). High resolution
mass spectrometry (HRMS) spectra were collected by using a Q Extractive Thermofischer
Scientific ion trap spectrometer by using ESI ionization (Waltham, MA, USA).
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3.2. Chemistry
3.2.1. General Procedure for the Synthesis of Compounds (3–7)

To a mixture of pyridazin-3(2H)-one (1) (1 mmol) and sodium methanoate (0.065 g,
1.2 mmol) in 30 mL of dry ethanol, aromatic aldehyde (2) (1 mmol) was added drop-wise.
The mixture was refluxed for 6 h, then left under stirring overnight at room tempera-
ture. After cooling, the mixture was acidified with concentrated HCl. The precipitate
formed was filtered, washed with water, and recrystallized from ethanol to afford the pure
products (3–7).

4-(4-methylbenzyl)-6-phenylpyridazin-3(2H)-one (3): White solid, Yield = 78%, m.p = 276 ◦C,
FT-IR (ATR, cm−1): 3304 (NH), 3130–2846 (CH), 1647 (C=O), 1600 (N=C); 1H NMR
(500 MHz, DMSO-d6) δ: 2.40 (s, 3H, CH3), 2.96 (s, 2H, CH2-Ar), 7.32–7.50 (m, 7H, H-
Ar), 7.70 (d, 2H, J = 8.4 Hz, 2H, H-Ar), 7.88 (s, 1H, CH-pyr), 10.82 (s, 1H, CONH); ESI-MS:
calculated for C18H16N2O [M + H]+: 275.1300, found: 275.0509.

4-(4-chlorobenzyl)-6-phenylpyridazin-3(2H)-one (4): White solid, Yield = 72%; m.p = 296 ◦C; FT-
IR (ATR, cm−1): 3304 (NH), 3124–2893 (CH), 1647 (C=O), 1600 (N=C); 1H NMR (500 MHz,
DMSO-d6, δ (ppm)) δ: 2.96 (s, 2H, CH2-Ar), 7.38–7.45 (m, 3H, H-Ar), 7.61 (d, 2H, J = 8.4 Hz,
H-Ar), 7.70 (d, 2H, J = 8.4 Hz, H-Ar), 7.80 (d, 2H, J = 8.4 Hz, H-Ar), 7.90 (s, 1H, CH-pyri),
10.84 (s, 1H, CONH); ESI-HRMS: calculated for C17H13ClN2O [M + H]+: 297.0715, found:
297.1030.

4-(2,6-dichlorobenzyl)-6-phenylpyridazin-3(2H)-one (5): Brown solid, Yield = 94%,
mp = 165 ◦C, FT-IR (ATR, cm−1): 3206 (NH), 3061–2875 (CH), 1646 (C=O), 1605 (C=N);
1H NMR (500 MHz, DMSO-d6, δ (ppm)) δ: 7.55–7.53 (m, 2H, H-Ar), 7.53 (d, J = 2.1 Hz,
2H, H-Ar), 7.41–7.35 (m, 4H, H-Ar), 6.89 (s, 1H, H-Pyz),4.10 (s, 2H, NCH2CO); 13C NMR
(101 MHz, DMSO-d6, δ (ppm)) δ: 160.77, 144.32, 140.31, 135.15, 133.23, 130.63, 129.77, 129.56,
129.44, 129.32, 126.06, 125.95, 31.44. ESI-HRMS: calculated for C17H12Cl2N2O [M + H]+:
331.0350, found: 331.0020.

4-(2-nitrobenzyl)-6-phenylpyridazin-3(2H)-one (6): Brown solid, Yield = 96%; mp = 170 ◦C,
FT-IR (ATR, cm−1): 3200 (NH), 3043–2865 (CH), 1646 (C=O), 1595 (C=N); 1H NMR
(500 MHz, DMSO-d6, δ (ppm)) δ: 8.21 (d, J = 2.0 Hz, 1H, H-Ar), 8.05 (ddd, J = 8.3, 2.4,
1.0 Hz, 1H, H-Ar), 8.03 (s,1H, H-pyr), 7.81–7.78 (m, 3H, H-Ar), 7.56 (t, J = 7.9 Hz, 1H, H-Ar),
7.46–7.42 (m, 2H, H-Ar), 7.41–7.37 (m, 1H, H-Ar), 3.97 (s, 2H, CH2-Ar); 13C NMR (101 MHz,
DMSO-d6, δ (ppm)) δ: 161.09, 148.32, 144.64, 141.94, 141.01, 136.41, 135.28, 130.36, 129.72,
129.42, 129.36, 126.21, 124.17, 122.10, 35.40. HRMS: calculated for C17H13FN2O [M − H]−:
306.0315, found: 306.0475.

