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Abstract: Nucleoside analogs play a crucial role in the production of high-value antitumor and
antimicrobial drugs. Currently, nucleoside analogs are mainly obtained through nucleic acid degra-
dation, chemical synthesis, and biotransformation. However, these methods face several challenges,
such as low concentration of the main product, the presence of complex matrices, and the gener-
ation of numerous by-products that significantly limit the development of new drugs and their
pharmacological studies. Therefore, this work aims to summarize the universal separation methods
of nucleoside analogs, including crystallization, high-performance liquid chromatography (HPLC),
column chromatography, solvent extraction, and adsorption. The review also explores the application
of molecular imprinting techniques (MITs) in enhancing the identification of the separation process.
It compares existing studies reported on adsorbents of molecularly imprinted polymers (MIPs) for
the separation of nucleoside analogs. The development of new methods for selective separation and
purification of nucleosides is vital to improving the efficiency and quality of nucleoside production.
It enables us to obtain nucleoside products that are essential for the development of antitumor
and antiviral drugs. Additionally, these methods possess immense potential in the prevention and
control of serious diseases, offering significant economic, social, and scientific benefits to the fields of
environment, biomedical research, and clinical therapeutics.

Keywords: nucleoside analogs; separation methods; molecular imprinting techniques; selective
separation and purification

1. Introduction

Nucleoside analogs are a class of water-soluble components with a wide range of
physiological activities, which play an essential role in various biological processes. This
class of compounds can be divided into three categories: bases, nucleosides, and nu-
cleotides [1–3]. The bases, including adenine, guanine, cytosine, thymine, and uracil, are
the building blocks of nucleic acids [4–6]. Derivatives can be classified into purines and
pyrimidines, which are important components of nucleotides [7,8]. Nucleotides are com-
pounds composed of a combination of a base and ribose or deoxyribose in a glycosidic
bond. The purine bases include adenine and guanine, while the pyrimidine bases include
cytosine, thymine, and uracil [9–11]. By understanding the properties and functions of
purines and pyrimidines, scientists can gain insights into the fundamental mechanisms of
life. Nucleotides are compounds formed by a phosphodiester bond and the 5-hydroxyl
or 3-hydroxyl group of a nucleoside. Phosphates in nucleotides have three molecular
forms, as shown in Figure 1 [12–14]. Nucleotides are the basic building blocks of ribonu-
cleic acid (RNA) and deoxyribonucleic acid (DNA), which have a variety of significant
biological functions. They are involved in the storage, copying, and transformation of
genetic information in almost all living cells. Furthermore, they play a crucial role in the
functioning of organisms and the inheritance of traits [1,15]. Therefore, nucleotides are
vital raw materials for biochemical drugs and genetic engineering research and are also
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important intermediates for the production of antibacterial, antitumor, antiviral, antifungal,
and immunomodulatory nucleoside analogs [16–20].
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Food and Drug Administration (FDA) in the 1960s for the treatment of acute myeloblastic 
leukemia. In addition to cytarabine, a wide range of nucleoside analogs have been synthe-
sized and tested for their efficacy in clinical cancer treatment [21,22]. Azacitidine and de-
citabine, approved in 2004 and 2006, respectively, were initially developed as demethyl-
ating agents. Meanwhile, besides their demethylating properties, they also exhibited sig-
nificant antiproliferative activity against cancer cells (Figure 1) [23,24]. In addition, a mas-
sive number of nucleoside analogs are under development, for example, the research con-
ducted by Christoph Kollmann’s group, who synthesized 4′/5′-spirocyclopropanated uri-
dine [25] and C4′-methylated uridine [26], studying their pharmacological properties 
against various respiratory viruses. Gertrude B. Elion’s groups [27,28] synthesized antivi-
ral nucleoside analogs that acyclovir based on 6-mercaptopurine. Chris Meier’s groups 
[29] studied the development of anti-HIV-active nucleoside triphosphate prodrugs and
evaluated their activity in antiviral tests. Meanwhile, in recent years, nucleoside analogs
have been widely used as essential components in antibiotics to regulate the physiological
effects of the immune, nervous, metabolic, liver, and cardiovascular systems, thereby im-
proving human health support and preventing diseases [30–33]. Therefore, the develop-
ment and research of nucleoside analogs have great economic, social, and scientific signif-
icance in the fields of biomedicine and human life and health.
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Since the 1940s, there has been ongoing research on the structural and pharmacologi-
cal studies of nucleoside analogs. For instance, cytarabine was first approved by the U.S.
Food and Drug Administration (FDA) in the 1960s for the treatment of acute myeloblastic
leukemia. In addition to cytarabine, a wide range of nucleoside analogs have been syn-
thesized and tested for their efficacy in clinical cancer treatment [21,22]. Azacitidine and
decitabine, approved in 2004 and 2006, respectively, were initially developed as demethy-
lating agents. Meanwhile, besides their demethylating properties, they also exhibited
significant antiproliferative activity against cancer cells (Figure 1) [23,24]. In addition, a
massive number of nucleoside analogs are under development, for example, the research
conducted by Christoph Kollmann’s group, who synthesized 4′/5′-spirocyclopropanated
uridine [25] and C4′-methylated uridine [26], studying their pharmacological properties
against various respiratory viruses. Gertrude B. Elion’s groups [27,28] synthesized antiviral
nucleoside analogs that acyclovir based on 6-mercaptopurine. Chris Meier’s groups [29]
studied the development of anti-HIV-active nucleoside triphosphate prodrugs and evalu-
ated their activity in antiviral tests. Meanwhile, in recent years, nucleoside analogs have
been widely used as essential components in antibiotics to regulate the physiological effects
of the immune, nervous, metabolic, liver, and cardiovascular systems, thereby improving
human health support and preventing diseases [30–33]. Therefore, the development and
research of nucleoside analogs have great economic, social, and scientific significance in
the fields of biomedicine and human life and health.

