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Abstract: Developing a variety of safe and effective functioning wound dressings is a never-ending
objective. Due to their exceptional antibacterial activity, biocompatibility, biodegradability, and
healing-promoting properties, functionalized chitosan nanocomposites have attracted considerable
attention in wound dressing applications. Herein, a novel bio-nanocomposite membrane with a
variety of bio-characteristics was created through the incorporation of zinc oxide nanoparticles
(ZnONPs) into amine-functionalized chitosan membrane (Am-CS). The developed ZnO@Am-CS
bio-nanocomposite membrane was characterized by various analysis tools. Compared to pristine Am-
CS, the developed ZnO@Am-CS membrane revealed higher water uptake and adequate mechanical
properties. Moreover, increasing the ZnONP content from 0.025 to 0.1% had a positive impact on
antibacterial activity against Gram-positive and Gram-negative bacteria. A maximum inhibition of
89.4% was recorded against Escherichia coli, with a maximum inhibition zone of 38 ± 0.17 mm, and
was achieved by the ZnO (0.1%)@Am-CS membrane compared to 72.5% and 28 ± 0.23 mm achieved
by the native Am-CS membrane. Furthermore, the bio-nanocomposite membrane demonstrated
acceptable antioxidant activity, with a maximum radical scavenging value of 46%. In addition, the
bio-nanocomposite membrane showed better biocompatibility and reliable biodegradability, while
the cytotoxicity assessment emphasized its safety towards normal cells, with the cell viability reaching
95.7%, suggesting its potential use for advanced wound dressing applications.

Keywords: aminated chitosan; ZnO nanoparticles; antibacterial activity; antioxidant activity;
biodegradable membrane

1. Introduction

Modern wound dressings have recently been used instead of traditional dressings
because they provide a moist environment for the wound area and accelerate the relocation
of epithelial cells to replace the dead cells and rebuild the damaged tissue [1,2]. The most
important advantages of modern wound dressings are their simplicity of application, ease
of sterilization, inhibition of bacterial attack, reduction of wound inflammation, biodegrad-
ability, and acceptable mechanical properties [3]. Lately, natural biopolymers have been
expansively employed in countless biomedical applications owing to their outstanding
properties comprising their availability in nature, eco-friendliness, biodegradability, non-
toxicity, and beneficial biological characteristics [4,5]. Among them, chitosan (CS) is the
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deacetylated form of chitin biopolymer, and it comprises randomly positioned glucosamine
and N-acetyl glucosamine units linked by β-(1–4) glycosidic bonds [6,7]. Owing to its
intriguing biological properties, CS has been broadly engaged in various medical and
pharmaceutical fields, including wound healing, tissue engineering, drug and gene deliv-
ery [8–11]. CS can stimulate the growth of fibroblasts, halt bleeding, and motivate the mi-
gration of both mononuclear and poly-morphonuclear cells, which consequently improves
re-epithelization and skin tissue regeneration [12]. Also, CS possesses adequate antioxidant,
anti-cancer, antifungal, and antimicrobial activities [13]. Although CS showed potential
activity against a wide-range of microorganisms, this activity has become repressed due
to the constant mutations of microorganisms to repel the action of antibiotics [14]. Thus,
plentiful physical and chemical modification techniques have been performed on pris-
tine CS to overcome this limitation, such as crosslinking, Schiff base formation, grafting,
quaternization, carboxy methylation, and composite formation [8,15–18].

ZnONPs are a promising and versatile inorganic material extensively applied in
biomedical applications owing to their unique characteristics, such as cost-effectiveness,
ease of fabrication, high thermal stability, large surface area, high catalytic activity, and
non-toxicity [19,20]. ZnONPs demonstrate auspicious inhibition activity against both
Gram-positive and Gram-negative bacteria. However, the mechanism of this activity is
still scarcely known. Prior reports proposed that this activity involves its accumulation
in the outer membrane of bacterial cells, resulting in the cell membrane breakdown [21].
Additionally, ZnONPs can interact with the bacterial core and enter the cell, offering distinct
bactericidal mechanisms [22,23]. In addition, it also establishes respectable antioxidant
activity since they can induce extra ROS generation, such as superoxide anions, OH-radicals,
and H2O2 production [24].

