Polyoxypregnane Glycosides from Root of Marsdenia tenacissima and Inhibited Nitric Oxide Levels in LPS Stimulated RAW 264.7 Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Elucidation
2.2. NO Inhibitory Evaluations
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Compound Characterization Data
3.5. Cell Culture and Nitric Oxide Inhibitory Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Wang, P.L.; Yang, J.; Zhu, Z.F.; Zhang, X.J. Marsdenia tenacissima: A Review of Traditional Uses, Phytochemistry and Pharmacology. Am. J. Chin. Med. 2018, 46, 1449–1480. [Google Scholar] [CrossRef] [PubMed]
- Li, H.T.; Kang, L.P.; Guo, B.L.; Zhang, Z.L.; Guan, Y.H.; Pang, X.; Peng, C.Z.; Ma, B.P.; Zhang, L.X. Original plant identification of Dai nationality herb “Daibaijie”. Chin. J Chin. Mater. Med. 2014, 39, 1525–1529. [Google Scholar]
- Qiu, S.X.; Luo, S.Q.; Lin, L.Z.; Cordell, G.A. Further polyoxypregnane glycosides from Marsdenia tenacissima. Phytochemistry 1996, 41, 1385–1388. [Google Scholar] [PubMed]
- Xia, Z.H.; Xing, W.X.; Mao, S.L.; Lao, A.N.; Uzawa, J.; Yoshida, S.; Fujimoto, Y. Pregnane glycosides from the stems of Marsdenia tenacissima. J. Asia Nat. Prod. Res. 2004, 6, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Li, Q.F.; Yu, K.B.; Peng, S.L.; Zhou, Y.; Ding, L.S. Four new pregnane glycosides from the stems of Marsdenia tenacissima. Helv. Chim. Acta 2006, 89, 2738–2744. [Google Scholar] [CrossRef]
- Liu, J.; Yu, Z.B.; Ye, Y.H.; Zhou, Y.W. A new C21 steroid glycoside from Marsdenia tenacissima. Chin. Chem. Lett. 2008, 19, 444–446. [Google Scholar] [CrossRef]
- Lei, Y.S.; Li, Z.L.; Yang, S.S.; Liu, Z.L.; Hua, H.M. C21 steroids from the stems of Marsdenia tenacissima. Acta Pharm. Sin. 2008, 43, 509–512. [Google Scholar]
- Huang, X.D.; Liu, T.; Wang, S. Two new polyoxypregnane glycosides from Marsdenia tenacissima. Helv. Chim. Acta 2009, 92, 2111–2117. [Google Scholar] [CrossRef]
- Wang, X.L.; Peng, S.L.; Ding, L.S. Further polyoxypregnane glycosides from Marsdenia tenacissima. J. Asia Nat. Prod. Res. 2010, 12, 654–661. [Google Scholar] [CrossRef]
- Zhang, H.; Tan, A.M.; Zhang, A.Y.; Chen, R.; Yang, S.B.; Huang, X. Five new C21 steroidal glycosides from the stems of Marsdenia tenacissima. Steroids 2010, 75, 176–183. [Google Scholar] [CrossRef]
