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Abstract: Due to the low capacity, low working potential, and lithium coating at fast charging rates of
graphite material as an anode for Li-ion batteries (LIBs), it is necessary to develop novel anode materi-
als for LIBs with higher capacity, excellent electrochemical stability, and good safety. Among different
transition-metal oxides, AB2O4 spinel oxides are promising anode materials for LIBs due to their
high theoretical capacities, environmental friendliness, high abundance, and low cost. In this work, a
novel, porous Zn0.5Mg0.5FeMnO4 spinel oxide was successfully prepared via the sol–gel method and
then studied as an anode material for Li-ion batteries (LIBs). Its crystal structure, morphology, and
electrochemical properties were, respectively, analyzed through X-ray diffraction, high-resolution
scanning electron microscopy, and cyclic voltammetry/galvanostatic discharge/charge measure-
ments. From the X-ray diffraction, Zn0.5Mg0.5FeMnO4 spinel oxide was found to crystallize in the
cubic structure with Fd3m symmetry. However, the Zn0.5Mg0.5FeMnO4 spinel oxide exhibited a
porous morphology formed by interconnected 3D nanoparticles. The porous Zn0.5Mg0.5FeMnO4 an-
ode showed good cycling stability in its capacity during the initial 40 cycles with a retention capacity
of 484.1 mAh g−1 after 40 cycles at a current density of 150 mA g−1, followed by a gradual decrease
in the range of 40–80 cycles, which led to reaching a specific capacity close to 300.0 mAh g−1 after
80 cycles. The electrochemical reactions of the lithiation/delithiation processes and the lithium-ion
storage mechanism are discussed and extracted from the cyclic voltammetry curves.

Keywords: porous Zn0.5Mg0.5FeMnO4 spinel; sol–gel route; crystallographic structure; Li-ion batter-
ies; anode material; electrochemical performance

1. Introduction

Recently, the extensive demand for consumer electronics and electric vehicles has led
to a significant increase in the demand for rechargeable lithium-ion batteries (LIBs) owing
to their high energy density, long cycle life, environmental friendliness, and no memory
effect [1–3]. Since the 1990s, LIBs have been regarded as one of the systems with the most
energy storage and have gained widespread applications in mobile electronic devices such
as handheld computers, tablets, and mobile phones. LIBs with higher energy density and
fast-chargeable capability are requested for many energy storage systems, especially for
electric vehicles (EV) and stationary energy storage devices [4–6].

In commercialized, traditional LIBs, graphite has been the most extensively used
anode material to date due to its low cost and long cycle life [7,8]. Due to the low capacity
of graphite material (only 372 mAh g−1), its low working potential (<0.2 V vs. Li+/Li),
and its lithium coating at fast charging rates, graphite-based LIBs are limited and cannot
meet the demand for fast-chargeable batteries with high energy density [9,10]. Therefore,
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developing novel anode materials for LIBs with higher capacity, low cost, nontoxicity,
excellent electrochemical stability, and good safety has recently become an important
research issue. In this regard, alloys and transition-metal oxides have appeared as the most
popular possibilities to substitute the graphite material in LIBs [11–13].

In recent decades, transition-metal oxides (TMOs) with the general formula MxOy
(where M = Mn, Fe, Ni, Sn, Co, Cr, Zn, Nb, Mo, etc.) have received significant attention as
promising high-performance anode materials to substitute the graphite material in LIBs due
to their distinctive properties such as higher specific capacity than that of the commercially
used graphite, good safety, environmental friendliness, and low price [14,15]. With respect
to these characteristics, many TMOs have been widely studied as anode materials for
LIBs, such as MnO [16], NiO [17], CuO [18], TiO2 [19], MnO2 [20], SiO2 [21], Fe2O3 [22],
and SnO2 [23]. Among these TMOs, AB2O4-type spinels as mixed transition-metal oxides
with a greater capacity than graphite anodes (800–1000 mAh g−1) have received a lot of
attention; they are considered interesting and promising electrochemically active materials
for next-generation LIBs, which can combine two transition metals [24,25]. Generally,
AB2O4 spinel oxides as anode materials for LIBs use the conversion mechanism for Li+ ion
storage [26]. In general, AB2O4-type spinel oxides with the desired morphology can be
easily synthesized through several methods such as solid-state reaction [27], sol–gel [28],
co-precipitation [29], hydrothermal [30], electrospinning [31], low-temperature solution
combustion [32], microwave-induced combustion [33], and Pechini [34] methods, among
others. In recent years, many types of spinel ferrite have been used and emerged as
conversion anode materials for LIBs, such as ferrite Fe3O4 [35], copper ferrite CuFe2O4 [36],
cobalt ferrite CoFe2O4 [37], nickel ferrite NiFe2O4 [38], etc.

