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Abstract: The weathering of ancient glass relics has long been a concerned. Therefore, a systematic
and more comprehensive mathematical model with which to correctly judge the category of ancient
glass products whose chemical composition changes due to weathering should be established. This
paper systematically analyzes and studies the changes in the composition of ancient glass products as
a result of weathering of. We first analyze the surface weathering of glass relics and its correlation with
three properties and establish a multivariable time-series model to predict the chemical-composition
content before weathering. Next, we use one-way analysis of variance for subclassification and,
finally, we use a principal component analysis of the rationality, and change the significance level
to determine its sensitivity, for the reasonable prediction of the chemical-composition content and
classification to provide a theoretical basis for improving the model. This allows the model to provide
reference values, which can be used in the protection of cultural relics, historical research, and
other fields.

Keywords: glass cultural relics weathering; analysis of time series; principal component analysis K-means

1. Introduction

Glass is precious material evidence of the trade between the Early Silk Road and
the West. Cultural relics are the cultural heritage of a nation and the cultural carriers of
civilization and the national spirit. Ancient glass is strongly subject to the influence of
buried environments and weathering. Glass weathering is generally related to glass compo-
sition, glass surface chemicals, the environmental atmosphere of glass products, and other
factors. During the process of weathering, there is a high degree of exchange between the
internal elements and the environmental elements. In addition, the composition proportion
changes. These changes affect the correct judgment of the category of weathered glass
objects; the color and decoration on the surfaces of cultural relics surface cannot be used
as the basis for judging their weathering, a large area of weathered cultural relics may
still have unweathered areas. After the weathering of glass cultural relics, the differences
between the chemical elements in different categories of cultural relics also have a certain
relevance. With the development of society and the progress of science and technology,
glass weathering, as a traditional topic, also urgently requires more rigorous and accurate
methods of study. In this regard, the use of the quantitative analysis and type identification
of the chemical composition is a good approach to the study of the weathering of glass
cultural relics [1–3].

Gan Fuxi et al. combined X-ray fluorescence analysis, X-ray diffraction and laser
Raman spectral analysis [4,5]. Li Qing-hui et al. studied the similarities and differences be-
tween flux, K2O-CaO-SiO2, PbO-BaO-SiO2 system glass, glass sand, and the Western Zhou,
spring, and autumn [6,7]. Liu Song et al. discussed the application of a portable energy-
dispersive X-ray fluorescence spectrometer to the analysis of the chemical composition of
glass in ancient China [8–10].

Based on the related research on the chemical composition of glass, due to the dis-
advantages of the lack of an authoritative chemical-composition index, the research of
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domestic and foreign scholars is still limited. Most scholars analyze a small number of
elements using qualitative methods or tools, with relatively little substantive research.
This paper aims to organize the data of various chemical compositions and predict their
content; unlike the work of other scholars, this paper focuses on the chemical composition
of glass relics [11,12].

Through mathematical modeling, the classification and quantitative analysis of the
known data on ancient glass relics, provide accurate results. Combined with the theoretical
speed of chemical substances, this offers a theoretical basis for the reasonable prediction
of chemical contents and the classification of cultural relics. In terms of the protection of
cultural relics, we enrich the understanding of the preservation status quo and weathering
mechanism, which provides a scientific basis for the protection-and-restoration scheme.
Thus research expands the study of glass cultural relics and, at the same time, it has
special significance in field operation, archaeological sites and cultural protection. (1) In
this paper, various elements are incorporated into the same analytical framework and
combined with the theoretical speed change of various chemical elements to systematically
analyze the change trends of various elements, so as to supplement the domestic theoretical
research on the changes in the chemical elements of glass relics and provide theoretical
support for the research on the protection and restoration of glass relics. (2) From an
empirical perspective, this paper uses the time-series model to predict the composition
of various chemical elements, clusters the glass relics based on their characteristics, and
provides relevant policy suggestions, so as to provide reference values for archaeological
sites in China [13–15].

