Coffee Pulp Gasification for Syngas Obtention and Methane Production Simulation Using Ni Catalysts Supported on Al2O3 and ZrO2 in a Packed Bed Reactor
Abstract
:1. Introduction
2. State of the Art
2.1. Syngas from Biomass as a Raw Material for the Methanation Catalytic Process
2.2. Catalytic Methane Production
2.3. Ni/ZrO2 Catalyst
2.4. Commercial Ni/Al2O3 Catalyst
3. Results and Discussion
3.1. Biomass Chemical Composition
3.2. Syngas Description
3.3. Catalytic Simulation of Methanation
4. Materials and Methods
4.1. Elemental Analysis
4.2. Gasification Experimental System
4.3. Mathematical Model for the Methanation Catalytic Packed Bed Reactor Simulation
- Negligible radial diffusion: concentration and temperature profiles were assumed to be constants, which led to a one-dimensional model.
- Constant radial speed.
- Temperature and pressure profiles in the catalyst were assumed to be constants (homogeneous catalytic particles).
- As in [13], the mechanisms related to catalyst deactivation, such as sulfur poisoning or carbon formation via the Boudouard reaction, were not taken into consideration or disregarded in the present study.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Champon, I.; Bengaouer, A.; Chaise, A.; Thomas, S.; Roger, A.-C. Carbon dioxide methanation kinetic model on a commercial Ni/Al2O3 catalyst. J. CO2 Util. 2019, 34, 256–265. [Google Scholar] [CrossRef]
- Scharl, V.; Fischer, F.; Herrmann, S.; Fendt, S.; Spliethoff, H. Applying Reaction Kinetics to Pseudohomogeneous Methanation Modeling in Fixed-Bed Reactors. Chem. Eng. Technol. 2020, 43, 1224–1233. [Google Scholar] [CrossRef]
- Brooks, K.P.; Hu, J.; Zhu, H.; Kee, R.J. Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors. Chem. Eng. Sci. 2007, 62, 1161–1170. [Google Scholar] [CrossRef]
- Shen, L.; Xu, J.; Zhu, M.; Han, Y.-F. Essential role of the support for nickel-based CO2 methanation catalysts. ACS Catal. 2020, 10, 14581–14591. [Google Scholar] [CrossRef]
- Romero-Sáez, M.; Dongil, A.; Benito, N.; Espinoza-González, R.; Escalona, N.; Gracia, F. CO2 methanation over nickel-ZrO2 catalyst supported on carbon nanotubes: A comparison between two impregnation strategies. Appl. Catal. B Environ. 2018, 237, 817–825. [Google Scholar] [CrossRef]
- Marchi, M.; Neri, E.; Pulselli, F.M.; Bastianoni, S. CO2 recovery from wine production: Possible implications on the carbon balance at territorial level. J. CO2 Util. 2018, 28, 137–144. [Google Scholar] [CrossRef]
- Clark, J.H. Green chemistry for the second generation biorefinery—Sustainable chemica manufacturing based on biomass. J. Chem. Technol. Biotechnol. 2007, 82, 603–609. [Google Scholar] [CrossRef]
- Aristizabal, C.; Alvarado, P.; Vargas, A. Biorefinery concept applied to phytochemical extraction and bio-syngas production using agro-industrial waste biomass: A review. Ing. Investig. 2020, 40, 22–36. [Google Scholar] [CrossRef]
- Esquivel, P.; Jiménez, V.M. Functional properties of coffee and coffee by-products. Food Res. Int. 2012, 46, 488–495. [Google Scholar] [CrossRef]
- Murthy, P.S.; Naidu, M.M. Sustainable management of coffee industry by-products and value addition—A review. Resour. Conserv. Recycl. 2012, 66, 45–58. [Google Scholar] [CrossRef]
- Aristizabal-Alzate, C.E.; Vargas-Ramírez, A.F.; Alvarado-Torres, P.N. Simulation of methanol production from residual biomasses in a Cu/ZnO/Al2O3 packed bed reactor. Rev. Fac. Ing. 2022, 115–124. [Google Scholar] [CrossRef]