Recently, nanostructured spinel ferrites have received tremendous interest for appli-
cation in LIBs [39]. Among nanostructured spinel ferrites, magnesium ferrite MgFe2O4
nanoparticles prepared through the sol–gel method, as anode materials for LIBs, have
shown a specific capacity near 474 mAh g−1 after 50 cycles under a current density of
90 mA g−1 [40]. In this phase, Mg was used as an electrochemical inactive pillar to enhance
the cyclability of MgFe2O4 spinel [30]. The manganese ferrite MnFe2O4 with mesoporous
microsphere morphology has been reported by Z. Zhang et al. [41]. It has shown specific
capacities of 712.2 and 552.2 mA h g−1 at 0.2 C and 0.8 C, respectively, after 50 cycles,
suggesting good performance for fast charging. Another spinel ferrite, zinc ferrite ZnFe2O4,
has gained much attention as an anode material for LIBs due to its great electrochemical
performance with different morphologies, such as hollow spherical [42], microsized cap-
sules [43], macroporous [44], porous nanospheres [45], and fiber-in-tube [46] morphologies,
among others.

Additionally, manganese-based AB2O4 spinel oxides have also attracted much interest
as alternative electrode materials for LIBs owing to their excellent electrochemical perfor-
mance [47,48]. Among these manganites, ZnMn2O4 microsheets were synthesized by K.
Cai et al. using a microwave-assisted hydrothermal route [49]. From their electrochemical
properties, they showed a capacity of 337.3 mAh g−1 after 40 cycles at a rate of 0.1 C.
Another spinel manganite, the MgMn2O4 spinel, was investigated by Z. Wang et al. [50].
The MgMn2O4 nanoparticles with particle sizes ranging from 20 to 30 nm prepared using
the sol–gel method have shown a discharge capacity of 483.6 mAh g−1 after 100 cycles.

In recent years, Co-, Ni-, Zn-, Fe-, Cr-, Mn-, and Li-based multi-component spinel
oxides have attracted great attention as high-performance anodes for LIBs and long-life
lithium-ion batteries [51,52]. L. Dong et al. [51] reported a multi-component transition-
metal oxide (Ni,Co,Mn)Fe2O4−x with oxygen vacancies as an anode material for LIBs,
which has shown a specific capacity of 650.5 mAh g−1 at 2 A g−1 after 1200 cycles, i.e.,
excellent reversible capacity and good cycling stability. K. Tian et al. [52] found that spinel
oxides (CoNiZnXMnLi)3O4 (X = Fe, Cr) are high-performance anodes for LIBs. On the
other hand, Nb-based oxides such as Nb2O5, Nb12O29, TiNb2O7, Ti2Nb10O29, etc., have
attracted much attention as anode materials for high-rate lithium-ion energy storage [53].
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From the above, to simultaneously improve the stability, energy density, and high-rate
capability of anode materials for LIBs, a novel, 3D interconnected structure belonging to
transition-metal-oxide-type spinels is urgently needed. In this work, we report a facile
route to synthesize 3D porous Zn0.5Mg0.5FeMnO4 spinel oxide using sol–gel method
with a theoretical capacity of 976.3 mAh g−1 as an anode electrode for LIBs. Herein,
Mg is used as an inactive stabilized pillar, which can produce good cycling stability. The
synthesized active material is characterized by different techniques such as X-ray diffraction,
thermogravimetry analysis, scanning electron microscopy, and the nitrogen adsorption–
desorption isotherm to report, respectively, its crystallographic structure, thermal stability,
morphology, and specific surface area. The electrochemical performance of the prepared
porous Zn0.5Mg0.5FeMnO4 spinel oxide is tested by cyclic voltammetry and galvanostatic
discharge/charge measurements.

