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Abstract: Microalgae such as Spirulina platensis have recently attracted the interest of the pharmaceu-
tical, nutritional and food industries due to their high levels of proteins and bioactive compounds. In
this study, we investigated the use of refractance window (RW) drying as an alternative technology
for processing the microalga Spirulina biomass aiming at its dehydration. In addition, we also
analyzed the effects of operating variables (i.e., time and temperature) on the quality of the final
product, expressed by the content of bioactive compounds (i.e., total phenolics, total flavonoids,
and phycocyanin). The results showed that RW drying can generate a dehydrated product with a
moisture content lower than 10.0%, minimal visual changes, and reduced process time. The content
of bioactive compounds after RW drying was found to be satisfactory, with some of them close to
those observed in the fresh microalga. The best results for total phenolic (TPC) and total flavonoids
(TFC) content were obtained at temperatures of around 70 ◦C and processing times around 4.5 h.
The phycocyanin content was negatively influenced by higher temperatures (higher than 80 ◦C)
and high exposing drying times (higher than 4.5 h) due to its thermosensibility properties. The
use of refractance window drying proved to be an interesting methodology for the processing and
conservation of Spirulina platensis, as well as an important alternative to the industrial processing of
this biomass.

Keywords: Spirulina platensis; refractance window drying; bioactive compounds; phycocyanin;
pharmaceutical potential; anti-cancer products

1. Introduction

Spirulina platensis is a kind of blue-green cyanobacterium microalga whose recognized
nutritional qualities and nutraceutical properties have been recently studied by many
researchers worldwide. This microalga contains a very high amount of protein, which
can reach 55 to 70% of its weight in dry mass, including all the essential amino acids and
small quantities of methionine, cystine and lysine [1–5]. Spirulina still has about 10 types
of vitamins (such as A, E, K, B1, B2, B6 and specially B12) and minerals, such as potassium,
iron, calcium, phosphorus, manganese, copper, zinc and magnesium. Its pigments include
beta-carotene, chlorophyl and phycocyanin, the last of which is an antioxidant and anti-
inflammatory compound used in the cosmetic and pigment industries. In addition, some
studies have indicated that a series of phenolics compounds can be found in this microalga
as caffeic, chlorogenic, salicylic, synaptic and trans-cinnamic acids, which act individually
or synergistically with other antifungal and antioxidant compounds [6–10].

Despite this vast potential, the fresh Spirulina needs to be submitted to a preservation
technique because of its elevated moisture content and chemical composition that make it
highly perishable [6,8,11]. The literature reports various dehydration techniques that may
be used in microalgae, such as convective drying, solar drying, spray drying, cross-flow
drying, rotary drum drying and vacuum shelf drying. However, these methods do not
generally maintain the quality of the final product and/or add high costs to the process,
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reinforcing the need for studies on energy-efficient drying systems to better preserve the
aspects of the dried product, especially the content of bioactive compounds [12–16].

In this context, refractance window (RW) drying appears as an alternative technique
to process the Spirulina platensis. In this methodology, the material is spread on the upper
face of a flexible support (commonly Mylar® films), while its lower surface is in contact
with a hot fluid (e.g., water). This system is commonly used for converting liquid, viscous
suspensions, pasty foods and other related biomaterials into films, powders, flakes, or
sheets with added value, and it has been used effectively for dehydrating heat-sensitive
materials similar to microalgae [17–19].

The three modes of heat transfer (conduction, convection, and radiation) are active
during the RW drying. The heated fluid, commonly hot water up to 98 ◦C, is the source
of thermal energy in the RW that is transmitted through the Mylar® by conduction and
radiation. Thus, when the product with high moisture is spread over the film, the refractive
index between the water and material becomes closer, reducing the reflection at the interface
and increasing the transmissivity of radiant energy to the product, forming a “window”
through which the radiation crosses. Once Mylar® is a low heat conductor, the thermal
damage is minimized in the drying steps where the material contains less moisture and
the overheating is avoided. In general, the temperatures to which the material is subjected
during the initial and intermediate stages of drying are about 20 to 25 ◦C lower than those of
the hot water, due to the effects of evaporative cooling and the transfer of heat by convection
between the material and the surrounding air [18–20]. Compared to freeze-drying, which
is a technique especially used in the case of heat-sensitive raw materials, RW has smaller
processing times and higher energy efficiency [18,20,21]. In addition, the quality parameters
of RW-dried products (e.g., color and retention of antioxidant compounds and vitamins)
are close to those of freeze-dried products, which is a recognized technique for preserving
the original properties of the material. The refractance window has been successfully
applied to process a wide variety of biomaterials, including strawberries [22], carrots [22],
mangoes [23,24], tomatoes [20,25,26], guavas [27], açaí [28] and even yogurt [29].