2. Data Sources and Basic Assumptions

The data are all from question C of the 2022 National College Students Mathematical
Modeling Competition. To facilitate the research problem, the following assumptions
are made [16]:

(1) Environmental assumption: the glass is weathered under natural conditions, without
special treatment, such as high temperatures;

(2) Reasonability hypothesis: the changes between each element influence each other;
(3) Unity assumption: overall unweathered, partial unweathered, overall weathered,

local unweathered; overall weathering, local weathering, overall weathering, local
severe weathering of the four stages of the same time;

(4) Substantial assumptions: even at the beginning of the overall unweathered, local
unweathered stage, weathering has begun;

(5) Exclusivity assumption: all cultural relics are unaffected by their ornamentation,
type and color, and the content of their chemical composition before weathering is a
standard fixed value [17,18].

3. Data Pre-Processing and Visualization
3.1. Missing Data

Based on data, four values are missing from data “color” column: 19, 40, 48, 58.
The common characteristic of four cultural relics was that surfaces were weathered. We
speculated that the cause of cultural relics’ surface-weathering level is that their color cannot
be observed. To support subsequent data processing, we used the four-color missing value
as a reasonable supplement [19–21]

3.2. Data Preprocessing

According to the requirements, component proportions between 85% and 105% are
regarded as effective data; the component proportions of the 15 and 17 sampling sites were
79.47% and 71.89%, respectively. Therefore, we deleted the data of the 15 and 17 sampling
sites. Finally, the valid value obtained was 58.
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3.3. Data Visualization

According to the existing data, the relevant information about the types, colors, pat-
terns and weathering of different cultural relics was collected, and the types, colors and
patterns were labeled as first-level characteristics, so that the data could be clearly displayed.

We used the chi-square test to analyze the correlation between the surface weathering
of cultural relics and their characteristics. First, the hypothesis was true, and the value
was calculated based on this premise, which represented the degree of deviation between
the observed value and the theoretical value. According to the distribution and degree of
freedom, the probability P of obtaining the current statistics and more extreme cases can be
determined if the assumption holds. If the p-value is small, indicating that the deviation
from the observed value is too large, the invalid hypothesis should be rejected to indicate
significant differences between the comparative data; otherwise, the invalid hypothesis
cannot be rejected, and the actual situation and the theoretical hypothesis represented by
the sample cannot be considered.

In Tables 1 and 2, it is possible to observe the relationship between the surface weather-
ing of cultural relics and their characteristics. With a confidence interval of 95%, the p-value
of decoration is 0.08, and the original hypothesis should be rejected; the p-value of type is
0.01, the original hypothesis should be rejected. If the p value of color is 0.42, the original
hypothesis cannot be rejected; therefore, the weathering and glass types are significant, and
the correlation with the decoration and color is not significant [22].

Table 1. List of cultural relics.

Characteristics of Cultural Relics Surface Weathering

First-Level Characteristics Secondary Characteristics Morals and Manners Unweathered

ornamentation
high-manganese 6 12

lead barium 28 12

type
A 11 11
B 6 0
C 17 13

pigment

black 2 0
purple 2 2

hispid arthraxon 0 1
Blue–green 9 6
pale green 1 2
light blue 16 8
deongaree 0 2
dark green 4 3

Table 2. Chi-square test.

Ornamentation Type Pigment

statistics 4.97 6.88 7.23
P price 0.08 0.01 0.42

4. Predictions of Unweathered-Glass Chemistry Based on a Multivariate Time Series
4.1. Research Ideas

Based on the data presented in this paper, the surface weathering of the ancient glass
cultural relics was divided into four stages: no surface weathering, local unweathered;
surface weathering, local unweathered; surface weathering, local weathering; and surface
weathering, severe local weathering. Secondly, each of the four stages was applied and
the mean value was calculated to represent the criteria of each stage. On the premise of
searching for relevant information as a theoretical support, combined with the theoretical
rate of change of the chemical material, values to were assigned to each element. The
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composite score was calculated by multiplying the value coefficient of each element (the
element-ratio weight of each glass type) by the mean and ranking it. According to the
analysis, the lower the score, the greater the weathering degree. A total of 56 samples
were processed in turn. The relationship analysis of the four-stage mean gave the initial
value. This completed the multivariate time-series prediction. The specific process is shown
in Figure 1.
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Figure 1. Process flow chart.