2. Results and Discussion
2.1. X-ray Diffraction, Rietveld Refinement, and Crystal Structure

The X-ray powder diffraction (XRD) technique was first employed to analyze the crys-
tallographic structure, formation, and phase purity of the as-synthesized Zn0.5Mg0.5FeMnO4
sample. Figure 1a shows the wide-angle XRD pattern of the Zn0.5Mg0.5FeMnO4 sample
acquired at room temperature. From this figure, the XRD data reveal the formation of the
AB2O4-type spinel phase as all the experimental XRD peaks observed at different 2θ values
are well matching with standard peaks of the MgFe2O4 spinel phase that crystallizes in the
cubic Fd3m structure with a lattice parameter of a = 8.3827 Å (JCPDS card: 88-1936) [54],
which indicates that the as-synthesized Zn0.5Mg0.5FeMnO4 sample exhibits a single spinel
phase with the cubic Fd3m system. However, no additional peaks from any impurities
could be identified in the XRD pattern, revealing a high purity of the synthesized spinel
phase and confirming that the organic species of CA have been completely removed. In
addition, the synthesized spinel shows sharp XRD peaks with small full width at half
maximum (FWHM), suggesting good crystallization of the synthesized Zn0.5Mg0.5FeMnO4
spinel oxide. Besides, the widening of the obtained XRD peaks provides proof of the
existence of nanoscale-dimension spinel particles.
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Figure 1. (a) X-ray powder diffraction pattern of the elaborated Zn0.5Mg0.5FeMnO4 spinel oxide
compared with JCPDS card no. 88–1936 of the MgFe2O4 phase. (b) Rietveld refinement of the XRD
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For further deep analysis of structural parameters, the XRD pattern of the synthe-
sized Zn0.5Mg0.5FeMnO4 spinel ferrite was refined using the Rietveld method [55,56]. The
structural refinement was carried out with the cubic structure and Fd3m as a space group.
The Rietveld refinement plot of the synthesized Zn0.5Mg0.5FeMnO4 spinel is displayed in
Figure 1b, where the Bragg reflections are revealed by the green vertical bars, the observed
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XRD (Yobs) pattern is shown by open black circles, the simulated XRD (Ycal) pattern by
the Rietveld method is represented by red solid lines, and the difference curve (Yobs–Ycal)
is indicated by pink solid lines. From this figure, it can be seen that the observed XRD
pattern shows great agreement with the calculated XRD pattern, revealing the success
of a realized structural refinement for the synthesized Zn0.5Mg0.5FeMnO4 spinel ferrite.
Moreover, the quality of the structural refinement was evaluated by the consideration of
the different R-factors such as structure factor (RF), Bragg factor (RB), profile factor (RP),
expected factor (Rexp), and profile factor (Rwp) [57–60]. The results of the powder X-ray
diffraction of the synthesized Zn0.5Mg0.5FeMnO4 spinel oxide in the Rietveld refinement
such as structural parameters, profile parameters, and different reliability R-factors are
summarized in Table 1. According to the obtained values of different R-factors, the synthe-
sized Zn0.5Mg0.5FeMnO4 spinel oxide crystallizes in the cubic Fd3m structure with a lattice
parameter of a = 8.4265 (2) Å.

Table 1. The results of the Rietveld structural refinement for structural parameters, profile parameters,
and various reliability R-factors of the elaborated Zn0.5Mg0.5FeMnO4 spinel oxide.

Wavelengths (Å)
Lattice

Parameters Crystal Structure Mixing Factor Caglioti
Parameters R-Factors

λkα1 = 1.54056
λkα2 = 1.54439

a = 8.4265 (2) Å
V = 598.33 (1) Å3 Cubic Fd3m η = 635 (7)

U = 0.029 (6)
V = −0.011 (6)
W = 0.0154 (2)

RF = 2.41, RB= 2.83
RP = 7.27, Rexp = 11.5

Rwp = 12.3

From the obtained structural parameters by Rietveld refinement, the crystal structure
of Zn0.5Mg0.5FeMnO4 spinel oxide was drawn. Figure 2 displays the crystal structure of
Zn0.5Mg0.5FeMnO4 spinel oxide with the cubic structure in Fd3m symmetry. As clearly
shown in the figure, the crystal structure of Zn0.5Mg0.5FeMnO4 spinel oxide is constructed
by 3D interconnected tetrahedral and octahedral polyhedra, where Zn2+ and Mg2+ cations
are located in the tetrahedral sites (green balls), Fe3+ and Mn3+ are located in the octahedral
sites (blue balls), and the red balls represent the O2− oxygen anions. Moreover, this
structure shows three Wyckoff sites—the 8a, 16d, and 32e sites, which correspond to the
tetrahedral, octahedral, and oxygen sites, respectively. Only 1/8 of the tetrahedral sites are
occupied by Zn2+/Mg2+ cations, 1/2 of the octahedral sites are occupied by Fe3+/Mn3+

cations, and the 32e sites are totally occupied by oxygen anions. Therefore, the spinel
structure exhibits 7/8 of the tetrahedral sites and 1/2 of the octahedral sites that are empty.
During the first discharge of electrochemical cells, the lithium ions can be inserted into the
unit cell to occupy the lacunar sites.
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2.2. Thermal Analysis

In order to understand the mechanism of the calcination of the synthesized xerogel,
the xerogel sample was characterized by thermogravimetric analysis (TGA) in a wide
temperature range of 20–700 ◦C. Figure 3 depicts the thermogravimetric curves (TG) of
the synthesized xerogel and the calcined sample of Zn0.5Mg0.5FeMnO4 spinel. In the case
of the xerogel sample (red curve), two weight losses take place in the temperature range
from room temperature to 350 ◦C. The first loss is observed before 140 ◦C, which is due
to the evaporation of the water used as a solvent during the synthesis and the physically
adsorbed water on the surface. The second weight loss observed in the temperature range
of 140–350 ◦C is attributed to the decomposition of the organic species of the citric acid
(CA) associated with the elimination of nitrogen dioxide (NO2