4-(4-fluorobenzyl)-6-phenylpyridazin-3(2H)-one (7): White solid, Yield = 58%, m.p = 280 ◦C,
FT-IR (ATR, cm−1): 3296 (NH), 1740 (C=O), 1652 (N=C); 1H NMR (500 MHz, DMSO-d6)
δ: 2.94 (s, 2H, CH2-Ar), 7.17–7.20 (m, 2H, H-Ar), 7.38–7.44 (m, 3H, H-Ar), 7.70 (d, 2H,
J = 8.4 Hz, H-Ar), 7.78 (m, 2H, H-Ar), 7.88 (s, 1H, H-pyri), 10.82 (s, 1H, CONH); 13C NMR
(101 MHz, DMSO-d6, δ (ppm)) δ: 161.84, 158.31, 144.20, 142.41, 135.90, 135.68, 132.94,
129.66, 129.85, 129.51, 129.54, 129.51, 127.57, 35.31. ESI-HRMS: calculated for C17H13N3O3
[M + H]+: 281.1018, found: 281.3045.

3.2.2. General Procedure for the Synthesis of Compounds (8–12)

Ethyl bromoacetate (0.53, 3.2 mmol) was added drop-wise to a solution of compounds
(3–7) (3 mmol), K2CO3 (1.24 g, 9 mmol), and tetra n-butylammonium bromide (TBAB) as
a catalyst in dry THF (20 mL), and the mixture was refluxed for 6 h. After the end of the
reaction, the formed salts were removed by filtration and the solvent was evaporated under
reduced pressure. The residue was purified by chromatography on a column of silica gel
(ethylacetate:hexane (1:1)) to give pure esters (8–12).

Ethyl 2-(5-(4-methylbenzyl)-6-oxo-3-phenylpyridazin-1(6H)-yl)acetate (8): White crystals,
Yield = 71%, m.p = 120 ◦C, FT-IR (ATR, cm−1): 3489 (OH), 3078–2852 (CH), 1751, 1652
(C=O), 1607 (C=N); 1H NMR (500 MHz, DMSO-d6, δ (ppm)) δ: 7.91 (s, 1H,CH-pyri), 7.82
(d, J = 7.8 Hz, 2H, H-Ar), 7.51–7.43 (m, 3H, H-Ar) 7.24 (d, J = 7.9 Hz, 2H, H-Ar), 7.11 (d,
J = 7.8 Hz, 2H, 2H, H-Ar), 4.94 (s, 2H, NCH2CO), 4.16 (q, J = 7.1 Hz, 2H,CH2CH3), 3.87 (s,
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2H,CH2-Ar), 1.19 (t, J = 7.1 Hz, 3H, OCH2CH3). 13C NMR (101 MHz, DMSO-d6, δ (ppm)) δ:
167.86, 159.48, 143.74, 142.56, 135.50, 134.69, 134.24, 129.40, 128.97, 128.85, 128.03, 125.79,
61.10, 53.99, 35.03, 20.57, 13.91. HRMS: calculated for C22H22N2O3 [M + H]+: 363.1794,
found: 363.1689.