- Xia, Z.H.; Mao, S.L.; Lao, A.N.; Uzawa, J.; Yoshida, S.; Fujimoto, Y. Five new pregnane glycosides from the stems of Marsdenia tenacissima. J. Asia Nat. Prod. Res. 2011, 13, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; To, K.K.W.; Wang, Y.Z.; Yin, C.; Tang, C.P.; Chai, S.; Ke, C.Q.; Lin, G.; Ye, Y. Polyoxypregnane Steroids from the Stems of Marsdenia tenacissima. J. Nat. Prod. 2014, 77, 2044–2053. [Google Scholar] [CrossRef] [PubMed]
- Khang, P.V.; Xu, T.; Xu, L.X.; Zhou, N.N.; Hu, L.H.; Wang, R.; Ma, L. Steroidal glycosides from Marsdenia tenacissima. Phytochem. Lett. 2015, 12, 54–58. [Google Scholar] [CrossRef]
- Yao, S.; To, K.K.W.; Ma, L.; Yin, C.; Tang, C.P.; Chai, S.; Ke, C.Q.; Lin, G.; Ye, Y. Polyoxypregnane steroids with an open-chain sugar moiety from Marsdenia tenacissima and their chemoresistance reversal activity. Phytochemistry 2016, 126, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Kang, L.P.; Yu, H.S.; Zhao, Y.; Han, L.F.; Zhang, J.; Xiong, C.Q.; Zhang, L.X.; Yu, L.Y.; Ma, B.P. New polyoxypregnane glycosides from the roots of Marsdenia tenacissima. Steroids 2015, 93, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Kang, L.P.; Fang, X.M.; Yu, H.S.; Han, L.F.; Zhao, Y.; Zhang, L.X.; Yu, L.Y.; Ma, B.P. C21 steroid derivatives from the Dai herbal medicine Dai-Bai-Jie, the dried roots of Marsdenia tenacissima, and their screening for anti-HIV activity. J. Nat. Med. 2017, 72, 166–180. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Kang, L.P.; Fang, X.M.; Zhao, Y.; Yu, H.S.; Han, L.F.; Li, H.T.; Zhang, L.X.; Guo, B.L.; Yu, L.Y.; et al. Polyoxypregnane glycosides from the roots of Marsdenia tenacissima and their anti-HIV activities. Planta Med. 2017, 83, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Guzik, T.J.; Korbut, R.; Adamek-Guzik, T. Nitric oxide and superoxide in inflammation. J. Physiol. Pharmacol. 2003, 54, 469–487. [Google Scholar]
- Deng, J.; Liao, Z.X.; Chen, D.F. Three new polyoxypregnane glycosides from Marsdenia tenacissima. Helv. Chim. Acta 2005, 88, 2675–2682. [Google Scholar] [CrossRef]
- Deng, J.; Liao, Z.X.; Chen, D.F. Marsdenosides A–H, polyoxypregnane glycosides from Marsdenia tenacissima. Phytochemistry 2005, 66, 1040–1051. [Google Scholar] [CrossRef]
- Deng, J.; Liao, Z.X.; Chen, D.F. Two new C21 steroids from Marsdenia tenacissima. Chin. Chem. Lett. 2005, 16, 487–490. [Google Scholar]
- Li, Q.F.; Wang, X.L.; Ding, L.S.; Zhang, C. Polyoxypregnanes from the stems of Marsdenia tenacissima. Chin. Chem. Lett. 2007, 18, 831–834. [Google Scholar] [CrossRef]
- Luo, S.Q.; Lin, L.Z.; Cordell, G.A.; Xue, L.; Johnson, M.E. Polyoxypregnane glycosides from Marsdenia tenacissima. Phytochemistry 1993, 34, 1615–1620. [Google Scholar]