↑). Further, no weight
loss is present above 350 ◦C. Moreover, the thermal stability of the synthesized spinel
was examined by thermogravimetric analysis (TGA). For the calcined sample at 700 ◦C
(blue curve), its TG curve demonstrates no weight loss in the whole temperature range of
20–700 ◦C, indicating good thermal stability of the synthesized porous Zn0.5Mg0.5FeMnO4
spinel oxide and confirming that the organic molecules of the citric acid (CA) have been
completely removed after calcination at 700 ◦C.
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2.3. Morphology, Purity, and Specific Surface

The microstructural morphology of the synthesized spinel was revealed by scan-
ning electron microscopy (SEM). Figure 4a shows the SEM image of the synthesized
Zn0.5Mg0.5FeMnO4 spinel oxide, which demonstrates its surface morphology. From the
figure, it can be seen that the prepared spinel shows a microsized porous morphology with
different pore sizes ranging from 2 to 5 µm. Moreover, the porous morphology can make
the electrolyte used in the cells of LIBs penetrate easily, which leads to the acceleration of
lithium ions diffusion, enhancing the electrochemical performance. For further deep analy-
sis of the surface morphology, the synthesized spinel was characterized by high-resolution
scanning electron microscopy (HR-SEM). The obtained HR-SEM image is presented in
Figure 4b. It can be seen from this figure that the porous Zn0.5Mg0.5FeMnO4 spinel is
composed of interconnected nanosized spherical particles with sizes ranging from 50 to
100 nm.
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image.

To carry out an investigation on the purity of the synthesized porous Zn0.5Mg0.5FeMnO4
spinel oxide, an energy-dispersive X-ray (EDX) spectrometer was utilized. The results of
this investigation are displayed in Figure 5. As clearly shown in the figure, only Zn, Mg,
Fe, Mn, and O peaks could be recorded, which suggests the existence of only Zn, Mg, Fe,
Mn, and O elements in the product. No additional element was recorded. The EDX results
confirm approximately the atomic ratio 0.5:0.5:1:1:4 of Zn, Mg, Fe, Mn, and O elements,
respectively, which gives further proof of the high purity of the synthesized spinel. Besides,
the SEM/EDX instrument was also used to provide different element distribution maps of
the 3D metal oxide network. The surface of the synthesized spinel and its EDX element
mapping results are shown in Figure 6. From these maps, it is clearly demonstrated that
the Zn, Mg, Fe, Mn, and O elements are uniformly distributed across the whole sample.
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Figure 7 shows the nitrogen adsorption–desorption isotherm of the synthesized porous
Zn0.5Mg0.5FeMnO4 spinel oxide collected at a liquid nitrogen temperature of 77 K. The anal-
ysis of the nitrogen adsorption–desorption isotherm was performed to obtain the specific
surface area of the synthesized porous Zn0.5Mg0.5FeMnO4 spinel oxide using the Brunauer–
Emmett–Teller (BET) method. From the nitrogen adsorption–desorption isotherm, the
porous spinel shows a type IV nitrogen sorption isotherm with a small hysteresis loop at
high partial pressures (P/P0), suggesting a characteristic of a mesoporous material. Using
the Brunauer–Emmett–Teller (BET) method, the specific surface area of the synthesized
porous Zn0.5Mg0.5FeMnO4 spinel oxide was found to be 13.54 m2 g−1. The obtained small
specific surface area is probably due to the high aggregation of nanoparticles, as shown
in the HR-SEM image (Figure 4b). Moreover, the synthesized porous Zn0.5Mg0.5FeMnO4
spinel oxide has a larger specific surface area than that of graphite powder, which is
6.89 m2 g−1 [61].
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2.4. Electrochemical Results

In order to further investigate the beneficial effects of the Zn0.5Mg0.5FeMnO4 spinel
oxide with a porous morphology as anode for LIBs, its electrochemical performance was
analyzed in a half-cell configuration. The cyclic voltammetry (CV) measurements were
conducted over the 0.01–3.00 V voltage range vs. Li+/Li under ambient conditions. Figure 8
shows the initial five CV curves of the synthesized porous Zn0.5Mg0.5FeMnO4 spinel oxide
collected at a sweep rate of 0.05 mV s−1. Specifically, in the initial cathodic sweep (discharge,
lithiation), two dominant peaks at 0.35 and 0.7 V are observed in the first cycle. In agreement
with previous studies [62,63], the cathodic peak that appeared at 0.7 V is attributed to the
reversible reduction of Zn2+, Fe3+, and Mn3+ ions together, which are incorporated in
Zn0.5Mg0.5FeMnO4 spinel phase to their metallic states Zn, Fe, and Mn associated with
the formation of MgO and amorphous Li2O, as demonstrated in Equation (1). After the
reduction of Zn0.5Mg0.5FeMnO4, the formed Zn metal can react with Li+ ions, giving the
reversible formation of LiZn alloys (Equation (2)) [46]. The other intense peak observed at
0.35 V corresponds to electrolyte decomposition, which leads to the irreversible formation
of a solid electrolyte interface (SEI) [64,65]. For the subsequent cathodic sweeps, only one
peak is obtained near 0.67 V, which is assigned to the reduction of ZnO, Fe2O3, and MnO to
Zn, Fe, and Mn, respectively, as previously reported [66,67]. The electrochemical reactions
of the lithiation process (discharge) can be shown, as reported in [68,69].
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five cycles.

