Study on Molecularly Imprinted Polymers Obtained Sonochemically for the Determination of Aflatoxins in Food
Abstract
:1. Introduction
2. Results and Discussion
2.1. Monomer Selection
2.2. Optimization of MIPs–SPE
2.3. MIP Performance
2.4. MIP Selectivity
2.5. Method Validation
2.6. Sample Analysis and Comparison with Immunoaffinity Columns
3. Materials and Methods
3.1. Chemicals, Reagents, and Samples
3.2. Apparatus
3.3. MIPs Synthesis
3.4. MIP Binding Affinity Studies
3.5. Sample Cleanup
3.6. LC–MS/MS
3.7. Method Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Hua, Y.; Ahmadi, Y.; Sonne, C.; Kim, K.-H. Progress and challenges in sensing of mycotoxins using molecularly imprinted polymers. Environ. Pollut. 2022, 119218. [Google Scholar] [CrossRef] [PubMed]
- Jayasinghe, G.D.T.M.; Domínguez-González, R.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Ultrasound assisted combined molecularly imprinted polymer for the selective micro-solid phase extraction and determination of aflatoxins in fish feed using liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2020, 1609, 460431. [Google Scholar] [CrossRef] [PubMed]
- Akgönüllü, S.; Yavuz, H.; Denizli, A. Development of gold nanoparticles decorated molecularly imprinted–based plasmonic sensor for the detection of aflatoxin M1 in milk samples. Chemosensors 2021, 9, 363. [Google Scholar] [CrossRef]
- Wu, C.; He, J.; Li, Y.; Chen, N.; Huang, Z.; You, L.; He, L.; Zhang, S. Solid-phase extraction of aflatoxins using a nanosorbent consisting of a magnetized nanoporous carbon core coated with a molecularly imprinted polymer. Mikrochim. Acta 2018, 185, 515. [Google Scholar] [CrossRef]
- Liang, Y.; He, J.; Huang, Z.; Li, H.; Zhang, Y.; Wang, H.; Rui, C.; Li, Y.; You, L.; Li, K. An amino-functionalized zirconium-based metal-organic framework of type UiO-66-NH2 covered with a molecularly imprinted polymer as a sorbent for the extraction of aflatoxins AFB1, AFB2, AFG1 and AFG2 from grain. Microchim. Acta 2020, 187, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Bao, M.; Regal, P.; Barreiro, R.; Fente, C.A.; Cepeda, A. A facile method for the fabrication of magnetic molecularly imprinted stir-bars: A practical example with aflatoxins in baby foods. J. Chromatogr. A 2016, 1471, 51–59. [Google Scholar] [CrossRef]
- Arak, H.; Torshizi, M.A.K.; Hedayati, M.; Rahimi, S. Comparative evaluation of aflatoxin and mineral binding activity of molecular imprinted polymer designed for dummy template using in vitro and in vivo models. Toxicon 2019, 166, 66–75. [Google Scholar] [CrossRef]
- Gong, Y.Y.; Watson, S.; Routledge, M.N. Aflatoxin exposure and associated human health effects, a review of epidemiological studies. Food Saf. 2016, 4, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Ekici, H.; Yipel, M. Total aflatoxin, aflatoxin B1, ochratoxin A and fuminosin in dry dog food: A risk assessment for dog health. Toxicon 2022. [Google Scholar] [CrossRef]
- Awuchi, C.G.; Ondari, E.N.; Nwozo, S.; Odongo, G.A.; Eseoghene, I.J.; Twinomuhwezi, H.; Ogbonna, C.U.; Upadhyay, A.K.; Adeleye, A.O.; Okpala, C.O.R. Mycotoxins’ Toxicological Mechanisms Involving Humans, Livestock and Their Associated Health Concerns: A Review. Toxins 2022, 14, 167. [Google Scholar] [CrossRef]
- Commission, E. Commission Regulation (EU) No 165/2010 of 26 February 2010 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins. Off. J. Eur. Union 2010, 50, 8–12. [Google Scholar]