- Ma, B.X.; Fang, T.Z. Novel saponins hainaneosides A and B isolated from Marsdenia hainanensis. J. Nat. Prod. 1997, 60, 134–138. [Google Scholar] [CrossRef]
- Sahu, N.P.; Panda, N.; Mandal, N.B.; Banerjee, S.; Koike, K.; Nikaid, O.T. Polyoxypregnane glycosides from the flowers of Dregea volubilis. Phytochemistry 2002, 61, 383–388. [Google Scholar] [CrossRef]
- McGarvey, B.D.; Liao, H.; Ding, K.Y.; Wang, X.L. Dereplication of known pregnane glycosides and structural characterization of novel pregnanes in Marsdenia tenacissima by high-performance liquid chromatography and electrospray ionization-tandem mass spectrometry. J. Mass. Spectrom. 2012, 47, 687–693. [Google Scholar] [CrossRef]
- Cheng, C.S.; Zou, Y.; Peng, J. Oregano Essential Oil Attenuates RAW264.7 Cells from Lipopolysaccharide-Induced Inflammatory Response through Regulating NADPH Oxidase Activation-Driven Oxidative Stress. Molecules 2018, 23, 1857. [Google Scholar] [CrossRef] [Green Version]
- Reif, D.W.; McCreedy, S.A. N-nitro-L-arginine and N-monomethyl-L-arginine exhibit a different pattern of inactivation toward the three nitricoxide synthases. Arch. Biochem. Biophys. 1995, 320, 170–176. [Google Scholar] [CrossRef]
- Jin, K.K.; Hyun, C.G. 4-Hydroxy-7-Methoxycoumarin inhibits inflammation in LPS-activated RAW264.7 macrophages by suppressing NF-κB and MAPK activation. Molecules 2020, 25, 4424–4433. [Google Scholar]
Position | 1 a | 2 a | 3 a | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
1 | 37.4 | 37.6 | 38.5 | 37.8 | 38.1 | 37.9 | 37.8 |
2 | 29.1 | 29.1 | 28.9 | 29.8 | 29.6 | 29.8 | 29.7 |
3 | 76.4 | 76.4 | 76.6 | 77.8 | 77.9 | 76.0 | 75.9 |
4 | 34.7 | 34.8 | 34.5 | 35.2 | 35.1 | 35.2 | 35.2 |
5 | 44.0 | 44.0 | 44.5 | 44.0 | 43.9 | 43.9 | 43.9 |
6 | 26.7 | 26.7 | 27.0 | 27.2 | 27.1 | 27.2 | 27.3 |
7 | 31.8 | 31.9 | 32.3 | 25.2 | 25.2 | 25.1 | 25.3 |
8 | 66.9 | 66.9 | 66.0 | 66.8 | 66.8 | 66.7 | 66.9 |
9 | 51.3 | 51.3 | 54.3 | 51.9 | 51.8 | 51.7 | 51.8 |
10 | 39.1 | 39.2 | 39.3 | 39.4 | 39.4 | 39.4 | 39.5 |
11 | 68.8 | 69.5 | 68.6 | 69.1 | 68.8 | 69.0 | 69.9 |
12 | 75.2 | 75.5 | 74.2 | 75.2 | 75.2 | 74.9 | 75.5 |
13 | 46.1 | 46.2 | 47.3 | 44.0 | 46.1 | 46.1 | 46.5 |
14 | 71.5 | 71.6 | 71.6 | 71.7 | 71.6 | 71.7 | 71.9 |
15 | 26.8 | 26.8 | 27.7 | 32.2 | 32.1 | 32.1 | 32.1 |
16 | 25.1 | 25.1 | 25.4 | 27.1 | 27.1 | 27.1 | 27.2 |
17 | 59.8 | 59.9 | 60.3 | 59.7 | 60.0 | 59.9 | 59.9 |
18 | 16.6 | 16.7 | 17.5 | 16.9 | 17.0 | 16.9 | 16.9 |
19 | 12.7 | 12.8 | 12.9 | 13.2 | 13.2 | 13.1 | 13.2 |