4.2. Research Process
4.2.1. Preparation of the Model

First, based on the characteristics of the data weathering (Supplementary Materials),
we divided the types of cultural relics into the following four stages: overall unweathering,
local unweathering, overall weathering, local unweathering, overall weathering, local
weathering, overall weathering, and local severe weathering.

Next, we performed a further analysis of the four stages. By referring to the literature,
we determined that in glass products, after weathering, compounds composed of Si and
Na elements can change significantly. For the group of elements comprising K, Ca, Al,
and Pb, the content of the resultant compounds changes somewhat after weathering. We
assigned the weights according to the proportion of changes in each element’s content after
the weathering of glass product, according to the literature. Furthermore, according to the
known literature, Si, Na, K, Ca, Pb, and Al are important variables in changes caused by
glass weathering, and serve as weights according to the proportional changes before and
after weathering in various types of chemical elements. In order to make full use of the
form data, we weighted the remaining elements of the 14 chemical components. The final
resulting weight ratios of the 14 chemical components are shown in Table 3 [23–25].

Table 3. Weight ratios of 14 chemical components.

Element Weight Element Weight

Si 0.358 Cu 0.016
Na 0.228 Ba 0.016
K 0.089 P 0.016
Ca 0.087 Sr 0.016
Pb 0.080 Sn 0.016
Al 0.030 S 0.016
Mg 0.016 Fe 0.016

4.2.2. Process of the Model

We organized the data and analyzed the data related to the time series with R, which
can not only describe patterns in historical data over time, but can also be used for some
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studies and predictions. A multivariate autoregressive model was fitted using the VAR ( )
function in the multivariate autoregressive library “vars” in the R language. First, the
image of each variable changed with the sampling point of the relic, as shown in Figure 2.
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Figure 2. Changes in each variable.

In the figure, it can be seen that the changes in SiO2 were relatively regular, the SnO2
and SO2 changes were relatively stable, while the K2O and Na2O changes were relatively
stable in the early stage but fluctuated greatly in the later stage. The other elements
constantly floated.

Second, we created a probability-density map, on which the abscissa range represents
the value interval of each variable, the ordinate represents the probability of each variable
taking the value, and the sum of the area between the curve and the x-axis is 1. In Figure 3,
we can see where the values of each variable are mainly concentrated [26,27].

Next, we calculated the correlation between the variables, with the following formula:

ρxy =
∑n

i=1 (xi − ux)(yi − uy)√
∑n

i=1 (xi − ux)
2
√

∑n
i=1 (yi − uy)

2

According to the calculation results, when the absolute value is closer to 1, the corre-
lation is stronger. When the result is closer to 1, the positive correlation is stronger, and
when the result is closer to −1, the negative correlation is stronger. Based on the results,
we created an analysis diagram of the correlation between the variables. In Figure 4, it can
be seen that there were many obvious correlations between the variables. The result on
the diagonal is the correlation of each element with itself; since the result was 1, we chose
to only examine the diagonal results. We found that silica, potassium oxide, lead oxide,
barium oxide, phosphorus pentoxide, and strontium oxide had an obvious correlation with
the artificial sampling points. The artificial sampling points are the parts of glass relics that
are analyzed according to the weathering and the content of each element [28].



Molecules 2023, 28, 853 6 of 15Molecules 2023, 28, x FOR PEER REVIEW 6 of 15 
 

 

 

Figure 3. The probability-density map. 