- Krska, R.; Welzig, E.; Berthiller, F.; Molinelli, A.; Mizaikoff, B. Advances in the analysis of mycotoxins and its quality assurance. Food Addit. Contam. 2005, 22, 345–353. [Google Scholar] [CrossRef]
- Spanjer, M.; Rensen, P.; Scholten, J. Multimycotoxin analysis: The LCMS approach. In The Mycotoxins Factbook Food and Feed Topic; Wageningen Academic Publishers: Wageningen, The Netherlands, 2006; pp. 249–267. [Google Scholar]
- Chmangui, A.; Driss, M.R.; Touil, S.; Bermejo-Barrera, P.; Bouabdallah, S.; Moreda-Piñeiro, A. Aflatoxins screening in non-dairy beverages by Mn-doped ZnS quantum dots–molecularly imprinted polymer fluorescent probe. Talanta 2019, 199, 65–71. [Google Scholar] [CrossRef]
- Wyszomirski, M.; Prus, W. Molecular modelling of a template substitute and monomers used in molecular imprinting for aflatoxin B1 micro-HPLC analysis. Mol. Simul. 2012, 38, 892–895. [Google Scholar] [CrossRef]
- Pascale, M.; Visconti, A. Immunoaffinity clean-up/fluorescence detection methods for mycotoxins. In The Mycotoxin Factbook; Barug, D., Bhatnagar, D., van Egmond, H.P., van der Kamp, J.W., van Osenbruggen, W.A., Visconti, A., Eds.; Academic Publishers: Wageningen, The Netherlands, 2006. [Google Scholar]
- Burdaspal, P.; Legarda, T.M.; Gilbert, J. Determination of ochratoxin A in baby food by immunoaffinity column cleanup with liquid chromatography: Interlaboratory study. J. AOAC Int. 2001, 84, 1445–1452. [Google Scholar]
- Arranz, I.; Mischke, C.; Stroka, J.; Sizoo, E.; Van Egmond, H.; Neugebauer, M. Liquid chromatographic method for the quantification of zearalenone in baby food and animal feed: Interlaboratory study. J. AOAC Int. 2007, 90, 1598–1609. [Google Scholar] [CrossRef] [Green Version]
- Elfadil, D.; Lamaoui, A.; Della Pelle, F.; Amine, A.; Compagnone, D. Molecularly imprinted polymers combined with electrochemical sensors for food contaminants analysis. Molecules 2021, 26, 4607. [Google Scholar] [CrossRef]
- Alilou, S.; Amirzehni, M.; Eslami, P.A. A simple fluorometric method for rapid screening of aflatoxins after their extraction by magnetic MOF-808/graphene oxide composite and their discrimination by HPLC. Talanta 2021, 235, 122709. [Google Scholar] [CrossRef]
- Lahcen, A.A.; Surya, S.G.; Beduk, T.; Vijjapu, M.T.; Lamaoui, A.; Durmus, C.; Timur, S.; Shekhah, O.; Mani, V.; Amine, A.; et al. Metal–Organic Frameworks Meet Molecularly Imprinted Polymers: Insights and Prospects for Sensor Applications. ACS Appl. Mater. Interfaces 2022, 14, 49399–49424. [Google Scholar] [CrossRef]
- Elfadil, D.; Della Pelle, F.; Compagnone, D.; Amine, A. Green Synthesis of Molecularly Imprinted Polymers for Dispersive Magnetic Solid-Phase Extraction of Erythrosine B Associated with Smartphone Detection in Food Samples. Materials 2022, 15, 7653. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Gálvez, A.; Ait-Lahcen, A.; Mercante, L.A.; Morales-Narváez, E.; Amine, A.; Merkoçi, A. Molecularly imprinted polymer-decorated magnetite nanoparticles for selective sulfonamide detection. Anal. Chem. 2016, 88, 3578–3584. [Google Scholar] [CrossRef] [PubMed]
- Elfadil, D.; Palmieri, S.; Della Pelle, F.; Sergi, M.; Amine, A.; Compagnone, D. Enzyme inhibition coupled to molecularly imprinted polymers for acetazolamide determination in biological samples. Talanta 2022, 240, 123195. [Google Scholar] [CrossRef]
- Lamaoui, A.; Palacios-Santander, J.M.; Amine, A.; Cubillana-Aguilera, L. Fast microwave-assisted synthesis of magnetic molecularly imprinted polymer for sulfamethoxazole. Talanta 2021, 232, 122430. [Google Scholar] [CrossRef] [PubMed]