20 | 211.1 | 211.1 | 212.6 | 210.3 | 210.0 | 210.1 | 210.4 |
21 | 30.3 | 30.2 | 32.7 | 30.3 | 29.9 | 30.0 | 30.2 |
11-O | Tig | Bz | HPA | Tig | mBu | HPA | Bz |
1 | 167.4 | 166.2 | 172.0 | 167.2 | 175.5 | 171.5 | 166.5 |
2 | 128.5 | 130.0 | 41.1 | 129.2 | 41.5 | 41.4 | 130.6 |
3 | 138.1 | 129.5 | 125.3 | 138.1 | 26.6 | 124.6 | 129.9 |
4 | 11.6 | 128.1 | 130.7 | 12.2 | 11.9 | 131.3 | 128.7 |
5 | 14.2 | 132.9 | 115.6 | 14.3 | 15.7 | 116.4 | 133.5 |
6 | 128.1 | 155.2 | 158.2 | 128.7 | |||
7 | 129.5 | 115.6 | 116.4 | 129.9 | |||
8 | 130.7 | 131.3 | |||||
12-O | Bz | Bz | Ac | Ac | Ac | Bz | |
1 | 166.1 | 166.1 | 170.7 | 170.8 | 170.8 | 166.3 | |
2 | 129.4 | 129.0 | 20.5 | 20.9 | 20.3 | 130.6 | |
3 | 129.7 | 129.5 | 129.8 | ||||
4 | 128.3 | 128.1 | 128.7 | ||||
5 | 133.1 | 132.8 | 133.3 | ||||
6 | 128.3 | 128.1 | 128.7 | ||||
7 | 129.7 | 129.5 | 129.8 |
Position | 1 a | 2 a | 3 a | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Ole | Ole | Ole | Glc-1 | Glc-1 | Ole | Ole | |
1 | 96.9 | 97.0 | 97.0 | 101.2 | 101.1 | 97.5 | 97.4 |
2 | 36.1 | 36.1 | 36.1 | 71.4 | 71.5 | 37.9 | 37.8 |
3 | 78.8 | 78.8 | 78.8 | 78.0 | 78.0 | 79.7 | 79.6 |
4 | 79.1 | 79.1 | 79.1 | 84.7 | 84.7 | 83.4 | 83.3 |
5 | 71.4 | 71.4 | 71.4 | 78.0 | 77.9 | 71.9 | 71.9 |
6 | 18.6 | 18.6 | 18.6 | 62.6 | 62.6 | 19.1 | 19.0 |
3-OMe | 55.6 | 55.6 | 55.7 | 57.3 | 57.3 | ||
Allo | Allo | Allo | Glc-2 | Glc-2 | Allo | Allo | |
1 | 99.1 | 99.1 | 99.2 | 106.7 | 106.7 | 102.0 | 101.9 |
2 | 71.8 | 71.8 | 71.8 | 77.1 | 77.1 | 72.7 | 72.7 |
3 | 81.0 | 81.0 | 81.0 | 78.3 | 78.3 | 83.2 | 83.2 |
4 | 72.8 | 72.8 | 72.8 | 71.4 | 71.5 | 83.4 | 83.3 |
5 | 71.3 | 71.3 | 71.3 | 78.9 | 78.9 | 69.6 | 69.5 |
6 | 17.9 | 17.9 | 17.9 | 62.6 | 62.6 | 18.4 | 18.3 |
3-OMe | 62.0 | 61.9 | 62.0 | 61.7 | 61.7 | ||
Glc | Glc | ||||||
1 | 106.6 | 106.6 | |||||
2 | 75.5 | 75.5 | |||||
3 | 78.4 | 78.4 | |||||
4 | 72.0 | 72.0 | |||||
5 | 78.5 | 78.4 | |||||
6 | 63.0 | 63.0 |
Position | 1 a | 2 a | 3 a | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Ole | Ole | Ole | Glc-1 | Glc-1 | Ole | Ole | |
1 | 4.58 dd | 4.58 dd | 4.58 dd | 5.01 d | 5.08 d | 4.78 d | 4.73 d |
(9.8, 1.8) | (9.8, 1.9) | (9.7, 1.7) | (7.6) | (7.7) | (8.9) | (9.4) | |
2 | 1.47 m | 1.45 m | 1.49 m | 4.31 m | 4.31 m | 1.26 m | 1.33 m |
2.30 m | 2.30 m | 2.30 m | 2.41 m | 2.36 m | |||
3 | 3.39 m | 3.38 m | 3.38 m | 4.25 m | 4.23 m | 3.61 m | 3.57 m |
4 | 3.33 m | 3.31 m | 3.34 m | 4.09 m | 4.13 m | 3.59 m | 3.52 m |