Several studies have recently investigated the impact of the combination of CS and
ZnONPs on their antimicrobial and antifungal activities [25,26]. Likewise, electrospun
ZnO-loaded chitosan/PCL bilayer membranes have been designed for accelerated wound
healing [27]. However, the combination of amine-functionalized chitosan derivative (Am-
CS) and ZnONPs for antibacterial and antioxidant wound dressing applications has not
yet been studied. An attempt was made in this investigation to create ZnO@Am-CS bio-
nanocomposite membranes with multiple predicted bio-characteristics, allowing their
unique properties to be combined. To further enhance the antibacterial and antioxidant
properties of the original CS biopolymer, the Am-CS derivative was initially synthesized
with extra amine groups in addition to its primary active amine group. It is anticipated that
adding ZnONPs to the Am-CS membrane will give bio-nanocomposite membranes im-
proved mechanical and roughness properties in addition to the multiple bio-characteristics.
The developed ZnO@Am-CS membranes were thoroughly characterized by their chemical
structure, morphology, and elemental composition using various characterization tools. Ad-
ditionally, the impact of the ZnONP ratio on the antibacterial activity of bio-nanocomposite
membranes was studied against both Gram-positive and Gram-negative bacteria, while the
antioxidant activity was also examined. Furthermore, their in vitro properties, including
their hemocompatibility, biodegradability, and cytotoxicity, were also evaluated.

2. Results and Discussion
2.1. FT-IR Analysis

Figure 1 displays the IR spectra of pristine Am-CS and ZnO@Am-CS bio-nanocomposite
membranes. The observed absorption band at 3280 cm−1 in the case of Am-CS signifies
the stretching vibration of the -NH2 and -OH groups [28,29]. This band was shifted af-
ter the formation of the ZnO@Am-CS bio-nanocomposite to a higher wavenumber of
3357 cm−1. Also, the stretching vibration bands at 2919 and 2973 cm−1 are associated with
the C-H aliphatic [30]. Moreover, the absorption bands at 1618 and 1583 cm−1 are related to
C=O stretching of the secondary amide [8]. The detected bands at 1363 and 1376.14 cm−1

correspond to -C=N- stretching and C-H symmetric bending of the CH2 group on the
polysaccharide skeleton. Further, the skeletal vibrations at 892 and 1023 cm−1 correspond
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to the C-C, C-O, and C-O-C glycosidic bonds [10]. Notably, the observed absorption peaks
at approximately 498–600 cm−1 in the case of ZnO@Am-CS bio-nanocomposite are as-
signed to ZnO vibrations [31], which confirm the successful impregnation of ZnONPs in
the Am-CS membrane matrix.
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2.2. Morphological and EDX Analysis

SEM analysis was used to detect the morphological variations induced by the in-
tegration of ZnONPs into the membrane matrix of the Am-CS. The SEM image of the
native Am-CS membrane (Figure 2a) displayed a relatively coarse and heterogeneous
surface [8]. The developed ZnO@Am-CS bio-nanocomposite membranes (Figure 2b–d)
showed a rougher surface containing small particles, probably due to the distributed
ZnONPs along the Am-CS matrix. In addition, increasing the ZnONP ratio from 0.025% to
0.1% significantly increased the surface roughness, which could be attributed to the polarity
difference between them. Likewise, the generated interactions between the Am-CS and
the ZnONPs affected the surface morphology of the final bio-nanocomposite membranes.
Additionally, TEM analysis (Figure 2e) was performed to gain more details regarding the
crystallographic and morphological properties of ZnONPs with high spatial resolution. The
ZnONPs displayed a lattice structure with clustered spheroids, which existed in aggregated
forms with a slight variation in thickness. This could be ascribed to the high electron
density of the ZNPs and the extensive hydrogen bonding between the NPs [32–35].
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Figure 2. SEM images of (a) pure Am-CS membrane, (b) ZnO (0.025%) @Am-CS, (c) ZnO (0.05%)
@Am-CS, and (d) ZnO (0.1%) @Am-CS bio-nanocomposite membranes. (e) TEM image of ZnONPs
at 0.5 µm.

Additionally, energy dispersive X-ray (EDX) analysis was performed to investigate
the elemental composition of the developed membranes, as shown in Figure 3. The results
verify that the pure Am-CS membrane (Figure 3a) was composed of C, N, and O with
atomic percentages of 49.22, 10.01, and 40.77%, respectively. The incorporation of ZnONPs
in the membrane matrix was verified by the existence of a Zn peak in the spectra, while the
atomic percentage of Zn was increased from 0.74 to 2.98% with an increasing ZnONP ratio
from 0.025 to 0.1% in the composite membrane (Figure 3b–d). Similar observations have
been reported by other researchers [36]. These findings infer the successful formation of
ZnO@Am-CS bio-nanocomposite membranes.
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2.3. Mechanical Properties

The mechanical properties of the formulated membranes were also studied, as depicted
in Table 1. The results clarify that by increasing the ZnONP content in the ZnO@Am-CS
bio-nanocomposite membrane matrix, the mechanical properties were improved. An
increase in the tensile strength was perceived with an increasing ZnONP percentage
from 0.025% to 0.1%. Therefore, the maximum force of 147 ± 1.2 N, maximum stress of
64.4 ± 1.3 N/m2, and maximum strain of 17.5 ± 1.5% were recorded in the ZnO (0.1%)
@Am-CS bio-nanocomposite membrane compared to 120.2 ± 1.3 N, 42.1 ± 2.1 N/m2, and
6.3 ± 1.1% for the pure Am-CS membrane (Table 1). The enhancement of all mechanical
parameters with increasing ZnONPs could be due to their presence between the Am-
CS polymer chains since the intermolecular crosslinking effect could be generated [31].
Consequently, the formation of manifold intramolecular and intermolecular hydrogen
bonds between the Am-CS functional groups (NH2 and OH) and the ZnONPs caused a
rise in membrane rigidity.