• First cycle:

Zn0.5Mg0.5FeMnO4 + 7 Li+ + 7 e− → 0.5 Zn + 0.5 MgO + Fe + Mn + 3.5 Li2O (1)

Zn + Li+ + e− → LiZn (2)

• Subsequent cycles:

0.5 ZnO + 0.5 Fe2O3 + MnO + 6 Li+ + 6 e− → 0.5 Zn + Fe + Mn + 3 Li2O (3)

In the charge process (delithiation), the distinct anodic peaks are between 1.6 V and
1.8 V for all cycles, which probably contribute to the various oxidations of metallic Zn, Fe,
and Mn to their oxide states Zn2+ (ZnO), Fe3+ (Fe2O3), and Mn2+ (MnO), respectively, as
represented in Equation (4) [39,70]. Therefore, the related reactions of the charge process
(delithiation) for all cycles can be summarized as follows [71,72]:

0.5 Zn + Fe + Mn + 3 Li2O→ 0.5 Zno + 0.5 Fe2O3 + MnO + 6 Li+ + 6 e− (4)

LiZn→ Zn + Li+ + e− (5)

On the other hand, the first cycle is easily distinct from the subsequent cycles. Besides,
the difference between the redox peaks in the first and subsequent cycles is due to the
capacity loss of the anode spinel during the first cycle. From the third cycle, the CV curves
are similar and the redox peaks remain consistent, revealing good reversibility of the
Zn0.5Mg0.5FeMnO4 anode.

Subsequently, the results of the galvanostatic discharge/charge cycling of the synthe-
sized porous Zn0.5Mg0.5FeMnO4 spinel oxide acquired at a current density of 150 mA g−1

over the potential region of 0.01–3.00 V (vs. Li+/Li) for various cycles (1st, 2nd, 5th,
10th, and 20th) are shown in Figure 9a. In accordance with previous reports, the pro-
file of the potential versus capacity plot of the studied porous Zn0.5Mg0.5FeMnO4 spinel
oxide is similar to those of ZnFe2O4 and MgFe2O4 [73]. It is worth recalling that the
Zn0.5Mg0.5FeMnO4 spinel oxide has a theoretical capacity of 976.3 mAh g−1 as an anode
electrode for LIBs. From Figure 9a, the initial discharge and charge capacities are 1132.9
and 676.4 mA h g−1, respectively. Note that the initial discharge capacity is higher than the
theoretical capacity. This can be explained by the lithium-ion storage through a surface
faradic redox reaction (pseudocapacitive). The irreversible capacity loss between discharge
and charge of the first cycle is normally due to the formation of SEI film [74,75]. The studied



Molecules 2023, 28, 7010 9 of 18

spinel displays an extended voltage plateau at about 0.5 V followed by a gradual slope
for the first discharge. The potential plateau is probably due to the conversion from the
reduction of Zn2+, Fe3+, and Mn3+ transition metals to metallic states of Zn, Fe, and Mn,
respectively [76,77]. During discharge/charge cycling, the discharge and charge capacities
gradually decrease with increasing cycle numbers, which is probably attributed to the ag-
gregation and pulverization of Zn0.5Mg0.5FeMnO4 nanoparticles, leading to poor electrical
contacts between Zn0.5Mg0.5FeMnO4 nanoparticles and that between the active material
and current collector [40]. The cycling performance of the Zn0.5Mg0.5FeMnO4 anode at
the current density of 150 mA g−1 during 80 cycles is displayed in Figure 9b. It is clearly
seen that the Zn0.5Mg0.5FeMnO4 anode shows good cycling stability in its capacity during
the initial 40 cycles, with a specific capacity of 484.1 mAh g−1 after 40 cycles followed by
a gradual decrease in the range of 40–80 cycles. Moreover, the Zn0.5Mg0.5FeMnO4 anode
exhibits a specific capacity close to 300.0 mAh g−1 after 80 cycles at an applied current
density of 150 mA g−1. For the first cycle, the anode gives a Coulombic efficiency of 60.2%,
which is owing to the abovementioned capacity loss in the first cycle. From the second cycle,
the anode provides a stable value of Coulombic efficiency, which is more than 98% during
80 cycles. In order to compare the obtained performance with the literature, Table 2 com-
pares the results of the electrochemical performance of the elaborated Zn0.5Mg0.5FeMnO4
spinel oxide with previously studied anodes.
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Figure 9. Electrochemical analyses of the synthesized porous Zn0.5Mg0.5FeMnO4 spinel oxide:
(a) selected galvanostatic discharge/charge curves measured over the 0.01–3.00 V voltage range (vs.
Li+/Li) at an applied current density of 0.15 A g−1 for various cycles (1st, 2nd, 5th, 10th, and 20th)
and (b) cycling stability in its specific capacity and Coulombic efficiency during 80 cycles.