Ethyl 2-(5-(4-chlorobenzyl)-6-oxo-3-phenylpyridazin-1(6H)-yl)acetate (9): White solid,
Yield = 92%; m.p = 142 ◦C, FT-IR (ATR, cm−1): 3466 (OH), 3067–2864 (CH), 1745, 1647
(C=O), 1607 (C=N); 1H NMR (500 MHz, DMSO-d6, δ (ppm)) δ: 8.02 (s, 1H,CH-pyri), 7.85
(d, J = 7.8 Hz, 2H, H-Ar), 7.54–7.44 (m, 3H, H-Ar), 7.40 (d, J = 8.7 Hz, 2H, H-Ar), 7.35 (d,
J = 8.6 Hz, 2H, H-Ar),7.43–7.31 (m, 4H, H-Ar), 4.96 (s, 2H, NCH2CO), 4.16 (q, J = 7.1 Hz,
2H, OCH2CH3), 3.92 (s, 2H, CH2-Ar), 1.19 (t, J = 7.1 Hz, 3H, CH2CH3); 13C NMR (101 MHz,
DMSO-d6, δ (ppm)) δ: 167.48, 159.29, 143.74, 141.76, 136.85, 134.21, 131.21, 130.83, 129.41,
128.84, 128.44, 128.29, 125.82, 61.08, 53.82, 34.86, 13.91. HRMS: calculated for C21H19ClN2O3
[M + 3H]+: 385.1166, found: 385.1512.

Ethyl 2-(5-(2,6-dichlorobenzyl)-6-oxo-3-phenylpyridazin-1(6H)-yl)acetate (10): White solid,
Yield = 78%; m.p = 80 ◦C, FT-IR (ATR, cm−1): 3304 (OH), 3067–2870 (CH), 1757, 1659 (C=O),
1612 (C=N); 1H NMR (500 MHz, DMSO-d6, δ (ppm)) δ: 7.58–7.55 (m, 2H, H-Ar), 7.49 (d,
J = 8.1 Hz, 2H, H-Ar), 7.38–7.32 (m, 4H, H-Ar), 6.97 (s, 1H, CH-pyri), 5.02 (s, 1H, NCH2CO),
4.28 (s, 1H, CH2-Ar), 4.24 (q, J = 7.0 Hz), 1.27 (t, J = 7.1 Hz); 13C NMR (101 MHz, DMSO-d6,
δ (ppm)) δ: 167.84, 160.38, 145.27, 140.10, 136.03, 134.57, 133.05, 129.60, 129.39, 128.66, 128.55,
126.31, 125.71, 61.58, 54.03, 31.00, 13.10. HRMS: calculated for C21H18Cl2N2O3 [M + H]+:
417.0796, found: 417.0757.

Ethyl 2-(5-(2-nitrobenzyl)-6-oxo-3-phenylpyridazin-1(6H)-yl)acetate (11): Brown solid,
Yield = 85%; m.p = 175 ◦C, FT-IR (ATR, cm−1): 3211–2887 (CH), 1647 (C=O), 1607 (C=N);
1H NMR (500 MHz, DMSO-d6, δ (ppm)) δ: 8.22 (t, J = 1.9 Hz, 1H, H-Ar), 8.14 (s, CH-pyri),
8.06 (ddd, J = 8.2, 2.4, 1.0 Hz, 1H, H-Ar), 7.84–7.81 (m, 2H, H-Ar), 7.80 (dt, J = 7.7, 1.2 Hz,
1H, H-Ar), 7.56 (t, J = 8.0 Hz, 1H, H-Ar), 7.49–7.41 (m, 3H, H-Ar), 4.90 (s, 2H, NCH2CO),
4.09 (q, J = 7.1 Hz, 2H, OCH2CH3), 4.02 (s, 2H, CH2-Ar), 1.12 (t, J = 7.1 Hz, 3H, CH2CH3).
13C NMR (101 MHz, DMSO-d6, δ (ppm)) δ: 168.06, 159.82, 148.33, 144.37, 141.58, 140.73,
136.46, 134.71, 130.37, 130.10, 129.61, 129.48, 126.46, 124.28, 122.18, 61.65, 54.44, 35.72, 14.47.
HRMS: calculated for C21H18N3O4 [M + 2H]+: 395.1307, found: 395.1144.