Next, we calculated the correlation between the variables, with the following for-

mula: 





==

=

−−

−−
=

n

i yi

n

i xi

n

i yixi

xy

uyux

uyux

1

2

1

2

1

)()(

))((
  

According to the calculation results, when the absolute value is closer to 1, the corre-

lation is stronger. When the result is closer to 1, the positive correlation is stronger, and 

when the result is closer to −1, the negative correlation is stronger. Based on the results, 

we created an analysis diagram of the correlation between the variables. In Figure 4, it can 

be seen that there were many obvious correlations between the variables. The result on 

the diagonal is the correlation of each element with itself; since the result was 1, we chose 

to only examine the diagonal results. We found that silica, potassium oxide, lead oxide, 

barium oxide, phosphorus pentoxide, and strontium oxide had an obvious correlation 

with the artificial sampling points. The artificial sampling points are the parts of glass 

relics that are analyzed according to the weathering and the content of each element [28]. 

Figure 3. The probability-density map.

Molecules 2023, 28, x FOR PEER REVIEW 7 of 15 
 

 

 

Figure 4. Correlation-analysis diagram. 

Finally, we took various elements of each cultural relic as independent variables, pre-

dicted various elements in chronological order, and created the prediction plot. In Figure 

5, as in the first figure, the black dots represent the true values, and the last five blue dots 

represent the predicted values. Based on the change results, we believe that the prediction 

results can better reflect the sequence-change characteristics [29–31]. 

 

Figure 5. Prediction diagram. 

  

Figure 4. Correlation-analysis diagram.

Finally, we took various elements of each cultural relic as independent variables,
predicted various elements in chronological order, and created the prediction plot. In
Figure 5, as in the first figure, the black dots represent the true values, and the last five
blue dots represent the predicted values. Based on the change results, we believe that the
prediction results can better reflect the sequence-change characteristics [29–31].
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4.2.3. Solution of the Model

We created a five-step prediction of the time series, and the results are shown in Table 4.

Table 4. Prediction results.

Chemical Compound 1 2 3 4 5

SiO2 68.3 94.3 95.6 80.1 78.1
NaO −1.3 −2.37 0.77 1.62 1.19
K2O 22.12 5.88 4.63 6.78 8.43
CaO 11.06 6.67 4.16 3.38 3.78
MgO 0.61 0.84 1.15 0.88 0.52
Al2O3 14.36 5.45 1.36 4.13 6.52
FeO 10.2 2.74 −2.2 1.56 3.32
CuO 10.63 2.74 −2.2 1.56 3.32
PbO −46.7 −25.7 2.04 −0.63 −6.89
BaO 11.91 ≤0.01 −7.06 −1.25 3.84
P2O5 1.21 1.08 −0.83 −0.36 −0.91
SrO 0.01 −0.42 −0.09 ≤0.01 0.05

SnO2 0.34 −0.53 −0.05 0.31 0.27
SO2 0.56 0.21 −0.71 −0.12 0.05

The relationship-establishment analysis was used to obtain the regular launch initial
value and to create the five-step prediction. For elements less than 0, we believe that a
chemical reaction did not occur in the initial stage, which can be directly assumed to be 0.
We compared the values that were not zero to the initial value derived based on the mean;
we considered the values that were close to the initial value reasonable. The specific results
are shown in Table 5.
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Table 5. Results of each element component.

Element Component SiO2 NaO K2O CaO MgO CuO PbO

Results 83.26 0 9.67 5.81 0.8 3.21 0

element component BaO Al2O3 FeO P2O5 SrO SnO2 SO2

Results 1.49 6.36 3.12 0.04 0 0.07 0

5. Sub-Division of the Glass Types Based on the Clustering Algorithm
5.1. Research Ideas

À We pre-processed the data from Form 1 and preliminarily classified the categories
of the cultural relics;

Á We used a one-way analysis of variance to select the appropriate chemical com-
position for the cultural relics with high potassium and lead barium to obtain the first
classification results;

Â We used the K-means algorithm to subclass the glass types, and analyzes the specific
division methods and results;

Ã The rationality of the results was supported if the form was classified again and
the results were similar to the cluster junction; the sensitivity is judged by adjusting the
significance level in the one-way analysis of variance.