Table 1. The mechanical parameters of the Am-CS membrane and the ZnO@Am-CS bio-
nanocomposite membrane. All measurements are presented in five replicates (n = 5), and the
data are expressed as the mean standard deviation ± SD.

Membrane Max. Force
(N)

Max. Stress
σmax (N/m2)

Max. Strain
Lmax (%)

Am-CS 120.2 ± 1.3 42.1 ± 2.1 6.3 ± 1.1
ZnO (0.025%) @Am-CS 128.4 ± 1.2 53.4 ± 1.7 10.4 ± 1.3
ZnO (0.05%) @Am-CS 136 ± 1.4 59.2 ± 1.5 15.4 ± 2.1
ZnO (0.1%) @Am-CS 147 ± 1.2 64.4 ± 1.3 17.5 ± 1.5

2.4. Surface Roughness

Figure 4a parades the impact of the ZnONP ratio on the surface roughness of the
formulated ZnO@Am-CS bio-nanocomposite membranes. It is clear that the roughness
meaningfully increased with an increasing presence of ZnONPs in the membrane ma-
trix. Therefore, the native Am-CS recorded a minimal roughness value of 0.77 ± 0.14 µm,
while the surface roughness of bio-nanocomposite membranes recorded maximal val-
ues of 0.83 ± 0.13 µm with 0.025% ZnONPs, 0.88 ± 0.16 µm with 0.05% ZnONPs, and
0.95 ± 0.12 µm with 0.1% ZnONPs. These results agree with those obtained by SEM analy-
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sis. Increasing the surface roughness improved the adhesion ability of the membrane to
the tissue, and as a result, the cell attachment can be enhanced, confirming its use as an
efficient antibacterial wound dresser [37].
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2.5. Water Uptake Profiles

The water uptake property is considered one of the most vital characteristics of wound
dressing membranes since it provides a moist environment for the wound area and sim-
plifies the passage of fibroblasts, keratinocytes, and endothelial cells to the injured area.
Additionally, this property can help in the absorption of surplus wound exudates, boost
the hemostasis property, and hence, accelerate the wound healing process [8,38]. Figure 4b
shows the water uptake profiles of pure Am-CS and its nanocomposite. Hydrophilic OH
and NH2 groups in the membrane matrix facilitate binding with water molecules, result-
ing in a high-water uptake capacity. Interestingly, the ZnO@Am-CS bio-nanocomposite
membranes enhanced water uptake behavior compared to the pure Am-CS. Therefore,
increasing the amount of ZnONPs in the membrane matrix from 0.025 to 0.1% significantly
increased the water uptake value from 160 ± 0.12 to 184 ± 0.17%, while the Am-CS mem-
brane recorded the lowest value of 154 ± 0.15%. It is well known that ZnO is a hygroscopic
material that is morphologically rough, which provides a greater number of adsorption
sites for water molecules [39]. It has been reported that the surface of a ZnO single crystal is
intrinsically hydrophilic [40], and hence, water molecules may adhere onto the ZnO surface
without any chemical reaction, providing more hydrophilicity to the bio-nanocomposite
membranes [34,41].