2. The Sources of Nucleoside Analogs

Nucleoside analogs are widely used in antibiotics, antibacterial, antitumor, antiviral,
antifungal, and immunomodulatory drugs [34–36]. There are three main sources of nucleo-
side analogs, which differ according to their preparation method, including the degradation
of nucleic acid, chemical synthesis, and biotransformation [37–39].

2.1. Degradation of Nucleic Acid

The nucleic acid degradation method is mainly used to extract nucleic acids from vari-
ous sources, including natural products such as Cordyceps sinensis, Ganoderma lucidum,
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rice [40–42], animal organs like liver, spleen, and thymus [43–45], as well as microorganisms
such as yeast, brandy wine molds, and antimicrobial molds [46–48]. Nuclease enzymes
are then employed to degrade ribonucleic acid and generate nucleotides. Furthermore,
since the 1960s, most researchers have been conducting experiments on using nuclease
to degrade RNA and produce mononucleotides. For instance, Patrick S. Fier groups [49]
synthesized the antiviral drug molnupiravir for COVID-19 by studying the degradation
behavior of different nucleoside phosphatases. Hirokazu Kawagishi groups [37] synthe-
sized nucleoside products from rice by adjusting the inhibitory activity of ribonuclease and
determined their structures using single-crystal X-ray diffraction techniques and spectral
analyses (Figure 2). Wu groups [40] discovered two types of nucleosides and three types
of sterols from the selected 90% methanol(aq) fraction of C. militaris fruiting bodies using
the bioactivity degradation method. They discussed the inhibitory and anti-inflammatory
activities of the two obtained nucleosides—cordycerebroside A(1) and glucocerebroside
(3). Lindner groups [16] successfully generated 16 nucleosides and nucleobases from both
natural and cultivated Ganoderma lucidum. They achieved efficient separation of these
products by varying the chromatographic conditions and optimizing the system. However,
these methods often have some disadvantages. Firstly, the production time is usually long,
taking more than two weeks from raw material preparation to product manufacturing.
Furthermore, the complexity of the product matrix generated involves the simultaneous
presence of many (deoxy) nucleotides, making the separation process of the target nucle-
oside compounds challenging. Moreover, the scarcity and declining quality of the ideal
raw nucleotide material, combined with the intricate pre-processing procedures, make it
unsuitable for large-scale production of nucleoside compounds [50–52].
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2.2. Chemical Synthesis