5 | 3.33 m | 3.31 m | 3.34 m | 3.92 m | 3.92 m | 3.64 m | 3.52 m |
6 | 1.36 d | 1.32 d | 1.37 d | 4.33 m | 4.34 m | 1.67 d | 1.57 d |
(5.5) | (5.5) | (5.5) | 4.50 m | 4.52 m | (5.8) | (5.0) | |
3-OMe | 3.37 s | 3.35 s | 3.37 s | 3.50 s | 3.47 s | ||
Allo | Allo | Allo | Glc-2 | Glc-2 | Allo | Allo | |
1 | 4.79 d | 4.77 d | 4.79 d | 5.22 d | 5.25 d | 5.27 d | 5.24 d |
(8.1) | (8.3) | (8.3) | (7.8) | (7.8) | (8.1) | (8.1) | |
2 | 3.47 m | 3.46 m | 3.47 m | 4.11 m | 4.12 m | 3.84 m | 3.79 m |
3 | 3.79 t | 3.78 t | 3.78 t | 4.35 m | 4.37 m | 4.47 t | 4.45 m |
(3.0) | (3.0) | (3.0) | (2.5) | ||||
4 | 3.17 m | 3.17 m | 3.17 m | 4.21 m | 4.21 m | 3.73 dd | 3.72 dd |
(9.6, 2.5) | (9.4, 2.0) | ||||||
5 | 3.55 m | 3.54 m | 3.55 m | 3.93 m | 3.94 m | 4.27 m | 4.23 m |
6 | 1.25 d | 1.24 d | 1.25 d | 4.33 m | 4.34 m | 1.63 d | 1.61 d |
(6.0) | (6.4) | (6.1) | 4.45 m | 4.43 m | (6.2) | (6.2) | |
3-OMe | 3.66 s | 3.65 s | 3.65 s | 3.81 s | 3.80 s | ||
Glc | Glc | ||||||
1 | 4.97 d | 4.95 d | |||||
(7.8) | (7.7) | ||||||
2 | 4.02 m | 4.00 m | |||||
3 | 4.26 m | 4.22 m | |||||
4 | 4.22 m | 4.19 m | |||||
5 | 4.01 m | 3.97 m | |||||
6 | 4.36 dd | 4.36 dd | |||||
(11.6, 5,4) | (11.6, 5,1) | ||||||
4.54 dd | 4.53 d | ||||||
(11.6, 2.3) | (11.6) |
Compound | Concentration (μM) | NO Inhibition Rate (%) |
---|---|---|
1 | 40 | 48.19 ± 4.14 |
2 | 40 | 70.33 ± 5.39 |
3 | 40 | −4.09 ± 7.28 |
4 | 40 | −0.86 ± 1.59 |
5 | 40 | 0.80 ± 1.91 |
6 | 40 | −5.57 ± 1.15 |
7 | 40 | 7.13 ± 5.00 |
L-NMMA a | 40 | 68.03 ± 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Na, Z.; Gongpan, P.; Fan, Q. Polyoxypregnane Glycosides from Root of Marsdenia tenacissima and Inhibited Nitric Oxide Levels in LPS Stimulated RAW 264.7 Cells. Molecules 2023, 28, 886. https://doi.org/10.3390/molecules28020886
Na Z, Gongpan P, Fan Q. Polyoxypregnane Glycosides from Root of Marsdenia tenacissima and Inhibited Nitric Oxide Levels in LPS Stimulated RAW 264.7 Cells. Molecules. 2023; 28(2):886. https://doi.org/10.3390/molecules28020886
Chicago/Turabian StyleNa, Zhi, Pianchou Gongpan, and Qingfei Fan. 2023. "Polyoxypregnane Glycosides from Root of Marsdenia tenacissima and Inhibited Nitric Oxide Levels in LPS Stimulated RAW 264.7 Cells" Molecules 28, no. 2: 886. https://doi.org/10.3390/molecules28020886
APA StyleNa, Z., Gongpan, P., & Fan, Q. (2023). Polyoxypregnane Glycosides from Root of Marsdenia tenacissima and Inhibited Nitric Oxide Levels in LPS Stimulated RAW 264.7 Cells. Molecules, 28(2), 886. https://doi.org/10.3390/molecules28020886