2.6. Bio-Evaluation Studies
2.6.1. Evaluation of Antibacterial Activity

Bacterial infection delays the process of wound healing, sometimes leading to patient
death. Thus, it is indispensable to develop new effective materials for inhibiting the growth
of pathogenic bacteria. Following the agar well diffusion method, the antibacterial prop-
erties of both pure Am-CS membranes and ZnO@Am-CS bio-nanocomposite membranes
were tested. Images of the inhibition zones are depicted in Figure 5. The results imply
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that all tested membranes showed remarkable antibacterial activity against both types
of bacteria. The inhibition zone in the case of Gram-negative bacteria was found to be
higher than that of Gram-positive bacteria. It was also observed that increasing the ZnONP
percentage in the formulated bio-nanocomposite membranes significantly enhanced the
inhibition process. Therefore, the highest inhibition zone diameter of 38 ± 0.17 mm was
observed against E. coli Gram-negative bacteria and obtained by the ZnO (0.1%) @Am-CS
membrane, compared to 28 ± 0.23 mm, which was attained by the native Am-CS membrane
(Figure 6a). Similar observations have been reported by other authors, since they concluded
that composite chitosan/ZnONPs hydrogel had strong effects on E. coli and S. aureus, with
a higher antimicrobial impact on E. coli [35].
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Figure 5. Images of inhibition zones of (A) S. haemolyticus, (B) K. pneumoniae, (C) P. aeruginosa, and
(D) E. coli for (i) Am-CS, (ii) ZnO (0.025%) @Am-CS, (iii) ZnO (0.05%) @Am-CS, and (iv) ZnO (0.1%)
@Am-CS bio-nanocomposite membranes. All values are presented in five replicates (n = 5), and the
data are expressed as the mean standard deviation ± SD.
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The broth dilution assay showed the same trend, since the bio-nanocomposite mem-
branes developed stronger antibacterial potency than Am-CS, as shown in Figure 6b. These
results clarify that increasing the ZnONP concentration from 0.025 to 0.1% increased the
bacterial inhibition from 54.1 to 61.4% (for S. haemolyticus), from 60.7 to 75.3% (for K. pneu-
moniae), from 73.5 to 83.8% (for P. aeruginosa), and from 81.7 to 89.4% (for E. coli), while
the Am-CS recorded inhibitions of 52.3, 66.5, 65.2, and 72%, respectively. The higher an-
tibacterial activity of the formulated bio-nanocomposite membranes could be attributed to
both the ZnONPs and Am-CS. It has been reported that ZnO unveils substantial antibac-
terial activities in the nanostructure, owing to its high specific surface area. ZnONPs can
contact cell walls directly and destroy bacterial cell integrity [42,43]. By other means, it
can adhere to the surface of bacteria and/or the bacterial core, enter the cell, and exhibit
distinct bactericidal mechanisms [21]. Further mechanisms could occur via the creation
and gathering of reactive oxygen species (ROS) with oxidative potential, by triggering the
destruction of the DNA and bacterial proteins. Additionally, the antibacterial activity may
involve the accumulation of ZnONPs in the bacterial cells’ superficial cell membrane or
cytoplasm and trigger the release of Zn2+ (which acts as antibacterial ions). The discharged
Zn ions can electrostatically interact with the bacterial cell membrane. Consequently, this
can cause bacterial cell membrane breakdown, membrane protein mutilation, and genomic
instability, resulting in the death of bacterial cells. All these mechanisms could cumulatively
contribute to the bacterial cell death phenomenon [44].

The antibacterial potency of chitosan derivative (i.e., Am-CS) can also be explained
by various mechanisms. The most appropriate one for elucidating this activity involves
the electrostatic interactions between the positively charged amino groups of Am-CS
and the negative charges on the surface of the bacterial cell wall of Gram-negative bac-
teria [45,46]. This consequently provokes the escape of intracellular ingredients, such
as amino acids, proteins, and glucose, due to disrupting the bacterial cell membrane.
Moreover, these interactions could potentially block the feeding channels responsible for
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exchanging electrolytes and nutrients, where the inhibition process occurs, followed by the
death of the bacterial cells accordingly [8,47]. This mechanism explains the effectiveness
and the more pronounced antimicrobial potential of ZnO@Am-CS bio-nanocomposite
membranes against Gram-negative bacteria in specific E. coli compared to Gram-positive
bacteria, as the latter possess a membrane with denser layers of peptidoglycan [48] with
crosslinked chains of peptidoglycan, creating stiff cell walls by the action of the bacterial
enzyme DD-transpeptidase. Thus, the inhibition process of Gram-positive bacteria could
be hindered [49].

2.6.2. Evaluation of Antioxidant Activity

The extreme formation of reactive oxygen species (ROS) in the human body through
metabolic processes causes cellular damage to some cells [50]. Therefore, antioxidant
materials act as free radical scavengers, which can decrease the probability of chronic
disease progression if the dosage is properly designed. This assay is based on an indicator
of the capability of antioxidants to scavenge ABTS and produce ABTS•+, which acts as
an agent for hydrogen donation [51]. ABTS is a cationic radical that accepts electrons,
turns to the neutral form, and loses its characteristic bluish-green color. The antioxidant
activity of Am-CS and its bio-nanocomposite was evaluated in the ABTS assay, and the
results are shown in Figure 7. The results indicate that the ZnO@Am-CS bio-nanocomposite
membranes demonstrated higher ABTS•+ radical scavenging activity than the Am-CS
membrane. A significant increase in antioxidant activity was perceived with an increasing
ZnONP concentration from 0.025 to 0.1% in the membrane matrix. The maximal radical
scavenging of 46% was accomplished by the ZnO (0.1%)@Am-CS bio-nanocomposite
sample, compared to 29% for the native Am-CS membrane sample. The increase in the
antioxidant action could be described by the incidence of more electron-donating atoms (i.e.,
nitrogen and oxygen) in the membrane matrix, which boost its ability to scavenge ABTS•+

radicals [52]. In addition, ZnONPs possess antioxidant potency via various mechanisms
comprising free radical scavenging and reducing activities [53–55].
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2.6.3. Evaluation of In Vitro Biodegradability