As presented in Figure 10, the rate performance of the studied Zn0.5Mg0.5FeMnO4
anode is examined by increasing the scan rates from 150 to 400 mA g−1 and then back
to 150 mA g−1. For the first current density (150 mA g−1), the Zn0.5Mg0.5FeMnO4 anode
reaches a specific capacity of 569.1 mAh g−1 after 10 cycles. When gradually increas-
ing the current density, the specific capacity of the Zn0.5Mg0.5FeMnO4 anode gradually
decreases and reaches a specific capacity of 533.2 mAh g−1 after 20 cycles at a current
density of 200 mA g−1, and a specific capacity of 474.6 mAh g−1 after 30 cycles at a current
density of 300 mA g−1, with good cycling stability. For the subsequent 10 cycles, the
Zn0.5Mg0.5FeMnO4 anode exhibits a specific capacity of 365.3 mAh g−1 after 40 cycles at a
current density of 400 mA g−1. When the current density is switched back to 150 mA g−1,
the specific capacity of the studied anode increased rapidly to reach 481.8 mAh g−1. In the
range of 40–80 cycles, the Zn0.5Mg0.5FeMnO4 anode was found to show a gradual decrease
during discharge/charge cycling and reached a specific capacity close to 300.0 mAh g−1

after 80 cycles at an applied current density of 150 mA g−1.
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Table 2. The results of the electrochemical performance of the elaborated Zn0.5Mg0.5FeMnO4 spinel
oxide compared with previously studied anodes.

Anode Applied Current Density
(mA g−1) Cycle Number Specific Capacity

(mAh g−1) Ref.

Graphite 76 50 265 [78]
MgFe2O4 nanoparticles 90 50 474 [40]
MnFe2O4 mesoporous
microspheres 744 50 552 [41]

ZnFe2O4 porous
nanospheres 200 80 869 [45]

ZnMn2O4 microsheets 90 40 337 [49]
MgMn2O4 nanoparticles 50 100 484 [50]
Porous Zn0.5Mg0.5FeMnO4 150 80 300 This work
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Figure 10. Rate performance analysis of the synthesized porous Zn0.5Mg0.5FeMnO4 spinel oxide
measured over the 0.01–3.00 V voltage range (vs. Li+/Li) with step-wise increasing current rates of
0.15, 0.2, 0.3, and 0.4 A g−1.

For further deep analysis of the kinetics of electrochemical lithiation/delithiation
processes, the CV curves of the studied Zn0.5Mg0.5FeMnO4 anode were acquired at various
scan rates ranging from 0.05 to 0.40 mV s−1, as shown in Figure 11a. The measured peak
current (i) for the cathodic and anodic sweeps at various scan rates (v) was used to analyze
the lithium-ion intercalation kinetics of the studied Zn0.5Mg0.5FeMnO4 anode. For the
cathodic and anodic sweeps, the peak current (i, A) and the scan rates (v, mV s−1) can be
related according to the Dunn relation, as expressed in Equation (6) [79,80]:

i = aνb (6)

Both sides of Equation (6) were taken in the logarithm function, which can be written as

Log(i) = Log(a) + b Log(ν) (7)

In these expressions, a and b are adjustable parameters. In general, three lithium-ion
intercalation kinetics can be distinguished depending on the b-value. In particular, when
the b-value approaches 0.5, the lithium-ion storage mechanism is controlled by the diffusion
process. When the b-value is close to 1, the lithium-ion storage mechanism is through a
surface faradic redox reaction (pseudocapacitive); whereas, when the b-value is between
0.5 and 1, the lithium-ion storage mechanism is a combination of a pseudocapacitive
process and diffusion-controlled insertion [81]. The b-value was determined by plotting



Molecules 2023, 28, 7010 11 of 18

Log(i) against Log(v) for cathodic and anodic peaks, as shown in Figure 11b. The b-value
for the cathodic and anodic sweeps corresponds to the slope of linear fitting of the peak
currents versus scan rates. According to the estimated slopes (Figure 11b), the lithium-ion
storage mechanism of the studied Zn0.5Mg0.5FeMnO4 anode is a combination of diffusion-
controlled intercalation and pseudocapacitance behavior.
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Figure 11. (a) Cyclic voltammetry (CV) curves of the synthesized porous Zn0.5Mg0.5FeMnO4 spinel
oxide at scan rates of 0.05, 0.1, 0.2, 0.3, and 0.4 mV s−1. (b) The determination of the b-value of
the synthesized porous Zn0.5Mg0.5FeMnO4 spinel oxide using the linear fitting of the peak currents
versus scan rates.