- El Hani, O.; Karrat, A.; Digua, K.; Amine, A. Advanced molecularly imprinted polymer-based paper analytical device for selective and sensitive detection of Bisphenol-A in water samples. Microchem. J. 2023, 184, 108157. [Google Scholar] [CrossRef]
- Karim, K.; Lamaoui, A.; Amine, A. Acetazolamide smartphone-based detection via its competition with sulfamethoxazole on molecularly imprinted polymer: A proof-of-concept. J. Pharm. Biomed. Anal. 2022, 219, 114954. [Google Scholar] [CrossRef]
- Elfadil, D.; Palmieri, S.; Silveri, F.; Della Pelle, F.; Sergi, M.; Del Carlo, M.; Amine, A.; Compagnone, D. Fast sonochemical molecularly imprinted polymer synthesis for selective electrochemical determination of maleic hydrazide. Microchem. J. 2022, 107634. [Google Scholar] [CrossRef]
- Lamaoui, A.; Lahcen, A.A.; García-Guzmán, J.J.; Palacios-Santander, J.M.; Cubillana-Aguilera, L.; Amine, A. Study of solvent effect on the synthesis of magnetic molecularly imprinted polymers based on ultrasound probe: Application for sulfonamide detection. Ultrason. Sonochem. 2019, 58, 104670. [Google Scholar] [CrossRef]
- Elfadil, D.; Silveri, F.; Palmieri, S.; Della Pelle, F.; Sergi, M.; Del Carlo, M.; Amine, A.; Compagnone, D. Liquid-phase exfoliated 2D graphene nanoflakes electrochemical sensor coupled to molecularly imprinted polymers for the determination of citrinin in food. Talanta 2023, 253, 124010. [Google Scholar] [CrossRef]
- Li, P.; Liang, R.; Yang, X.; Qin, W. Imprinted nanobead-based disposable screen-printed potentiometric sensor for highly sensitive detection of 2-naphthoic acid. Mater. Lett. 2018, 225, 138–141. [Google Scholar] [CrossRef]
- Byun, H.-S.; Yang, D.-S.; Cho, S.-H. Synthesis and characterization of high selective molecularly imprinted polymers for bisphenol A and 2, 4-dichlorophenoxyacetic acid by using supercritical fluid technology. Polymer 2013, 54, 589–595. [Google Scholar] [CrossRef]
- Stroka, J.; Van Otterdijk, R.; Anklam, E. Immunoaffinity column clean-up prior to thin-layer chromatography for the determination of aflatoxins in various food matrices. J. Chromatogr. A 2000, 904, 251–256. [Google Scholar] [CrossRef]
- AlFaris, N.A.; Wabaidur, S.M.; Alothman, Z.A.; Altamimi, J.Z.; Aldayel, T.S. Fast and efficient immunoaffinity column cleanup and liquid chromatography–tandem mass spectrometry method for the quantitative analysis of aflatoxins in baby food and feeds. J. Sep. Sci. 2020, 43, 2079–2087. [Google Scholar] [CrossRef]
- Ip, S.-P.; Che, C.-T. Determination of aflatoxins in Chinese medicinal herbs by high-performance liquid chromatography using immunoaffinity column cleanup: Improvement of recovery. J. Chromatogr. A 2006, 1135, 241–244. [Google Scholar] [CrossRef]
- Romero-Sánchez, I.; Ramírez-García, L.; Gracia-Lor, E.; Madrid-Albarrán, Y. Simultaneous determination of aflatoxins B1, B2, G1 and G2 in commercial rices using immunoaffinity column clean-up and HPLC-MS/MS. Food Chem. 2022, 395, 133611. [Google Scholar] [CrossRef]
- Foods Program. Guidelines for the Validation of Chemical Methods in Food, Feed, Cosmetics, and Veterinary Products, 3rd ed.; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2019; 43.
Models | Parameters | MIP | NIP | |
---|---|---|---|---|
AFB1 | Freundlich | R2 | 0.95 | 0.91 |
KF (ng/mg) | 13.22 | 2.57 | ||
nF | 2.37 | 2.71 | ||
Langmuir | R2 | 0.99 | 0.98 | |
Qmax (ng/mg) | 50.46 | 16.72 | ||
Kl (mL/ng) | 0.53 | 0.07 | ||
AFB2 | Freundlich | R2 | 0.94 | 0.91 |
KF (ng/mg) | 12.35 | 2.55 | ||
nF | 2.33 | 2.70 | ||
Langmuir | R2 | 0.99 | 0.98 | |
Qmax (ng/mg) | 49.94 | 16.78 | ||