The molecular structure of nucleoside analogs is relatively simple, which makes them
easy to produce through chemical synthesis. They have aroused increasing interest in
recent years, leading to numerous studies on their preparation using chemical synthesis. Yu
groups [53] used a linear synthesis strategy to synthesize the nucleoside antibiotics A201A
and A-94964 by designing modular synthesis routes. Ehesan USharif et al. [54] synthesized
a variety of iodine atom-functionalized pyrimidine nucleoside analogs via palladium (Pd)
catalysis (Figure 3). John D. Sutherland et al. [55] prepared adenine nucleoside analogs
through a multi-step chemical reaction of imidazoles. Chemical synthesis is widely used
for the quick and efficient synthesis of unnatural nucleoside analogs [56,57]. Michal Hocek
groups [38] successfully synthesized a series of 7-[2-(alkyl- or arylsulfanyl)-ethyl]-7-deaza-
2′-deoxyadenosines by phosphorylation. Additionally, the modified phosphates were
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prepared by adding thiol to 7-vinyl-7-deaza-dATP. Piet Herdewijn groups [58] employed
palladium-catalyzed cross-coupling chemistry for the synthesis of C-7-alkynylated and
arylated pyrrolotriazine C-Ribonucleosides. Masayuki Inoue groups [59] have developed a
novel method of coupling multiply-hydroxylated aldehydes with α-alkoxyacyl tellurides
in order to synthesize various nucleoside antibiotics. Gustavo Moura-Letts groups [60]
demonstrated high efficiency in synthesizing nucleoside carbacycles through sequential
dipolar cycloaddition and reductive cleavage of enals and hydroxylamines. Guo et al. [61]
used enantioselective [3+2] cycloaddition of α-nucleobase substituted acrylates to prepare
chiral carbocyclic nucleoside analogs, including purine, uracil, and thymine derivatives,
with high quaternary. Meanwhile, considering that glycosylation is an extremely important
biological process in the synthesis of nucleoside analogs by chemical methods, Downey,
A. M. groups [62,63] studied the mechanism of the occurrence of glycosylation reaction
through selective activation of the anomeric center on the glycosyl donor and direct glyco-
sylation of nucleobases methods, and verified the feasibility of the strategy of glycosylating
protecting group-free strategies for the efficient synthesis of nucleoside analogs. This
method provides a straightforward approach to the synthesis of these analogs. However,
the reaction reagents often involved in chemical synthesis are mostly chemically toxic,
which poses a threat to the production of nucleoside analogs and does not meet the require-
ments of green environmental protection [64,65]. At the same time, the target nucleoside
analogs must be activated. This activation involves complex steps, including the protection
and deprotection of specific groups during the synthesis process. However, these steps can
lead to the production of difficult-to-separate enantiomers.
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2.3. Biotransformation

The biotransformation method utilizes naturally occurring enzymes in organisms to
catalyze unit substitution or modification reactions, leading to the synthesis of new nucle-
oside analogs based on existing fermentation substrates [66,67]. Takashi Tsuji et al. [68]
proposed a biotransformation method for producing 2′-deoxyadenosine, which uses 2′-
deoxythymidine as a ribose group donor and adenine as a base donor. Ying groups [69]
synthesized adenosine triphosphate using the yeast Saccharomyces cerevisiae while study-
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ing the various factors that influence the yield. Francesca Paradisi et al. [70] successfully
synthesized four nucleoside analogs: 5-fluoro-2′-deoxyuridine, 5-chloro-2′-deoxyuridine,
5-bromo-2′-deoxyuridine, and 5-iodo-2′-deoxyuridine, using a newly discovered thymi-
dine phosphorylase, and the conversion rate reached 90% at a concentration of 10 mM
(Figure 4). Enrica Calleri synthesized [71] adenine nucleosides using bioreactors based
on two sequential nucleoside phosphorylases: uridine phosphorylase (CpUP) and purine
nucleoside phosphorylase (AhPNP). Compared with nucleic acid degradation and chem-
ical synthesis, the biotransformation method is simple, uses fewer organic reagents, has
gentle conditions, has lower costs, and is environmentally friendly [72,73]. Therefore, the
biotransformation method is a common approach for producing nucleoside analogs. How-
ever, the concentration of substrates and products in the biotransformation solution during
biosynthesis is usually very low, and the impurities, such as by-products, are high, which
seriously restricts the pharmaceutical research and application development of high-quality
nucleoside analogs.
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3. Progress in the Separation of Nucleoside Analogs

It was found that nucleoside analogs synthesized using the three methods still have
some common problems. For instance, the main product has a low concentration [74],
the matrix is complex [75], and there are numerous by-products [76]. Therefore, finding a
suitable method for the separation and enrichment of nucleoside analogs from the products
becomes an emergency. There are currently many methods for the separation of nucleoside
analogs, such as crystallization, high-performance liquid chromatography (HPLC), column
chromatography, solvent extraction, and adsorption [77–81]. Additionally, these methods
can effectively separate and enrich the desired products when used. Table 1 summarizes
the advantages and disadvantages of several separation methods in Sections 3.1–3.5.

Table 1. Separation method of nucleoside compounds.