5.2. Research Methods
5.2.1. Selection of the Appropriate Chemical Composition

(1) Model Principle
One-way analysis of variance (ANOVA) refers to the method of analyzing the one-way

test results and testing whether the factors have a significant impact on the test results.
Assuming that the collected data were derived from the sample values of S different

populations (each level corresponds to one population), and counting the mean values of
each population in one order, the following assumptions need to be tested:

Null hypothesis: H0 : u1 = u2 = · · · = us.
Alternative hypothesis: H1 : u1, u2, · · · , us. Not all are zero.
To reintroduce the horizontal effect, t δjδj = uj − u(j = 1, 2, · · · , s).

H0 : δ1 = δ2 = · · · = δs = 0.

Thus, when true, the F-distribution-test statistic that needs to be followed by one-way
ANOVA is:

F =
(SA)/(s − 1)
(SE)/(n − 1)

=

SA
σ2 /(s − 1)
SE
σ2 /(n − s)

∼ F(s − 1, n − s).

Thus, with the significance level a, the rejection domain of the test problem is:

F =
(SA)/(s − 1)
(SE)/(n − 1)

≤ F(s − 1, n − s).

F < Fa. At this point, the null hypothesis was rejected as showing significant differ-
ences between the samples.

(2) Model Building
First, we investigated whether the fourteen chemical components would have a

significant effect on the glass-classification results of high-potassium types.
Therefore, we established the following assumptions:
Null hypothesis: The fourteen chemical components will not have a significant impact

on the glass-classification results of high-potassium types.
Optional hypothesis: The fourteen chemical components will have a significant impact

on the glass-classification results of high-potassium types [32–36].
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In the ANOVA Table 6, SiO2, K2O, CaO, Al2O3, and Fe2O3 are less than 0.05. The null
hypothesis is rejected in the belief that SiO2, K2O, CaO, Al2O3, Fe2O3, and high-potassium-
type glass will affect the classification of high potassium type glass; that is, select these five
suitable chemical components to subdivide the subclass of high-potassium-type glass.

Table 6. High-potassium-, lead- and barium-type-glass ANOVA table.

Chemical Composition
High Potassium Lead Barium

F P Price F P Price

SiO2 36.707 ≤0.001 110.564 ≤0.001
Na2O 3.973 0.166 7.454 0.035
K2O 35.837 ≤0.001 0.086 0.870
CaO 42.173 ≤0.001 7.781 0.081
MgO 2.230 0.158 0.541 0.365
Al2O3 13.587 0.002 7.839 0.026
Fe203 6.851 0.020 0.062 0.364
CuO 2.252 0.156 2.617 ≤0.001
PbO 0.833 0.377 73.763 ≤0.001
BaO 0.048 0.830 2.816 ≤0.001
P205 1.396 0.257 12.119 0.005
SrO 2.025 0.177 5.728 0.017

SnO2 1.000 0.334 0.400 0.781
SO2 4.114 0.062 1.593 ≤0.001

Similarly, we investigated whether the fourteen chemical components would have a
significant impact on the lead-barium-type-glass-classification results.

Therefore, we established the following assumptions:
Null hypothesis: The fourteen chemical components will not significantly affect the

results of lead-barium-type-glass classification.
Optional hypothesis: The fourteen chemical components will have a significant impact

on the results of lead-barium-type-glass classification.
In the ANOVA Table 6, it can be seem that SiO2, Na2O, Al2O3, CuO, PbO, BaO, BaO,

P2O5, SrO, and SO2 are less than 0.05, and the null hypothesis that SiO2, Na2O, Al2O3,
CuO, PbO, BaO, P2O5, SrO, SO2 and lead-barium-type-glass affect the classification of lead-
barium-type glass can be rejected; that is, select the nine appropriate chemical components
for lead-barium-type glass.

5.2.2. Subclass Division

(1) Model Preparation
For the problem of using the above chemical components for each category, we use

the k-means algorithm.
The K-value setting is the only defect of the algorithm. In order to improve the

effectiveness of K value, we used the fast-clustering method to determine the value of
K in K-means algorithm and obtained the K value of 3 through systematic clustering in
SPSS software [37,38].