Ethyl 2-(5-(4-fluorobenzyl)-6-oxo-3-phenylpyridazin-1(6H)-yl)acetate (12): White solid,
Yield = 88%, m.p = 73 ◦C, FT-IR (ATR, cm−1): 3484 (OH), 3067–2835 (CH), 1757, 1652
(C=O), 1600 (C=N); 1H NMR (500 MHz, DMSO-d6, δ (ppm)) δ: 7.58–7.54 (m, 4H, H-Ar),
7.45–7.35 (m, 5H, H-Ar), 6.93 (s, 1H, CH-pyri), 4.90 (s, 2H, NCH2CO), 4.10 (q, J = 7.1 Hz, 2H,
CH2CH3), 3.87 (s, 2H, CH2-Ar), 1.14 (t, J = 7.1 Hz, 3H, OCH2CH3). 13C NMR (101 MHz,
DMSO-d6, δ (ppm)) δ: 166.46, 159.57, 143.65, 139.80, 135.91, 134.84, 130.68, 129.94, 129.55,
129.36, 126.26, 125.76, 61.64, 54.40, 35.99, 14.50. HRMS: calculated for C21H18FN2O·
[M + H]+: 367.1435, found: 367.1427.

3.2.3. General Procedure for the Synthesis of Compounds (13–17)

To a solution of esters (8–12) (3.6 mmol) in ethanol (50 mL), was added 6 N NaOH
(14.4 mmol) and the mixture was stirred at room temperature for 4 h. The solvent was
then evaporated and the residue was diluted with cold water, and acidified with 6 N HCl.
The final product was filtered off by suction filtration and recrystallized from dry ethanol.
The precipitate formed was filtered off and recrystallized from dry ethanol to give the
corresponding acids (13–17).

2-(5-(4-methylbenzyl)-6-oxo-3-phenylpyridazin-1(6H)-yl)acetic acid (13): White solid,
Yield = 90%, m.p = 170 ◦C, FT-IR (ATR, cm−1): 3461 (OH), 3072–2843 (CH), 1757, 1734
(C=O), 1654 (C=N); 1H NMR (500 MHz, DMSO-d6, δ (ppm)) δ: 7.91 (s, 1H, CH-pyri), 7.82
(d, J = 7.1 Hz, 2H, H-Ar), 7.54–7.43 (m, 3H, H-Ar), 7.25 (d, J = 7.7 Hz, 2H, H-Ar), 7.12
(d, J = 7.7 Hz, 2H, H-Ar), 4.87 (s, 2H, NCH2CO), 3.87 (s, 2H, CH2-Ar), 2.27 (s, 3H,CH3).
13C NMR (101 MHz, DMSO-d6, δ (ppm)) δ: 168.95, 159.37, 143.47, 142.53, 135.47, 134.76,
134.37, 129.34, 128.99, 128.90, 128.86, 127.87, 125.78, 53.73, 35.07, 20.62; HRMS: calculated
for C19H18N2O3 [M + H]+: 335.1160, found: 335.1378.
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2-(5-(4-chlorobenzyl)-6-oxo-3-phenylpyridazin-1(6H)-yl)acetic acid (14): White solid,
Yield = 84%, m.p = 174 ◦C (EtOH), FT-IR (ATR, cm−1): 3461 (OH), 3055–2852 (CH), 1751,
1647 (C=O), 1600 (C=N); 1H NMR (500 MHz, DMSO-d6, δ (ppm)) δ: 7.99 (s, 1H, CH-pyri),
7.84 (dd, J = 7.8, 1.6 Hz, 2H, H-Ar), 7.54–7.44 (m, 3H, H-Ar), 7.41 (d, J = 8.7 Hz, 2H, H-
Ar), 7.36 (d, J = 8.7 Hz, 2H, H-Ar), 4.81 (s, 2H, NCH2CO), 3.71 (s, 2H, CH2-Ar); 13C NMR
(101 MHz, DMSO-d6, δ (ppm)) δ: 169.23, 159.29, 143.28, 141.66, 137.02, 134.41, 131.13, 130.87,
129.31, 128.86, 128.31, 128.14, 125.79, 54.15, 34.88. HRMS: calculated for C19H15ClN2O3
[M + H]+: 354.9932, found: 354.9837.