For further study of the changes in the structure and morphology of the electrode mate-
rial after cycling, and to reveal the lithium storage mechanism, ex situ XRD and SEM charac-
terizations of the uncycled and cycled electrodes at a current density of 0.15 A g−1 were ex-
plored. Figure 12 shows the ex-XRD (20–80◦) patterns of the synthesized Zn0.5Mg0.5FeMnO4
electrodes in different states: before cycling, discharged, and charged after 80 cycles. From
this figure, the XRD pattern of the synthesized Zn0.5Mg0.5FeMnO4 electrode before cycling
confirms the presence of the spinel phase, Cu foil, and the used CMC as a binder. After
the discharge process, all the diffraction peaks of the Zn0.5Mg0.5FeMnO4 spinel phase
disappear, revealing that the Zn0.5Mg0.5FeMnO4 spinel became an amorphous phase. Sub-
sequently, there is no added peak observed after the charge process, revealing that it still
maintains an amorphous phase under continuous lithiation/delithiation processes, which
was an interesting discovery. Similar results have been obtained in several previous works
that studied transition-metal-based spinels as anodes for LIBs [82,83]. According to C.
Duan et al. [84], the amorphous phase formed after the first discharge is beneficial to buffer
the volume change of the electrode and maintain the stability and integrity of the electrode.
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To demonstrate the microstructural change in the studied electrode after cycling, the
SEM images of the synthesized Zn0.5Mg0.5FeMnO4 electrodes in different states—before
cycling, discharged, and charged after 80 cycles—are displayed in Figure 13. Compared
to the state before cycling, the Zn0.5Mg0.5FeMnO4 electrode shows significant spherical
porosity constructed by 3D interconnected nanoparticles. After 80 cycles, it can be seen that
the porosity of the synthesized Zn0.5Mg0.5FeMnO4 spinel is diminished and the surface
becomes dense, whereas the size of the nanoparticles increased obviously due to the huge
volume change during continuous lithiation/delithiation processes. This confirms the
aggregation of Zn0.5Mg0.5FeMnO4 nanoparticles, which led to a reduction in the specific
surface area. This reduction in the specific surface area can explain the gradual decrease
and poor stability of the specific capacity during discharge/charge processes with cycling.
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3. Materials and Methods
3.1. Materials

Zinc chloride ZnCl2, magnesium nitrate hexahydrate Mg(NO3)2·6H2O, iron nitrate
nonahydrate Fe(NO3)3·9H2O, manganese nitrate tetrahydrate Mn(NO3)2·4H2O, and citric
acid monohydrate C6H8O7·H2O of analytical grade were purchased from Sigma Aldrich.
All purchased reagents were directly used as received without further purification.
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3.2. Synthesis of the Porous Zn0.5Mg0.5FeMnO4 Spinel

The porous Zn0.5Mg0.5FeMnO4 spinel oxide was synthesized using a facile sol–gel
method. Initially, specific molar ratios of ZnCl2, Mg(NO3)2·6H2O, Fe(NO3)3·9H2O, and
Mn(NO3)2·4H2O were dissolved together in deionized water under vigorous magnetic
stirring for 30 min to obtain a homogeneous solution. To this homogeneous solution, citric
acid (CA) dissociated in deionized water was added at a molar ratio of CA/cations = 2.5.
Then, the solution was kept on the hot plate at 90 ◦C until a viscous gel formed followed by
cooling slowly down to room temperature. Subsequently, the resulting gel was dried in an
oven at 120 ◦C for 12 h to obtain the xerogel powder. Finally, the as-synthesized powder
was annealed in the furnace at 700 ◦C for 12 h at a heating rate of 3 ◦C min−1 in air to obtain
the porous Zn0.5Mg0.5FeMnO4 spinel oxide. During this synthesis, the Zn0.5Mg0.5FeMnO4
spinel oxide was formed from the reagents according to the following chemical reaction:

0.5 ZnCl2 + 0.5 Mg(NO3)2·6H2O + Fe(NO3)3·9H2O + Mn(NO3)2·4H2O→
Zn0.5Mg0.5FeMnO4 + 0.5 Cl2↑ + 6 NO2

↑ + 16 H2O↑

3.3. Characterization Techniques

For the structural analysis and the phase identification, the synthesized porous
Zn0.5Mg0.5FeMnO4 spinel was firstly characterized by powder X-ray diffraction (XRD,
Bruker D8 Advance) with Cu-Kα (λ1 = 1.54056 Å and λ2 = 1.54439 Å) radiations. The XRD
analysis was carried out at room temperature over a 2 theta range from 10◦ to 80◦ at a
scan rate of 0.02◦/s. The structural refinement of the prepared sample was carried out by
the Rietveld method using Full-prof software (version 7.95) [85]. Thermal stability of the
synthesized xerogel and calcined sample was investigated by thermogravimetric analysis
(TGA) performed on a Discovery TGA analyzer in the temperature range of 20–700 ◦C at a
heating rate of 10 ◦C min−1 under a constant air purging flow. The surface morphology and
surface elemental composition of the prepared powder spinel were evaluated by employing
a scanning electron microscope interconnected with an energy-dispersive X-ray spectrom-
eter (SEM/EDX, Zeiss Evo 10). For further deep analysis of the surface morphology, a
high-resolution scanning electron microscopy (HR-SEM) image was obtained on a JEOL
JSM-IT500HR instrument. To obtain the Brunauer–Emmett–Teller (BET) specific surface
area of the synthesized porous spinel, the nitrogen adsorption–desorption isotherm was
collected at a liquid nitrogen temperature of 77 K using a Micromeritics Instrument.

3.4. Electrochemical Measurements

To make the working electrodes of Zn0.5Mg0.5FeMnO4 spinel, dry powders of the
synthesized spinel (active material), carbon black, and carboxymethyl cellulose (CMC)
binder were mixed at a weight ratio of 80:10:10, respectively. To form a homogeneous slurry,
the mixture was dispersed in ultrapure water and mixed for 2 h under vigorous magnetic
stirring. Subsequently, the above slurry mixture was cast on a copper foil current collector
with a thickness of 0.1 mm and a mass loading of 1~1.2 mg cm−2 using the doctor-blade
technique. The loaded copper foil was dried at 60 ◦C under vacuum for 4 h to eliminate
the water used as a solvent and then cut into disks of 11 mm in diameter. The produced
electrodes were dried at 80 ◦C under vacuum for 12 h. All the electrochemical measure-
ments of Zn0.5Mg0.5FeMnO4 spinel as anode material for LIBs were performed at room
temperature using CR2032 coin cells in a half-cell configuration. Zn0.5Mg0.5FeMnO4//Li
coin cells were assembled in an Ar (99.999%)-filled glove box (Jacomex, France, H2O and
O2 contents≤ 1.0 ppm) with high-purity metallic lithium disks as the counter and reference
electrodes, Whatman as a separator, and a solution of LiPF6 (2 mol L−1) dissolved in EMC
as the electrolyte. Their electrochemical performance was examined using a BioLogic
Science multi-channel battery cycler for testing cyclic voltammetry (CV), galvanostatic
discharge/charge, long-term cycling, and rate capability over the 0.01–3.00 V voltage
range (vs. Li+/Li). The cyclic voltammetry (CV) data were measured at various scan
rates: 0.05, 0.10, 0.20, 0.30, and 0.40 mV s−1. The galvanostatic discharge/charge and
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long-term cycling of the studied spinel were performed at a current density of 150 mA g−1.
Moreover, the rate capability analysis was realized at different current densities of 150,
200, 300, and 400 mA g−1. The assembled coin cells were set still for 7 h before testing. In
this work, the discharging and charging are considered as the lithiation and delithiation
processes, respectively.

4. Conclusions

In this work, the electrochemical performance of a porous Zn0.5Mg0.5FeMnO4 spinel
oxide elaborated by a facile sol–gel route as anode material for LIBs was investigated in
detail. As demonstrated by the XRD, Rietveld method, SEM, and EDX results, the prod-
uct has a high-purity phase with the desired chemical composition. From the structural
analysis, the formation of a single AB2O4-type spinel phase of the synthesized sample was
confirmed. Rietveld refinement evidenced the cubic spinel with Fd3m symmetry. Under
flowing air, the synthesized porous Zn0.5Mg0.5FeMnO4 spinel oxide showed a good thermal
stability as the temperature increased to 700 ◦C. The SEM image confirmed the successful
formation of porous morphology with pore sizes ranging from 2 to 5 µm. From the HR-SEM
image, the 3D interconnection of the nanosized spherical particles led to a porous mor-
phology. According to the BET method, the specific surface area of the synthesized porous
Zn0.5Mg0.5FeMnO4 spinel oxide was found to be 13.54 m2 g−1. For the electrochemical
performance, the Zn0.5Mg0.5FeMnO4 anode showed good cycling stability in its capacity
during the initial 40 cycles, with a retention capacity of 484.1 mAh g−1 after 40 cycles at a
current density of 150 mA g−1, followed by a gradual decrease in the range of 40–80 cycles,
which led to reaching a specific capacity close to 300.0 mAh g−1 after 80 cycles at a current
density of 150 mA g−1. Besides, the electrochemical reactions of the lithiation/delithiation
processes were extracted from the CV curves. For the lithium-ion storage mechanism, a
combination of diffusion-controlled intercalation and pseudocapacitance behavior was
found. In general, this work is a way forward to develop inexpensive, highly efficient, and
eco-friendly transition-metal oxide as a promising anode material for LIBs.
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