Therefore, the purpose of this work was to investigate the potential use of refrac-
tance window (RW) drying for processing the microalga Spirulina platensis. The effects of
operating variables on the moisture removal were evaluated and the quality of the final
product, expressed by the content of bioactive compounds (i.e., phenolics, flavonoids, and
phycocyanin), were also quantified.

2. Results
2.1. Visual Aspect

Figure 1 shows the aspect of the fresh and RW-dried Spirulina. Browning and car-
bonization regions, which are common in conventional methods, were not observed, even
in the experiments performed at higher temperatures. This interesting result indicates
that this alternative methodology has the potential to process this microalga with minor
visual physical damage, similar to what was reported by Nindo and Tang [18] and Abonyi
et al. [22] for other biological materials.

2.2. Preliminary Tests and Dehydration Kinetics

Table 1 shows the dehydration times, the final moisture content (wet basis) and the
water activity (aw) obtained in the preliminary tests. As can be seen, the moisture content
and aw value of the fresh microalga was 82.7% (wet basis) and 0.967, respectively. The
results obtained in these preliminary tests show that the use of RW under those conditions
led to a final product with a moisture lower than 15% and water activity lower than 0.600,
which represents adequate levels for processing, storage and transportation [30].
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Figure 1. Fresh (a) and RW-dried (b) Spirulina samples.

Table 1. Preliminary experimental results.

Exp. Temperature Moisture (%) Water Activity (aw) Drying Time (min)

1 60 ◦C 13.04 ± 0.57% 0.588 330
2 70 ◦C 12.11 ± 0.30% 0.474 260
3 80 ◦C 10.15 ± 0.07% 0.452 115

Fresh Spirulina 82.70 ± 0.97% 0.967 -

Figure 2 displays the kinetic curves obtained for the experiments. The kinetic equation
that best represented the experimental data was the Midilli et al. [31]. Table 2 shows the
estimated parameters and the correlation coefficient (R2) of this kinetic equation. As can be
seen, when the temperature increased from 60 to 80 ◦C, the kinetic constant (k) increased by
168%. This occurred because this parameter (k) is related to the diffusivity of water through
the material during drying, which in turn is strongly influenced by temperature [32].
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Figure 2. RW dehydration kinetics: experimental results and prediction by the Midilli et al. [31]
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Table 2. Parameters of the model proposed by Midilli et al. [31].

Experiment k n A B R2

60 ◦C 2.00 × 10−4 1.72 0.9782 −8.00 × 10−5 0.9996

70 ◦C 3.42 × 10−4 1.77 0.9801 −8.20 × 10−5 0.9990

80 ◦C 5.36 × 10−4 1.82 0.9832 −8.60 × 10−5 0.9997

R2 medium 0.9994

2.3. Experimental Design Results
2.3.1. Moisture and Water Activity (aw)

A new set of experiments was carried out to evaluate the effects of temperature (T)
and dehydration time (t) on the content of bioactive compounds present in the microalga
after RW drying. The operating conditions of these tests were chosen using a rotational
central composite design (CCD). Table 3 shows the experimental design and the results
obtained for final moisture content and water activity (aw). As observed, some conditions
(i.e., low temperatures and processing times) led to a product with high moisture content
and aw levels (e.g., Experiments 1 and 5). The lowest final moisture content and aw were
obtained in Experiment 6, which was performed at 84.1 ◦C for 4.5 h. However, in 70% of
the experiments, the values of final moisture content and aw were considered adequate for
storage and transportation [30].

Table 3. Experimental design results.