(2) Model Building
À We randomly selected K samples from the sample set as the initial mean vector;
Á We calculated the distance of the sample from each mean vector and dividedthe

sample into the phase according to the nearest mean vector from the sample cluster;
Â After the classification, the central point of the category was redetermined and the

mean of all samples in the category was made. For features corresponding to the new
center point, the centroid of all samples in the class was applied;

Ã Steps 2 and 3 were repeated until the subclass subdivision of high-potassium glass
with lead barium glass was completed.

(3) Model Solution
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Based on the analyzed data, we solved the model using SPSS software and obtained
the following results:

High potassium:
{18,7,27,10,12,9,22,21}, {16,14,3,1,4,5,13,6}.
Lead-barium:
{2,34,36,28,29,40,43,52,54,57}, {8,11,19,26,41,51,56,58,24,30},
{23,25,28,29,42,44,48,49,50,53,20,31,32,33,35,37,45,46,47,55}.
The detailed results are shown in Figures 6 and 7.
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5.3. Model Analysis

(1) Rationality Analysis
In order to verify the rationality of the classification results, we used the principal-

component-analysis method to cluster the data and compare the observed classification
results with the K-means classification results. If the comparison results were not very
different, the classification results were reasonable; otherwise, the classification results
were not reasonable. According to the results obtained from the above cluster analysis, the
data were divided into two categories; therefore, we also extracted the same two categories
using the principal-component-analysis method. The principal-component-analysis steps
were as follows:

À With n cultural relics and p indicators, the initial sample matrix is:

X = (Xij)n × p, i = 1, 2, · · · , n; j = 1, 2, · · · , p

Á Calculate eigenvalues of the inter-index correlation coefficient matrix R and eigen-
vector ej and obtain the principal component Wj: Wj = Xej.

Â When the cumulative variance contribution of the j-th principal component is
above 80%, take the first q principal components W1, W2, · · · , Wp; it is believed that the
few q principal components reflect the information of the original p evaluation indicators.
Formula for the cumulative-variance-contribution rate:

a =
n

∑
i=1

aj

Ã The formula for studying the composite score is as follows:

PC = aX1 + bX2 + · · ·+ xXx

Next, classifications were performed according to the coefficient size. Based on the
coefficient of the principal components, we extracted the cultural-relic numbers with large
coefficients and obtained the results presented in Table 7 [39,40].

Table 7. Main component analysis of high-potassium and lead-barium glass.

High Potassium Lead Barium

K-Means 1 PCA1 K-Means 2 PCA 2 K-Means 3 PCA 3 K-Means 1 PCA 1 K-Means 2 PCA 2
2 2 8 8 23 23 18 4 16 16

34 34 11 11 25 25 7 1 14 14
36 19 19 53 28 28 27 5 3 3
28 28 26 26 29 29 10 10 1 7
39 39 41 41 42 42 12 12 4 18
40 40 51 44 44 51 9 9 5 27
43 43 56 56 48 48 22 22 13 13
52 52 58 58 49 49 21 21 6 6
54 54 24 24 50 50 _ _ _ _
57 57 30 30 53 36 _ _ _ _
_ _ _ _ 30 30 _ _ _ _
_ _ _ _ 31 31 _ _ _ _
_ _ _ _ 32 32 _ _ _ _
_ _ _ _ 33 33 _ _ _ _
_ _ _ _ 35 35 _ _ _ _
_ _ _ _ 37 37 _ _ _ _
_ _ _ _ 45 45 _ _ _ _
_ _ _ _ 46 46 _ _ _ _
_ _ _ _ 47 47 _ _ _ _
_ _ _ _ 55 55 _ _ _ _
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Based on the above results, we found that although the results of K-means cluster anal-
ysis were slightly inconsistent, they were generally the same, which shows that the results
essentially did not change with different methods, and that their rationality was strong.

(2) Sensitivity Analysis
During the extraction of the significant chemical-component content, the significance

level of the one-way ANOVA was determined to be 0.05. To explore the sensitivity of our
classification results, we adjusted the significance levels to 0.01 and 0.1, respectively, and
the specific experimental procedures and results were as follows.