Methods Advantage Disadvantage Reference

Crystallization Inexpensive and easy to industrialize
Toxic solvents or heavy metal salts,

environmental pollution, unsuitable for
low concentrations products

[82–84]

HPLC Rapid analysis and high-sensitivity Difficult to implement in industrial
applications and high operating costs [85,86]

Column chromatography High separation efficiency and simple
operation

Organic mobile phase and
environmental pollution [87,88]

Solvent extraction Large processing capacity and low
energy consumption

Organic extraction solvents and
selectivity need to be improved [89,90]

Adsorption Simple process, inexpensive, easy to
regenerate, and environmentally friendly Selectivity needs to be improved [91–93]
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3.1. Crystallization

Crystallization is a technique for separating different components in a mixture by
inducing a state of super-saturation in a solution. Various methods can be employed to
achieve this state, including evaporation, cooling, vacuum cooling, solvent precipitation,
salting out, and reaction crystallization [82–84]. Crystallization methods have been widely
utilized by researchers to separate nucleoside analogs from crude products. For instance,
organic solvents like ethanol or acetone can be added to reduce the solubility of adenosine
5′-monophosphate in the solvent, leading to the precipitation of the solute [94]. Ahmed
M. Ibraheem groups [95] synthesized 2-oxonicotinonitriles and 2-oxonicotinonitrile and
nucleoside analogs based on 2-oxonicotinonitrile, which showed good anti-SARS-CoV
and anti-influenza A (H5N1) activities. Andrzej Okruszek’s group [96] achieved a spe-
cific separation of diastereomers by fractionally crystallizing suitable (aphenylethylamino)
phosphoramidate precursors into individual diastereomers. The use of nucleoside com-
pounds of phosphate (nucleoside-5′-phosphates) with barium and mercury ions to form
a precipitate of heavy metal salts, which is precipitated from the solution, achieves the
separation purpose [97]. Although the crystallization method for separating nucleosides
is an affordable and easily industrialized process, its application often involves the use of
toxic solvents or heavy metal salts, which means it can easily cause environmental pollu-
tion and result in high energy consumption. Additionally, the extensive scope of auxiliary
equipment is unsuitable for handling products of nucleoside analogs in low concentrations.

3.2. High-Performance Liquid Chromatography

HPLC is a crucial method for modern separation and analysis. The components are
dispersed in the mobile phase, which passes through the stationary phase. Based on the
size and strength of the interaction between the stationary phase and each component (such
as hydrogen bonding, electrostatic interaction, exclusion, etc.), the retention time in the sta-
tionary phase varies sequentially, achieving the separation of different components [85,86].
Combined with the principle of HPLC, many researchers have already used HPLC as an
important tool for the quantitative analysis of nucleoside analogs from complex mixtures.
Irene Suárez-Marina groups [98] used HPLC to quantitatively analyze nucleoside analogs
in complex mixtures based on their different retention times and peak areas. They also
employed mass spectrometry in an even better fashion to characterize the structure of
synthesized nucleoside analogs. Thomas Carell groups [99] utilized ultra-high performance
liquid chromatography (UHPLC) and triple quadrupole mass spectrometry (QQQ-MS) to
accurately quantify DNA modifications within a short time (14 min per sample). Further-
more, their quantitative method allows for rapid, ultrasensitive (low concentration range),
and highly reproducible measurement of various nucleotides. C. McGuigan groups [100]
compared the advantages and disadvantages of HPLC and crystallization methods for
separating nucleoside analogs. They also developed a new catalytic system to enhance the
diastereoselectivity and yield in HPLC separation, aiming to improve the identification
of target nucleosides. Zhang groups [101] have succeeded in identifying and separating
endogenous nucleotides, nucleoside analogs, and their metabolites in complex samples by
introducing methyl groups into the nucleotides. This modification increases the retention
time of the molecules on HPLC columns (Figure 5). The researchers also employed a simple
reversed-phase chromatographic condition to avoid contamination and ion suppression
in mass spectrometry analyses induced by the ion-pairing reagents. HPLC offers the ad-
vantages of swift analysis and high sensitivity. However, its implementation in industrial
applications is often hindered by the stringent requirements for separation conditions
and high operating costs [102–104]. Moreover, the complexity of the method may lead to
difficulties in practicality.
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3.3. Column Chromatography