Exp. Temp. (T)
◦C

Time (t)
h

Moisture
(%)

Water Activity
(aw)

1 60.0 3.0 30.65 ± 0.16 0.829
2 60.0 6.0 13.60 ± 0.46 0.536
3 80.0 3.0 8.19 ± 0.19 0.367
4 80.0 6.0 8.06 ± 0.19 0.359
5 55.9 4.5 33.72 ± 0.02 0.839
6 84.1 4.5 7.06 ± 0.41 0.339
7 70.0 2.4 21.13 ± 0.51 0.694
8 70.0 6.6 12.17 ± 0.47 0.467
9 70.0 4.5 11.76 ± 0.42 0.418

10 70.0 4.5 10.73 ± 0.08 0.402

2.3.2. Bioactive Compounds

The total phenolic (TPC), total flavonoid (TFC) and phycocyanin (PC) contents after
each experiment (see conditions in Table 3) are displayed in Figures 3–5, respectively.
Regression equations (Equations (3), (5) and (6)) were fitted to the experimental data to
quantify the effects of the studied independent variables temperature (T) and dehydration
time (t) on the bioactive compounds (TPC, TFC and PC, respectively). From these equations,
it was possible to obtain response surfaces (Figure 6) that illustrate these effects.

Analyses of the temperature and drying time effects on the bioactive compounds
content have great importance once they can provide important information about the
effects of these operating conditions on the quality of the dried product. For example,
specific bioactive compounds are highly sensitive to high temperatures and can degrade if
the drying process occurs in these conditions. On the other hand, low temperatures can
lead to high drying times, which can also cause degradation due to prolonged exposure
and add costs to the drying process due to the higher energy consumption [8,15,22,32].
Therefore, an “equilibrium point” between these two variables can help to define the best
conditions to operate the RW drying of the Spirulina platensis without having an effect on
the compounds present in the microalga.
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The pharmacological properties of Spirulina, that is, its anticarcinogenic, antiviral,
antimicrobial, anti-inflammatory and antitumoral activities, have been directly related
to the presence of phenolic compounds [9,12]. Figure 3 shows the total phenolic content
(TPC) after each test. As it can be noted, under some operating conditions the dehydrated
microalga reached a TPC value close to that observed in the fresh material (462.1 mg gallic
acid/100 g of sample in dry matter). For example, after Experiment 8, the TPC value of the
microalga was 436.6 mg gallic acid per 100 g of sample (in dry matter). This is a significant
result, since some studies in the literature have reported a considerable degradation of
phenolic compounds after conventional drying methods [12,33,34]. Therefore, the use of
RW drying for Spirulina has the potential to offer a better retention of this compound in
the final product.

Equation (3) shows the fitted equation (R2 = 0.85) for TPC as a function of temperature
(T) and time (t), considering their linear, quadratic and interaction effects. In this equation,
as well as in Equations (5) and (6) (for TFC and PC, respectively), the variables are presented
in coded form, using Equation (4) below. The variables T and t are in ◦C and h, respectively.

TPC = 337.17 + 53.27 x1 − 38.79 x2
1 + 41.95 x2 − 52.49 x1x2 (1)

where:
x1 =

T − 70.0
10.0

and x2 =
t − 4.5

1.5
(2)

In Equation (3), the positive values of the parameters related to the main effect of the
independent variables indicate that at high levels of these variables, the TPC was also high,
which can be associated to the presence of melanoidins, as observed from the Maillard
reaction [30]. However, there is also a non-linear effect of T (x2

1) on TPC, which suggests that
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the highest TPC values are obtained at intermediate levels of temperature (Experiment 8),
as illustrated in Figure 6a.

Although the presence of flavonoids in microalgae has been poorly explored in the
literature, this bioactive compound has important biological properties, including antioxi-
dant, anti-inflammatory, estrogenic and antimicrobial activities [12,35,36]. Figure 4 shows
the TFC observed in the Spirulina samples after drying. As can be seen, the samples had
a lower flavonoid content after drying than that found in the fresh microalga (9.86 mg
rutin/100 g of sample in dry matter). However, high levels of TFC were obtained under
specific operating conditions, such as those used in Experiment 8, which resulted in a TFC
value of 7.61 mg/rutin per 100 g of sample (dry matter).

The fitted equation for TFC is shown in Equation (5) (R2 = 0.92), where it is possible to
note that the independent variables had a similar effect to that observed for TPC. Figure 6b,
which was built using Equation (5), confirms the similar behavior of these responses (TFC
and TPC) as a function of the independent variables T and t.