- Ussa, P.A.; Ocampo, F.; Kobl, K.; Louis, B.; Thibault-Starzyka, F.; Daturi, M.; Bazin, P.; Thomas, S.; Roger, A.C. Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy. Catal. Today 2013, 215, 201–207. [Google Scholar] [CrossRef]
- Rönsch, S.; Köchermann, J.; Schneider, J.; Matthischke, S. Global Reaction Kinetics of CO and CO2 Methanation for Dynamic Process Modeling. Chem. Eng. Technol. 2016, 39, 208–218. [Google Scholar] [CrossRef]
- Ridzuan, N.D.M.; Shaharun, M.S.; Anawar, M.A.; Ud-Din, I. Ni-Based Catalyst for Carbon Dioxide Methanation: A Review. Catalysts 2022, 12, 469. [Google Scholar] [CrossRef]
- Tongnan, V.; Ait-Lahcen, Y.; Wongsartsai, C.; Khajonvittayakul, C.; Siri-Nguan, N.; Laosiripojana, N.; Hartley, U.W. Process intensification of methane production via catalytic hydrogenation in the presence of ni-ceo2/cr2o3 using a micro-channel reactor. Catalysts 2021, 11, 1224. [Google Scholar] [CrossRef]
- Jia, X.; Zhang, X.; Rui, N.; Hu, X.; Liu, C.-J. Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity. Appl. Catal. B Environ. 2018, 244, 159–169. [Google Scholar] [CrossRef]
- Molino, A.; Chianese, S.; Musmarra, D. Biomass gasification technology: The state of the art overview. J. Energy Chem. 2016, 25, 10–25. [Google Scholar] [CrossRef]
- Ahmad, A.A.; Zawawi, N.A.; Kasim, F.H.; Inayat, A.; Khasri, A. Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation. Renew. Sustain. Energy Rev. 2016, 53, 1333–1347. [Google Scholar] [CrossRef]
- Bridgwater, A. The technical and economic feasibility of biomass gasification for power generation. Fuel 1995, 74, 631–653. [Google Scholar] [CrossRef]
- Heidenreich, S.; Foscolo, P.U. New concepts in biomass gasification. Prog. Energy Combust. Sci. 2015, 46, 72–95. [Google Scholar] [CrossRef]
- Beohar, H.; Gupta, B.; Sethi, V.K.; Pandey, M. Parametric Study of Fixed Bed Biomass Gasifier: A review. Int. J. Therm. Technol. 2012, 2, 134–140. [Google Scholar]
- Santos, S.M.; Assis, A.C.; Gomes, L.; Nobre, C.; Brito, P. Waste Gasification Technologies: A Brief Overview. Waste 2022, 1, 140–165. [Google Scholar] [CrossRef]
- La Villetta, M.; Costa, M.; Massarotti, N. Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method. Renew. Sustain. Energy Rev. 2017, 74, 71–88. [Google Scholar] [CrossRef]
- Couto, N.; Rouboa, A.; Silva, V.; Monteiro, E.; Bouziane, K. Influence of the biomass gasification processes on the final composition of syngas. Energy Procedia 2013, 36, 596–606. [Google Scholar] [CrossRef]
- da Silva, J.C.G.; Alves, J.L.F.; Mumbach, G.D.; Andersen, S.L.F.; Moreira, R.d.F.P.M.; Jose, H.J. Hydrogen-rich syngas production from steam gasification of Brazilian agroindustrial wastes in fixed bed reactor: Kinetics, energy, and gas composition. Biomass-Convers. Biorefin. 2023. [Google Scholar] [CrossRef]
- Sansaniwal, S.; Pal, K.; Rosen, M.; Tyagi, S. Recent advances in the development of biomass gasification technology: A comprehensive review. Renew. Sustain. Energy Rev. 2017, 72, 363–384. [Google Scholar] [CrossRef]
- Lin, J.; Ma, C.; Wang, Q.; Xu, Y.; Ma, G.; Wang, J.; Wang, H.; Dong, C.; Zhang, C.; Ding, M. Enhanced low-temperature performance of CO2 methanation over mesoporous Ni/Al2O3-ZrO2 catalysts. Appl. Catal. B Environ. 2019, 243, 262–272. [Google Scholar] [CrossRef]
- Cai, M.; Wen, J.; Chu, W.; Cheng, X.; Li, Z. Methanation of carbon dioxide on Ni/ZrO2-Al2O3 catalysts: Effects of ZrO2 promoter and preparation method of novel ZrO2-Al2O3 carrier. J. Nat. Gas Chem. 2011, 20, 318–324. [Google Scholar] [CrossRef]