Figure 8a presents the enzymatic degradation of the pure Am-CS and its bio-nanocomposite
membranes. The results reveal that all examined membrane samples were biodegradable
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in the presence of the lysozyme enzyme. These results could be attributed to the biodegra-
dation nature of the original Am-CS derivative [56]. The formulated bio-nanocomposite
membranes have functional hydrophilic amino and hydroxyl groups, which have an affin-
ity for lysozyme adsorption, while the glycosidic bonds would be hydrolyzed, initiating
the degradation of the membrane constituents [46,52]. However, the biodegradation rate
decreased slightly with the increasing ZnONP content in the membrane matrix. These
observations could be attributed to the stability of ZnONPs and the consumption of some
hydrophilic functional groups of Am-CS throughout the interactions with ZnONPs.
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2.6.4. Evaluation of Hemocompatibility

The most common problem encountered when foreign substances are implanted
into the blood is usually the fast formation of visual thrombus material on the foreign
surface [57]. Hemocompatibility is vital to inspect the blood compatibility of examined bio-
nanocomposite membranes for future biomedical applications. According to the American
Society for Testing and Materials (ASTM) [58], biomaterials have been classified into
non-hemolytic (hemolysis index < 2%), slightly hemolytic (hemolysis index 2–5%), and
hemolytic materials (hemolysis index > 5%). The results imply that all bio-nanocomposite
membranes were non-hemolytic, as shown in Figure 8b. Although the increase in the
ZnONP concentration from 0.025 to 0.1% had a slight consequence on the hemolysis index,
all values were at low and safe levels (i.e., <2%). These outcomes endorse that ZnO@Am-CS
bio-nanocomposite membranes are biocompatible due to the viable biocompatibility nature
of the biopolymer and the ZnONPs. These results agree with our previously reported
studies [8,59].
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2.6.5. Evaluation of Cytotoxicity

The MTT assay has been accepted as a potent metabolic marker to evaluate cell pro-
liferation. As revealed in Figure 9, the cytotoxicity assay was investigated using different
amounts of membrane samples (50, 100, and 200 mg). The results clarify that increas-
ing the sample dose from 50 to 200 mg had no observable effect on the cellular toxicity.
In addition, a very insignificant difference in the cytotoxicity of the ZnO@Am-CS bio-
nanocomposite membranes was detected with increasing the ZnONPs from 0.025 to 0.1% in
the membrane matrix. Approximately 95.7–96.9% of viable cells was perceived by the ZnO
(0.1%) @Am-CS sample at the highest concentration of tested samples (200 mg). According
to the international organization for standardization ISO 10993-5 [60], the materials are
considered non-toxic when their toxicity is less than 25%. Accordingly, the fabricated
bio-nanocomposite membranes were found to be non-toxic and acceptable for biomedical
applications, specifically wound healing.
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3. Materials and Methods
3.1. Materials

Chitin (acetylation degree > 95%), p-benzoquinone (pBQ; purity≥ 94%), 3,5-Dinitrosalicylic
acid (DNS; assay 98%), potassium persulfate (assay 98%), lysozyme enzyme (assay ≥ 95%),
3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide (assay ≥ 97%), and dimethyl
sulfoxide anhydrous (DMSO; assay ≥ 99.9%) were acquired from the Sigma Aldrich Com-
pany (Darmstadt, Germany). Zinc oxide NPs (99.8%, 50 ± 10 nm) were procured from
Aladdin Chemical Co., Ltd. (Shanghai, China). Ethylene diamine (EDA; assay ≥ 94%) was
imported from Oxford Lab Fine Chem. LLP. (Mumbai, India). Acetic acid (purity 99.8%),
sodium hydroxide (purity 98%), and ethanol (98%) were purchased from Loba Chemie
(Maharashtra, India).

3.2. Microorganisms

For the antibacterial activity assay, three Gram-negative bacteria were selected, namely
Escherichia coli (E. coli; ATCC 8739), Klebsiella pneumoniae (K. pneumoniae; ATCC 13883),
and Pseudomonas aeruginosa (P. aeruginosa; ATCC 90274), while Staphylococcus haemolyticus
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(S. haemolyticus; ATCC 29970) was used as a Gram-positive bacteria. The selected bacteria
were refreshed through inoculation in LB broth culture medium (pH7) comprising 1%
peptone, 0.5% yeast extract, and 1% NaCl. All media were incubated for 24 h at 37 ◦C in a
shaking incubator at a constant shaking speed of 150 rpm.