TFC = 5.64 + 0.95 x1 − 0.61 x2
1 + 0.99 x2 (3)

Phycocyanin is an abundant protein pigment present in the Spirulina biomass that has
been commercially used in food coloring and in the cosmetics industry. However, several
studies have demonstrated that this compound also has a significant therapeutic value
due to its high antioxidant and anti-inflammatory properties, attracting the attention of the
pharmaceutical and functional food industries as well [37–40]. According to Figure 5, the PC
value after drying was significantly lower than that observed in the fresh microalga (14.55 g
phycocyanin/100 g of sample in dry matter). This decrease was more pronounced in tests
performed at higher temperatures, e.g., Experiment 6 (84.1 ◦C). The thermosensibility of
phycocyanin during dehydration has also been observed in other studies using different
techniques [6,41,42]. Nonetheless, some operating conditions tested herein led to significant
phycocyanin levels in the dried material.

Equation (6) shows the fitted equation (R2 = 0.91) for PC as a function of temperature
and time. As expected, temperature (T) was the most significant variable, exerting a
negative effect on PC. The highest PC was found at the lowest T and t (see Figure 6c), thus
confirming the thermosensibility of this compound.

PC = 8.25 − 2.09 T − 0.76 T2 − 0.92 t (4)

3. Materials & Methods
3.1. Raw Material

The microalga Spirulina platensis used in this study was provided by Brasil Vital, a
company located in Goiás State, in the Central-West Region of Brazil. Prior to use, the
material was stored in small portions in sealed polyethylene packages and frozen in a
freezer (−18 ◦C).

3.2. Experimental Apparatus

The RW lab-scale batch dryer made for this study is presented in Figure 7. It consisted
of an aluminum reservoir (28.0 cm × 20.0 cm × 8.0 cm) filled with circulating hot water
provided by a thermostatic bath (Tecnal, TE-184, Piracicaba-SP, Brazil), operating in a closed
system. The support chosen for this apparatus was Mylar® polyester film type D (DuPont,
Wilmingron, DE, USA).

The Mylar® film (with a thickness of 0.25 mm) was fixed on the top of the reservoir
frame to ensure that the whole surface of film bottom was touched by the hot water. The
water temperature was controlled by an external thermostatic bath (±0.1 ◦C). For each
experiment, about 40 g of fresh Spirulina was spread over the Mylar® film with the aid of a
plastic support so as to allow a uniform material thickness of 0.50 cm.
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3.3. Experimental Design

Preliminary tests were carried out at three different temperatures of hot water (60, 70
and 80 ◦C) in order to evaluate the moisture removal behavior of this material during RW
drying. Once the microalga showed high stickiness and high adherence to the Mylar® film
during the drying process, making it difficult the sample collection to the measurement of
moisture level during the tests, we choose to spread the Spirulina on aluminum foil, which
was placed over the Mylar® film. Desmorieux et al. [33] evaluated the use of aluminum
paper as a support during the Spirulina drying, and they showed that this procedure does
not significantly affect the results.

After analyzing the preliminary tests, an experimental design was performed to
evaluate the effects of operating variables on the content of bioactive compounds. The
experiments were organized in a rotational central composite design (CCD) using two
independent variables: hot water temperature (T) and dehydration time (t). The coded and
real values of the independent variables are shown in Table 4.

Table 4. Coded and real values of the experimental design.

Independent Variables −1.414 −1 0 +1 +1.414

Temperature (◦C) 55.9 60.0 70.0 80.0 84.1
Time (h) 2.4 3.0 4.5 6.0 6.6

3.4. Moisture and Water Activity (aw) Analysis

The moisture content of the fresh and dehydrated samples (wet basis) was determined
by the oven method: 105 ± 3 ◦C for 24 h, based on the AOAC Official Method [43]. The wa-
ter activity (aw) was measured using aNovasina RS 232/RTD-200 meter (Novasina, Zurich,
Switzerland), a porTable water activity device that calculates the aw using a temperature
control system integrated to an infrared sensor that provides results with a precision of
±0.001. The water activity of microalgae after dehydration is expected to be lower than
0.600, since in this condition most bacteria, fungi and yeast have their activity and growing
inhibited [30,44]. All measurements were performed in triplicate.