- Grimalt-Alemany, A.; Skiadas, I.V.; Gavala, H.N. Syngas biomethanation: State-of-the-art review and perspectives. Biofuels Bioprod. Biorefin. 2018, 12, 139–158. [Google Scholar] [CrossRef]
- Knözinger, H.; Kochloefl, K. Heterogeneous Catalysis and Solid Catalysts. Ullmann’s Encycl. Ind. Chem. 2003. [Google Scholar] [CrossRef]
- Acar, M.C.; Böke, Y.E. Simulation of biomass gasification in a BFBG using chemical equilibrium model and restricted chemical equilibrium method. Biomass-Bioenergy 2019, 125, 131–138. [Google Scholar] [CrossRef]
- Huang, H.-J.; Yuan, X.-Z.; Zhu, H.-N.; Li, H.; Liu, Y.; Wang, X.-L.; Zeng, G.-M. Comparative studies of thermochemical liquefaction characteristics of microalgae, lignocellulosic biomass and sewage sludge. Energy 2013, 56, 52–60. [Google Scholar] [CrossRef]
- Fogler, H.S. Elementos de Ingeniería de las Reacciones Químicas; Pearson Educación: London, UK, 2001. [Google Scholar]
- Levenspiel, O. Ingenieria de las reacciones químicas. J. Chem. Inf. Model. 2002, 53, 277–293. [Google Scholar] [CrossRef]
Catalyst | Ea (kJ mol−1) | α | β | A (L g−1 h−1) |
---|---|---|---|---|
Ni/ZrO2-P | 93.61 | 0.65 | 0.29 | 2.48 × 1010 |
Ni/ZrO2-C | 93.12 | 0.44 | 0.54 | 6.93 × 109 |
Parameter | KCO | KH2O | KCO2 | KH2 |
---|---|---|---|---|
Q (KJ/mol) | 40.6 | 14.5 | 9.72 | 52.0 |
Ko (bar−1) | 2.39 × 10−3 | 6.09 × 10−1 | 1.07 | 5.2 × 10−5 |
Parameter | kCO2,meth | kRWGS | kCO,meth |
---|---|---|---|
Ea (KJ/mol) | 110 | 97.1 | 97.3 |
ko (mol/min·g) | 1.14 × 108 | 1.78 × 106 | 2.23 × 108 |
N | C | H | O | S |
---|---|---|---|---|
2.53% | 44.07% | 5.93% | 47.47% | 0.00% |
Steam/Biomass (S/B) Ratio | S/B 0.5 | S/B 1.0 | ||
---|---|---|---|---|
Temperature (°C) | 700 | 800 | 700 | 800 |
Hydrogen (%) | 48.46 | 46.51 | 54.41 | 50.19 |
Methane (%) | 0.27 | 0.23 | 0.25 | 0.09 |
Carbon monoxide (%) | 24.21 | 44.06 | 18.87 | 37.81 |
Carbon dioxide (%) | 25.05 | 7.68 | 24.81 | 11.39 |
Ethane (%) | 0.14 | 0.02 | 0.07 | 0.03 |
Ethylene (%) | 1.03 | 0.80 | 0.59 | 0.09 |
Propane (%) | 0.74 | 0.39 | 0.82 | 0.37 |
H2S (%) | 0.1 | 0.31 | 0.18 | 0.03 |
H2/CO2 ratio | 1.93 | 6.06 | 2.19 | 4.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aristizábal-Alzate, C.E.; Dongil, A.B.; Romero-Sáez, M. Coffee Pulp Gasification for Syngas Obtention and Methane Production Simulation Using Ni Catalysts Supported on Al2O3 and ZrO2 in a Packed Bed Reactor. Molecules 2023, 28, 7026. https://doi.org/10.3390/molecules28207026
Aristizábal-Alzate CE, Dongil AB, Romero-Sáez M. Coffee Pulp Gasification for Syngas Obtention and Methane Production Simulation Using Ni Catalysts Supported on Al2O3 and ZrO2 in a Packed Bed Reactor. Molecules. 2023; 28(20):7026. https://doi.org/10.3390/molecules28207026
Chicago/Turabian StyleAristizábal-Alzate, Carlos Esteban, Ana Belén Dongil, and Manuel Romero-Sáez. 2023. "Coffee Pulp Gasification for Syngas Obtention and Methane Production Simulation Using Ni Catalysts Supported on Al2O3 and ZrO2 in a Packed Bed Reactor" Molecules 28, no. 20: 7026. https://doi.org/10.3390/molecules28207026
APA StyleAristizábal-Alzate, C. E., Dongil, A. B., & Romero-Sáez, M. (2023). Coffee Pulp Gasification for Syngas Obtention and Methane Production Simulation Using Ni Catalysts Supported on Al2O3 and ZrO2 in a Packed Bed Reactor. Molecules, 28(20), 7026. https://doi.org/10.3390/molecules28207026