3.3. Preparation of Amine-Functionalized Chitosan (Am-CS)

Amine-functionalized chitosan derivative was prepared according to a previously
reported study [61]. In brief, an accurate amount of chitin (4 g) was dispersed in a solution
of pBQ (6.9 mM, pH 9), and the reaction was conducted at 30 ◦C for 6 h under gentle
stirring to activate the hydroxyl groups of chitin. The activated chitin was separated from
the activation medium and washed numerous times using distilled water to eradicate
the excess pBQ molecules. Next, the amination process was performed by dispersing the
activated chitin into a solution of EDA (6.9 mM), while the reaction mixture was left for
6 h at 60 ◦C under continuous stirring. The resulting product was filtered and washed
using distilled water to eliminate the excess unreacted EDA molecules. Finally, the formed
amine-functionalized chitin was deacetylated by soaking in a solution of 50% NaOH for
6 h at 120 ◦C under constant stirring. The produced AmCS was separated, washed using
distilled water until neutrality, and dried overnight at 50 ◦C.

3.4. Formulation of ZnO@Am-CS Bio-Nanocomposite Membranes

The prepared Am-CS derivative was dissolved at room temperature in acetic acid
(AcOH; 1%) with a final concentration of 2% under gentle stirring until complete solubi-
lization. Next, a proportion of ZnONPs was dispersed in distilled water and added to
the Am-CS solution with a final concentration of 0.025, 0.05, and 0.1% (w/v). An accurate
0.5 mL of glycerol (as a plasticizer) was added, and the mixture was kept under continuous
stirring at room temperature for 2 h. The formed bio-nanocomposite was poured into a
clean Petri dish (7 cm in diameter) and stored at room temperature for 48 h. An aqueous
NaOH (5% w/v) solution was poured onto the viscous membranes for neutralization and
left for approximately 30 s. The wet membranes were gently separated and washed thor-
oughly using distilled water before being fixed onto glass plates supported with clamps.
Finally, the formulated ZnO@Am-CS bio-nanocomposite membranes were dried at room
temperature until they reached constant weights. The pristine Am-CS membrane was
fabricated using the same procedure without adding ZnONPs. A schematic representation
of the formulation process is depicted in Figure 10.

Molecules 2023, 28, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 10. A scheme for the preparation steps of ZnO@Am-CS bio-nanocomposite membrane. 

3.5. Instrumental Characterization 
The chemical structure of the developed bio-nanocomposite membranes was in-

spected in the range of 4000–500 cm−1 using Fourier transform infrared spectroscopy 
(FT-IR, Model 8400 S, Shimadzu, Kyoto, Japan). The FTIR spectra were recorded using 5 
mg of dried sample and KBr discs. The morphological changes were investigated using a 
scanning electron microscope (SEM, Joel IT200; Freising, Germany) and a transmission 
electron microscope (TEM, Joel JEM-100CX, Tokyo, Japan). Prior to SEM analysis, the 
examined membrane sample was spread on a double-sided conducting adhesive tape 
pasted on a metallic stub, and followed by coating with a thin gold film. In addition, en-
ergy dispersive X-ray (EDX; Oxford Instruments, Abingdon, UK) was employed to iden-
tify the elemental composition for the developed membranes. To scrutinize the mechan-
ical properties and surface roughness of the synthesized membranes, a universal testing 
machine (AG-1S, Shimadzu, Kyoto, Japan) and surface roughness tester (SJ-201P, Mi-
tutoyo, Kawasaki City, Japan) were used, respectively. 

3.6. Water Uptake Studies 
Investigation of the water uptake profile was achieved by soaking an accurate 0.1 g 

of the examined membrane sample in distilled water (pH 7) at room temperature until it 
reached equilibrium (6 h). Thereafter, the swollen sample was carefully separated and 
plotted between two filter papers to eradicate the excess of adhered water on the mem-
brane surface, followed by weighing on a closed electronic balance. The water uptake 
percentage (WU%) was calculated according to the following equation [62]. WU (%) = W௦ − WW × 100 (1)

where Ws and Wi signify the swollen and initial weights of the tested samples, respec-
tively. 

3.7. Antibacterial Activity Test 
3.7.1. Agar Well Diffusion Assay 

The agar well diffusion assay was performed using the reported method [63]. In 
brief, 100 µL of designated bacterial suspensions were spread onto LB agar plates. The 
plates were left to dry for 5 min, while wells with a diameter of 5 mm were formed on the 
agar plate surface using a sterile cork borer. Later, the examined membrane samples were 

Figure 10. A scheme for the preparation steps of ZnO@Am-CS bio-nanocomposite membrane.