2-(5-(2,6-dichlorobenzyl)-6-oxo-3-phenylpyridazin-1(6H)-yl)acetic acid (15): White solid,
Yield = 89%; m.p = 140 ◦C, FT-IR (ATR, cm−1): 3461 (OH), 3055–2852 (CH), 1751, 1647
(C=O), 1600 (C=N); 1H NMR (500 MHz, DMSO-d6, δ (ppm)) δ: 7.65–7.60 (m, 2H, H-Ar),
7.57 (d, J = 7.8 Hz, 2H, H-Ar), 7.48–7.40 (m, 4H, H-Ar), 7.03 (s, 1H, CH-pyri), 4.95 (s, 1H,
NCH2CO), 4.19 (s, 1H, CH2-Ar); 13C NMR (101 MHz, DMSO-d6, δ (ppm)) δ: 168.89, 158.91,
143.24, 139.37, 135.34, 134.10, 132.49, 130.06, 129.43, 128.95, 128.75, 125.70, 125.51, 53.76,
31.40. HRMS: calculated for C19H14Cl2N2O3 [M − H]−: 387.0468, found: 386.9793.

2-(5-(2-nitrobenzyl)-6-oxo-3-phenylpyridazin-1(6H)-yl)acetic acid (16): Yellow solid,
Yield = 80%; m.p = 102 ◦C (EtOH), FT-IR (ATR, cm−1): 3465 (OH), 3050–2865 (CH), 1756,
1650 (C=O), 1610 (C=N); 1H NMR (500 MHz, DMSO-d6, δ (ppm)) δ: 8.21 (t, J = 1.9 Hz,
1H, H-Ar), 8.13 (s, CH-pyri), 8.07–8.04 (m, 1H, H-Ar), 7.84–7.78 (m, 3H, H-Ar), 7.56 (t,
J = 7.9 Hz, 1H, H-Ar), 7.49–7.41 (m, 3H, H-Ar), 4.87 (s, 2H, NCH2CO), 3.98 (s, 2H, CH2-Ar);
13C NMR (101 MHz, DMSO-d6, δ (ppm)) δ: 168.10, 159.75, 148.83, 144.30, 141.27, 140.85,
136.82, 134.86, 130.31, 130.17, 129.77, 129.13, 126.46, 124.44, 121.23, 54.65, 35.48. HRMS:
calculated for C19H15N3O5 [M + 2H]+: 367.1073, found: 367.1427.

2-(5-(4-fluorobenzyl)-6-oxo-3-phenylpyridazin-1(6H)-yl)acetic acid (17): Brown solid,
Yield = 86%, m.p = 187 ◦C, FT-IR (ATR, cm−1): 3460 (OH), 3085–2842 (CH), 1750, 1649
(C=O), 1598 (C=N); 1H NMR (500 MHz, DMSO-d6, δ (ppm)) δ: 7.68–7.55 (m, 5H, H-Ar),
7.48–7.40 (m, 4H, H-Ar), 7.04 (s, 1H, CH-pyr), 4.94 (s, 2H, NCH2CO), 3.20 (s, 2H, CH2-Ar);
13C NMR (101 MHz, DMSO-d6, δ (ppm)) δ: 168.85, 158.91, 143.24, 139.37, 135.35, 134.13,
132.51, 130.07, 129.43, 128.97, 128.76, 125.71, 125.52, 53.75, 31.40. HRMS: calculated for
C19H15FN2O3 [M + H]+: 339.1101, found: 339.1997.

3.3. Theoretical Methods

Theoretical calculations are used to compare the biological and chemical activities of
molecules through the determination of many quantum chemical parameters and each
calculated parameter gives information about the different properties of the molecule.
Gaussian09 RevD.01, GaussView 6.0 [21,49,50] was used to calculate these parameters. DFT
calculations with B3LYP/6-31++g(d,p) basis set were performed [22,51]. Many parameters
were calculated, namely HOMO, LUMO, ∆E (HOMO-LUMO energy gap), electrophilicity
(ω), chemical potential (µ), bulk softness (σ), chemical are hardness (η), nucleophilicity (ε),
energy value, and dipole moment [51–53]. These parameters were calculated using the
following equations.