Significance level of 0.05: SiO2, K2O, CaO, Al2O3, and Fe2O3. Chemical composition in
high-potassium-glass classification: SiO2, NaO, K2O, Al2O3, CuO, CaO, PbO, BaO, Fe2O3,
P2O5, SrO, and SO2.

The À significance level was 0.01.
For high-potassium glass, the significance level of the original chemical composition se-

lected had less Fe2O3. For lead-barium glass, the extraction of chemical composition as less
than the basis of the chemical composition of NaO, Al2O3, and SrO. Specific classification
results are shown in Table 8.

Table 8. Comparison of the various significance levels.

High Potassium Lead Barium

0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01

01 2 2 2 02 1 1 1 39 1 1 1
03 2 2 2 08 2 2 2 40 1 1 1
04 2 1 2 11 2 2 2 41 2 2 2
05 2 2 2 19 2 2 1 42 2 2 2
06 2 2 2 20 2 1 2 43 1 1 1
07 1 1 1 23 2 2 2 44 2 2 2
09 1 1 2 24 2 2 2 45 2 1 2
10 1 1 1 25 2 2 2 46 2 2 2
12 1 1 1 26 2 1 2 47 2 2 1
13 2 2 2 28 2 2 2 48 2 2 2
14 2 2 2 29 2 2 1 49 2 2 2
15 1 1 1 30 2 2 2 50 2 2 2
16 2 2 2 31 2 2 2 51 2 2 2
17 1 1 1 32 2 2 2 52 1 1 1
18 1 2 1 33 2 2 2 53 2 2 2
21 1 2 1 34 1 1 1 54 1 1 1
22 1 1 1 35 2 2 2 55 2 2 2
27 1 1 1 36 1 1 1 56 2 2 2
_ _ _ _ 37 2 2 2 57 1 2 1
_ _ _ _ 38 1 1 1 58 2 2 2

The Á significance level was 0.1.
For high-potassium glass, the chemical composition extracted at this point was higher

in SO2 than the previously extracted chemical. For lead-barium glass, the extracted chemical
composition added CaO to the original significance level. The specific classification results
are shown in Table 8.

The table shows that at the significance levels of 0.1 and 0.01, although the classification
of the high-potassium and lead-barium glass was perturbed, fewer relics were disturbed;
therefore, we believe that the sensitivity of the lead-barium-glass-classification law is low.

In conclusion, although changing the level of significance can affect the change in
classification results, the number of changes is small and exerts a weaker impact on the
population; therefore, we believe that the results obtained by the K-means classification are
less sensitive.
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6. Conclusions

By converting the relevant data to a time series, we can derive the initial value of
each element variable. Based on the initial data of each element variable, combined with
the existing element content, we can perform chemical reactions on the surfaces of glass
artifacts. At the same time, based on the classification of glass with high potassium and lead
barium, the use of subclass division can help us to obtain a more detailed understanding of
glass artifacts. For a reasonable initial prediction of the chemical composition content, and
to provide a theoretical basis for the division of cultural-relic categories, such studies ot
only enrich the understanding of the preservation status and weathering mechanism of
cultural relics but, at the same time, they are also of special significance in field operations,
archaeological sites, and cultural-relic protection, among other applications. They also
provides a scientific basis for the formulation of protection-and-restoration programs. Based
on the research conclusion, the following policy suggestions are suggested:

First, increase the innovative research on glass relics. Most of the existing studies
are on the protection and restoration of cultural relics. With the help of instruments and
equipment, the research on specific elements should widen the research scope and conduct
a more comprehensive study of glass relics.

Second, the richness of extenders combines color, category, decoration, and so on
with chemical elements and classifies glass relics. This makes research on glass relics
more relevant.

Third, we should attach importance to the coordinated development of the study of
environmental systems and technological innovation. In the research on glass cultural
relics, we should pay attention to environmental protection and encourage technological
innovation through technical exchanges at home and abroad. This would highlight the
development of glass technology at various points in time, as well as the integration of
Chinese and Western glass technology.
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