Molecules 2023, 28, 7034 13 of 18

3.5. Instrumental Characterization

The chemical structure of the developed bio-nanocomposite membranes was inspected
in the range of 4000–500 cm−1 using Fourier transform infrared spectroscopy (FT-IR, Model
8400 S, Shimadzu, Kyoto, Japan). The FTIR spectra were recorded using 5 mg of dried
sample and KBr discs. The morphological changes were investigated using a scanning
electron microscope (SEM, Joel IT200; Freising, Germany) and a transmission electron
microscope (TEM, Joel JEM-100CX, Tokyo, Japan). Prior to SEM analysis, the examined
membrane sample was spread on a double-sided conducting adhesive tape pasted on a
metallic stub, and followed by coating with a thin gold film. In addition, energy dispersive
X-ray (EDX; Oxford Instruments, Abingdon, UK) was employed to identify the elemental
composition for the developed membranes. To scrutinize the mechanical properties and
surface roughness of the synthesized membranes, a universal testing machine (AG-1S,
Shimadzu, Kyoto, Japan) and surface roughness tester (SJ-201P, Mitutoyo, Kawasaki City,
Japan) were used, respectively.

3.6. Water Uptake Studies

Investigation of the water uptake profile was achieved by soaking an accurate 0.1 g
of the examined membrane sample in distilled water (pH 7) at room temperature until
it reached equilibrium (6 h). Thereafter, the swollen sample was carefully separated and
plotted between two filter papers to eradicate the excess of adhered water on the membrane
surface, followed by weighing on a closed electronic balance. The water uptake percentage
(WU%) was calculated according to the following equation [62].

WU (%) =
Ws − Wi

Wi
× 100 (1)

where Ws and Wi signify the swollen and initial weights of the tested samples, respectively.

3.7. Antibacterial Activity Test
3.7.1. Agar Well Diffusion Assay

The agar well diffusion assay was performed using the reported method [63]. In
brief, 100 µL of designated bacterial suspensions were spread onto LB agar plates. The
plates were left to dry for 5 min, while wells with a diameter of 5 mm were formed on the
agar plate surface using a sterile cork borer. Later, the examined membrane samples were
submerged in the wells, and the agar plates were incubated for 24 h at 37 ◦C. To estimate
the antibacterial activity of the membrane samples, the diameters of the inhibition zones
were measured.

3.7.2. Broth Dilution Method

An antibacterial assay was carried out according to the author’s previous studies
using the broth dilution method [8,49]. The previously refreshed bacterial suspensions
were diluted by 100 times in 1% LB medium. Using test tubes, 0.1 mL of the diluted
suspension was cultivated in 10 mL of the peptone medium, followed by adding the
examined membrane sample (10 mg/mL). The bacterial culture without a membrane
sample was used as a control. Thereafter, the tubes were incubated under constant shaking
(150 rpm) for 24 h at 37 ◦C. The inhibition of bacterial growth was analyzed as a function
of the optical density (OD) using visible spectroscopy (Optima SP-300, Tokyo, Japan) at
620 nm according to the following equation:

Bacterial inhibition (%) =
OD1 − OD2

OD1
× 100 (2)

where OD1 and OD2 represent the optical densities of bacterial culture without and with
the presence of the tested membrane samples, respectively.
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3.8. Antioxidant Activity Assay

Following the reported ABTS decolorization assay [48,64], the antioxidant activity of
the developed bio-nanocomposite membranes was estimated. Briefly, the radical cations
of ABTS•+ were made by reacting 17.2 mg of ABTS with 3.3 mg/5 mL of an aqueous
solution of K2S2O8. Next, the produced bluish-green radical cation solution was stored
overnight in the dark below 0 ◦C. Then, 1 mL of the radical solution was diluted with 0.5%
acetic acid solution to obtain a total volume of 60 mL. A definite quantity (100 mg) of the
tested membrane sample was soaked in a glass test tube comprising the diluted ABTS•+

solution (2 mL) and subsequently incubated for 0.5 h in the dark at 25 ◦C. Finally, the
percentage of radical scavenging was assessed at a wavelength of 734 nm using a visible
spectrophotometer according to the following equation:

Radical scavenging (%) =
Aa − Ab

Aa
× 100 (3)

where Aa and Ab are the absorbances of the ABTS solution in the absence and presence of
the examined membrane sample, respectively.

3.9. In Vitro Hemocompatibility Study

The blood compatibility of the synthesized ZnO@Am-CS bio-nanocomposite mem-
branes was studied via estimation of the hemolysis of red blood cells in the incidence of
the tested membrane sample according to the American Society for Testing and Materials
(ASTM) (ASTM F 756-00, 2000) [58]. Using sterile test tubes, a defined amount of membrane
sample was soaked in 7 mL of PBS (pH 7) and incubated for 72 h at 37 ◦C. After that, the
PBS was taken out, and 3 mL of citrate dextrose (ACD) solution (with 1 mL of anticoagulant
and 9 mL of fresh blood) was injected into each tube. The tubes were then incubated at
37 ◦C for 3 h. The tubes were inverted twice each for 0.5 h to preserve contact between the
examined sample and the blood. Later, each tube was centrifuged for 15 min at 2000 rpm.
Using visible spectroscopy, the released hemoglobin during the hemolysis process was
assessed at 540 nm as a function of the optical density (OD). Additionally, positive and
negative controls were performed by adding ACD blood to 7 mL of deionized water and
PBS, respectively. The following equation can express the degree of hemolysis:

Hemolysis (%) =
ODs − ODn

ODp − ODn
× 100 (4)

where ODs denotes the optical density of the supernatant in the presence of the tested
sample, and ODp and ODn are the optical densities of the positive and negative controls,
respectively.