χ = −
(

∂E
∂N

)
υ(r)

=
1
2
(I + A) ∼= −

1
2
(EHOMO + ELUMO)

η = −
(

∂2E
∂N2

)
υ(r)

=
1
2
(I − A) ∼= −

1
2
(EHOMO − ELUMO)

σ = 1/η ω = χ2/2η ε = 1/ω

In order to examine the antibacterial activities of the studied compounds, their in-
hibitory activities against various proteins were investigated. For this review, the Maestro
molecular modeling platform (version 12.8) by Schrödinger [54] was used. For this cal-
culation, the protein preparation module is used for the preparation of proteins [55], the
LigPrep module [56] is used for the preparation of molecules, and the Glide ligand dock-
ing module [57] is used to interact between the prepared molecules and proteins. In the
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molecular-docking calculations, since the flexibility feature was added to the studied ligand
molecules and the proteins in bacteria, both horizontal approach and vertical interactions
were ensured. Moreover, energy minimization steps were performed using Macromodel
(Schrodinger) and OPLS3e force field by following the Polak−Ribiere conjugate gradient
(PRCG) algorithm with an energy gradient of 0.01 kcal/mol. However, the study was
conducted using ADME/T analysis so that the studied molecules could be used as drugs.
The effects and reactions of compounds in human metabolism were predicted by using the
Qik-prop module of the Schrödinger Release 2021-3 (New York, NY, USA) [58].

3.4. Antibacterial Activity

The compounds (3–17) were evaluated in vitro for their antibacterial activities against
S. aureus (methicillin resistant) ATCC 43300, E. coli ATCC 25922, A. baumannii ATCC 19606, P.
aeruginosa ATCC 27853, and S. typhimurium ATCC 14028 bacterial strains. The antibacterial
activities of the title compounds were determined by microdilution broth assay following
the procedure described in our previous work [59].

4. Conclusions

In summary, novel pyridazinone derivatives (3–17) were synthesized, characterized
and screened for their potential antibacterial activities against S. aureus (methicillin re-
sistant), E. coli, A. baumannii, P. aeruginosa, and S. typhimurium bacterial strains. Most
compounds showed significant antibacterial activities. Compounds 7 and 13 showed the
most potent antibacterial activities against S. aureus (MRSA), P. aeruginosa, and A. baumannii
with an MIC value range of 3.74–8.92 µM. DFT calculations with B3LYP/6-31++g(d,p)
level were used to analyze the electronic and geometric characteristics deduced for the
stable structure of title compounds and the principal quantum chemical descriptors were
correlated with the antibacterial activity. However, it was found to have higher activity
than other molecules with a docking score of −7.31 kcal/mol against S. aureus protein and
−5.69 kcal/mol against P. aeruginosa protein. In addition, the predicted ADMET profiles
of some derivatives were in line with Lipinski rules. As a result, this study will be an
important guide for future in vivo studies and these new structures can be considered
interesting for further modification as antibacterial agents.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28020678/s1, Figure S1: Shapes of optimized structure,
HOMO, LUMO, and ESP of compounds (3–17); Figures S2–S13: 1H and 13C spectra of compounds
(3–17); Figures S35–S46: HRMS spectra of compounds (3–17); Table S1: The calculated quantum
chemical parameters of compounds (3–17) using B3LYP/6-31++G(d,p) level; Table S2: Numerical
values of the docking parameters of compounds (3–17) against enzymes; Table S3: ADME properties
of compounds (3–17).
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ADMET Absorption, distribution, metabolism, excretion, and toxicity
B3LYP Becke 3-parameter Lee–Yang–Parr
CLSI Clinical and Laboratory Standards Institute
DFT Density functional theory
ESI–MS Electrospray ionisation–mass spectrometry
ESP Electrostatic potential
FT-IR Fourier-transform infrared
HOMO Highest occupied molecular orbital
LUMO Lowest unoccupied molecular orbital
MIC Minimal inhibition concentration
MRSA Methicillin-resistant Streptococcus aureus
NMR Nuclear magnetic resonance
TBAB Tetrabutylammonium bromide
THF Tetrahydrofuran
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