3.5. Dehydration Kinetics

In general, the dehydration kinetic equations are presented in the form of variation of
a dimensionless moisture number (moisture ratio) as a function of time. The moisture ratio
(MR) is given by Equation (1):

MR =
M − Meq

M0 − Meq
(5)

where M is the moisture content at any time, Meq is the equilibrium moisture content, and
M0 is the initial moisture content.
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A great number of empirical and semi-empirical equations have been used to describe
the dehydration kinetics of biological materials [45–47]. Table 5 lists the dehydration kinetic
equations used herein, where k, n, A and B are the model parameters. The best equation
was selected based on a statistical analysis considering the correlation coefficient, the
significance of parameters, and the distribution of residues [48,49].

Table 5. Dehydration kinetic models.

Equation in the Literature * Reference

MR = exp(−kt) Lewis [50]
MR = exp(−ktn) Page [51]

MR = exp
[
−(kt)n] Overhults et al. [52]

MR = A exp(−kt) Brooker et al. [53]
MR = A exp(−ktn) + Bt Midilli et al. [31]

* k, n, A and B are model parameters.

3.6. Analysis of Bioactive Compounds

The content of bioactive compounds in the fresh and dehydrated samples was mea-
sured to evaluate the impact of the operating conditions on the quality of the final product.
All analyses were carried out in triplicate, and the content of bioactive compounds was
expressed as mean value ± standard deviation. All results were evaluated using multifac-
torial ANOVA. A multiple regression equation was fitted for each response, which was
analyzed using response surface methodology.

3.6.1. Total Phenolic Content (TPC)

The total phenolic content was determined by the Folin-Ciocalteau method [54], using
gallic acid as a standard and performing spectrophotometric reading at 622 nm (spectropho-
tometer V1200, VWR, Leuven, Belgium). The results were expressed in milligrams of gallic
acid per 100 g of sample (dry matter).

3.6.2. Total Flavonoid Content (TFC)

The total flavonoid content was quantified following the colorimetric method de-
scribed by Zhishen et al. [55], using rutin as a standard and performing spectrophotometric
reading at 450 nm (spectrophotometer V1200, VWR, USA). The results were expressed in
milligrams of rutin per 100 g of sample (dry matter).

3.6.3. Phycocyanin Content (PC)

The extraction of phycocyanin was made based on the methodology reported by Costa
et al. [8], using water as a solvent extractor and performing spectrophotometric readings at
620 nm and 652 nm (spectrophotometer V1200, VWR, Radnor, PA, USA). The phycocyanin
content was obtained using Equation (2), as described by Bennett and Bogorad [56]:

PC =
[OD620 − 0.474(OD652)]

5.34
(6)

where PC is the phycocyanin content (mg/mL) and OD620 and OD652 are the optical
density of the samples at 620 nm and 652 nm, respectively. The results in all assays were
subsequently converted into grams of phycocyanin per 100 g of sample (dry matter).

4. Conclusions

The use of refractance window (RW) drying in Spirulina platensis biomass proved to be
an interesting alternative for the processing and conservation of this microalga. Similar to
that observed in other food and biological materials dehydrated by this technique, it was
possible obtain a dried product with minimal visual changes and a colour similar to that
observed in fresh microalga (Figure 1). The statistical discrimination study of the kinetic
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behavior revealed that the equation proposed by Midilli et al. [31] was the one that best
represented the experimental data (Figure 2).

Although the results indicate that it was possible to satisfactorily remove the moisture
of the samples, reaching low levels of moisture and water activity (aw), the analysis of the
effect of operating variables (temperature and time) on the content of bioactive compounds
present in the microalga indicated some interesting results. The effects of this dehydration
methodology were similar for total phenolic (TPC) and total flavonoids (TFC) content,
with the best results (contents near that found in the fresh microalgae) being obtained at
temperatures around 70 ◦C and processing times of approximately 4.5 h. In contrast, the
phycocyanin content was negatively influenced by an increasing temperature due to its
thermosensibility properties, reducing its levels in high temperatures (higher than 80 ◦C)
and high exposing drying times (higher than 4.5 h).

Based on these results, we can infer that refractance window drying is an alterna-
tive technique that provides an efficient dehydration of the microalga Spirulina platensis
if performed under adequate conditions. In conclusion, this methodology can be use-
ful for mitigating the negative effects of conservation methods during the processing of
this material.
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