Kl (mL/ng) | 0.49 | 0.07 | ||
AFG1 | Freundlich | R2 | 0.94 | 0.90 |
KF (ng/mg) | 12.88 | 0.52 | ||
nF | 2.46 | 1.61 | ||
Langmuir | R2 | 0.98 | 0.94 | |
Qmax (ng/mg) | 49.47 | 27.03 | ||
Kl (mL/ng) | 0.52 | 0.01 | ||
AFG2 | Freundlich | R2 | 0.94 | 0.94 |
KF (ng/mg) | 13.12 | 1.06 | ||
nF | 2.57 | 2.03 | ||
Langmuir | R2 | 0.99 | 0.91 | |
Qmax (ng/mg) | 48.21 | 17.35 | ||
Kl (mL/ng) | 0.59 | 0.02 |
Sample | AFG1 | AFG2 | AFB1 | AFB2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIPs–SPE (%) | IAC (%) | MIPs–SPE (%) | IAC (%) | MIPs–SPE (%) | IAC (%) | MIPs–SPE (%) | IAC (%) | |||||||||
RC | ME | RC | ME | RC | ME | RC | ME | RC | ME | RC | ME | RC | ME | RC | ME | |
Ginger | 60 | +9 | 50 | −30 | 63 | −6 | 48 | +28 | 64 | −1 | 50 | +25 | 81 | −14 | 52 | +30 |
Echinacea purpurea | 83 | +9 | 73 | +15 | 66 | +10 | 75 | +15 | 90 | −1 | 80 | +10 | 60 | −8 | 72 | +12 |
Ginseng | 75 | +16 | 66 | −26 | 60 | +1 | 46 | −23 | 90 | +7 | 67 | −28 | 78 | +15 | 61 | −29 |
Hypericum | 50 | +15 | 50 | 27 | 60 | +15 | 38 | +30 | 53 | +11 | 52 | +25 | 72 | +1 | 50 | +30 |
Red elm | 77 | +10 | 64 | +5 | 70 | +7 | 63 | +15 | 90 | −4 | 80 | +10 | 74 | −6 | 80 | +8 |
Saffron | 61 | +16 | 60 | +12 | 69 | +11 | 62 | +20 | 60 | +15 | 60 | +17 | 68 | +9 | 64 | +15 |
Mango | 67 | +10 | 65 | +15 | 65 | +7 | 60 | +15 | 65 | +10 | 70 | +15 | 65 | +10 | 68 | +12 |
Red rice | 76 | +11 | 50 | +25 | 65 | +15 | 55 | +20 | 89 | +3 | 65 | +20 | 70 | +9 | 66 | +20 |
Parsley | 60 | +9 | 50 | +30 | 60 | +10 | 40 | +30 | 76 | +1 | 45 | +28 | 60 | +4 | 43 | +19 |
Red fruits | 60 | +7 | 55 | +20 | 60 | +10 | 56 | +21 | 79 | +6 | 60 | +18 | 60 | +10 | 58 | +22 |
Grapefruit | 61 | +11 | 65 | +15 | 69 | +11 | 70 | +12 | 68 | +12 | 70 | +15 | 71 | +4 | 68 | +16 |
Magnolia | 61 | −7 | 50 | +30 | 64 | +12 | 50 | +20 | 64 | +15 | 50 | +18 | 77 | +8 | 54 | +20 |
Tilia cordata | 60 | +1 | 50 | +20 | 62 | +12 | 45 | +18 | 62% | +11 | 50 | +19 | 72 | +2 | 50 | +20 |
Salsapariglia root | 62 | +3 | 55 | +20 | 67 | +6 | 52 | +18 | 72 | +15 | 50 | +20 | 69 | +14 | 70 | +17 |
Hop | 60 | +2 | 50 | +20 | 72 | +12 | 51 | +20 | 74 | +15 | 60 | +17 | 57 | +12 | 67 | +18 |
Verbena officinalis | 72 | +5 | 56 | +18 | 60 | +15 | 55 | +21 | 69 | −8 | 67 | +18 | 65 | +13 | 66 | +16 |
Galega officinalis | 78 | +4 | 64 | +15 | 77 | +17 | 65 | +20 | 73 | +14 | 65 | +20 | 75 | +3 | 74 | +20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmieri, S.; Elfadil, D.; Fanti, F.; Della Pelle, F.; Sergi, M.; Amine, A.; Compagnone, D. Study on Molecularly Imprinted Polymers Obtained Sonochemically for the Determination of Aflatoxins in Food. Molecules 2023, 28, 703. https://doi.org/10.3390/molecules28020703
Palmieri S, Elfadil D, Fanti F, Della Pelle F, Sergi M, Amine A, Compagnone D. Study on Molecularly Imprinted Polymers Obtained Sonochemically for the Determination of Aflatoxins in Food. Molecules. 2023; 28(2):703. https://doi.org/10.3390/molecules28020703
Chicago/Turabian StylePalmieri, Sara, Dounia Elfadil, Federico Fanti, Flavio Della Pelle, Manuel Sergi, Aziz Amine, and Dario Compagnone. 2023. "Study on Molecularly Imprinted Polymers Obtained Sonochemically for the Determination of Aflatoxins in Food" Molecules 28, no. 2: 703. https://doi.org/10.3390/molecules28020703
APA StylePalmieri, S., Elfadil, D., Fanti, F., Della Pelle, F., Sergi, M., Amine, A., & Compagnone, D. (2023). Study on Molecularly Imprinted Polymers Obtained Sonochemically for the Determination of Aflatoxins in Food. Molecules, 28(2), 703. https://doi.org/10.3390/molecules28020703