Notably, informed consent was obtained from a volunteer (28 years old) before using
his blood. In addition, all approaches were executed in accordance with the relevant
guidelines and regulations.

3.10. In Vitro Enzymatic Biodegradability Study

The enzymatic biodegradability of the developed ZnO@Am-CS bio-nanocomposite
membranes was evaluated using a dinitrosalicylic acid (DNS) reagent [65]. An exact
quantity of tested membrane samples (100 mg) was immersed in test tubes containing
phosphate buffer (pH 7) and lysozyme enzyme (0.5 mL) solutions. The tubes were placed
for 24 h at 37 ◦C in a shaking water bath at a constant shaking rate of 150 rpm. Then, the
activity of the lysozyme was stopped via the addition of 1.5 mL of DNS reagent, while
the test tube was boiled for 15 min, and finally, left to cool at room temperature. The
color produced by the reaction of the DNS reagent with the liberated reduced sugar from
the membrane sample was assessed using visible spectroscopy by quantifying the optical
density at 570 nm.
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3.11. In Vitro Cytotoxicity Assay

Using fibroblast cell lines (American Type Culture Collection (ATCC, Manassas, VA,
USA)), the MTT [3-(4, 5-dimethythiazol-2-yl)-2,5-diphenyltetrazoliumbromide] assay was
used to measure the toxicity of the ZnO@Am-CS bio-nanocomposite membranes [66,67]. Us-
ing tissue culture plates (96 well), a complete monolayer sheet was settled after incubation
at 37 ◦C for 24 h with 1 × 105 cells/mL (100 uL). The growth medium was poured after ob-
taining a confluent sheet of cells. Next, the cell monolayer was washed twice with washing
medium, while Roswell Park Memorial Institute (RPMI) medium containing serum (2%)
was used as the maintenance medium. The cells (a normal fibroblast cell line) were treated
with specific quantities of sterilized membrane samples (50, 100, and 200 mg). Moreover,
three wells served as controls, while the outstanding wells simply received a maintenance
medium as they were examined with 0.1 mL of each dilution, followed by incubation at
37 ◦C. Likewise, the cells were analyzed for any physical signs of toxicity. Specifically, 20 uL
of a previously prepared MTT solution (5 mg/mL in PBS) was added to each well, followed
by shaking for 5 min. To allow the MTT to be metabolized, the cells were then incubated
at 37 ◦C in a humidified CO2 (5%) incubator for 1–5 h. Lastly, the medium was discarded,
while DMSO (200 µL) was used to re-solubilize the formazan crystals (a metabolic agent of
MTT), followed by shaking (150 rpm) for 5 min to appropriately combine the formazan
and solvent. Using a spectrophotometer, the optical density was assessed at 620 nm, which
was closely correlated with the cell count, as represented by the following equation:

Cell viability (%) =
ODtreated

ODUntreated
× 100 (5)

3.12. Statistical Analysis

All examinations were conducted in five replicates, and the data were statistically
analyzed utilizing one-way analysis of variance (ANOVA) with Tukey’s analysis using
GraphPad Software Inc., Version 8, San Diego, CA, USA. All results are shown as the
mean ± SD and considered significant at p ≤ 0.05.

4. Conclusions

In summary, a new bio-nanocomposite membrane based on ZnONPs and amine-
functionalized chitosan was formulated, with multiple features comprising antibacterial,
antioxidant, biodegradable and biocompatible properties. The impacts of variation in
the ZnONP content on the water uptake profile, roughness, and mechanical properties
were investigated. The antibacterial activity of the ZnO@Am-CS bio-nanocomposite mem-
brane was boosted by increasing the ZnONPs in the membrane matrix towards E. coli
(89.4%, 38 ± 0.17 mm), P. aeruginosa (83.8%, 34 ± 0.42 mm) and K. pneumoniae (75.3%,
31 ± 0.33 mm) as Gram-negative bacteria and S. haemolyticus (61.4%, 25 ± 0.21 mm) as
Gram-positive bacteria. In addition, the ABTS assay proved the competence of the devel-
oped bio-nanocomposite membrane in scavenging radicals, with maximal values reaching
37.2–46.6%. The enzymatic degradation study indicated that all developed membranes
were biodegradable, while they established better hemocompatibility. The in vitro cytotoxi-
city assessment revealed the biosafety of the fabricated bio-nanocomposite membrane with
cell viability in the range of 95.7 ± 2.2–96.9 ± 3.3%, inferring its future practical application
as a potent antibacterial and antioxidant material for hastening the wound healing process.
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