In column chromatography, the solid phase is installed in the column. Nucleoside
compounds are contained in the mobile phase and flow from top to bottom through the
stationary phase. The stationary phase has an interaction force that adsorbs the nucleo-
side compounds [87,88]. When the eluent flows through the stationary phase, different
nucleoside compounds and the stationary phase have different forces, and the downward
elution rate is also different to enrich different nucleoside analogs [105,106]. Column chro-
matography is commonly used to separate and enrich desired compounds from complex
samples [107]. Recently, researchers have reported the successful separation and enrich-
ment of nucleosides using column chromatography. Robert A. Keyzers groups [108] used
HP20 and HP20ss reversed-phase column chromatography (PSDVB) to separate and enrich
two nucleoside compounds from a mixture. Zhang groups [109] employed petroleum ether,
ethyl acetate, and n-BuOH as eluents to separate nucleosides from a mixture based on their
polarity difference. Piet Herdewijn groups [106] synthesized nucleoside analogs with phos-
phonate functional groups by chemical synthesis, specifically pentopyranoside nucleosides.
They performed identification separations using silica gel column chromatography with
different ratios and mobile phases. To enhance discriminatory separation and specifically
capture the target nucleosides, Cao groups [110] used boronate to functionalize silica gel,
preparing a high-affinity monolith column. The separation of nucleosides by column chro-
matography using the difference in polarity has been achieved. Column chromatography
has a high separation efficiency and simple operation, but the use of an organic mobile
phase can lead to environmental pollution.

3.4. Solvent Extraction Method

Solvent extraction is a process used to separate and purify solutes. It involves adding
a solution containing the solute to another solvent, which completely transfers the solute to
the new solvent [89,90]. Karl W.K. Tsim groups [111] extracted natural nucleosides from
cordyceps sinensis using a pressurized solvent (methanol) and determined the content of
nucleosides and their bases in combination with high-performance liquid chromatography
(HPLC). Li groups [112] used various solvents, including those under pressure, boiling
water, and ambient conditions, in combination with HPLC to determine the content of the
five nucleosides (adenosine, guanosine, inosine, uridine, and cordycepin) in the extracted
Cordyceps. Shim groups [113] extracted butterbur grown using three aqueous solvents at
three different pH conditions. They then examined the extraction efficiency by utilizing
the ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)
technique. This method has also been successfully applied in the study of antibiotic re-
sistance gene development in humans and the environment. Ali Sefoddin et al. [80] used
subcritical water instead of conventional extraction solvents to extract natural nucleoside
components from abalone. The conventional extraction method often introduces more
organic solvents, which can easily cause environmental pollution. Additionally, the con-
ventional method lacks selectivity for nucleoside analogs with similar structures, which
makes molecular identification impossible.
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3.5. Adsorption

In the adsorption method, the target molecules are dissolved in the liquid phase, and
then the adsorbent is dispersed in the liquid phase. The target molecules and the adsorbent
connect through special forces (hydrogen bond, electrostatic effect, chemical bond, etc.),
while the other substances are not adsorbed. Then, the captured target molecules are
eluted with a small amount of eluent to achieve the purpose of adsorption separation
and enrichment [91–93]. Some nucleoside analogs possess unique properties due to the
presence of special functional groups, such as those with cis-dihydroxyl, phosphate, and
base functional groups. Selective adsorption and separation of these compounds can be
achieved by utilizing the affinity of specific functional groups for nucleoside analogs and the
different chemical properties of the target molecules [114]. For example, selective separation
can be achieved by analyzing the differences in specific functional groups, solubility, and
light sensitivity of guanine and guanosine bands and preparing adsorbents with high
identification [115,116]. There have been extensive studies on the separation of nucleoside
analogs using the adsorption method. Ariga Katsuhiko groups [117] separated and purified
nucleosides (adenosine, guanosine, and thymidine) using carbon nanocage, and they
observed significant selectivity between purine-base and pyrimidine-base nucleosides
by using carbon nanocage. Deniz Aktaş Uygun groups [118] developed new boronate
affinity nanoparticles using a surfactant-free emulsion polymerization technique and then
functionalizing them with phenylboronic acid to adsorb nucleosides. Liu groups [119]
prepared an organic–inorganic composite cryogel with a three-dimensional hierarchical
meso- and macroporous structure by freezing. This organic–inorganic low-temperature
gel composite can effectively adjust the pore size with a large specific surface area, and
the mesopores and macropores on the material provide enough reaction sites to effectively
enhance the mass transfer efficiency. Therefore, it was used as an adsorbent for solid-phase
extraction, for modifying boric acid sites, and for analyzing nucleosides in spiked human
serum. Zhang groups [120] synthesized a boronate affinity material by grafting boronic acid
groups onto attapulgite, which is a fibrous aluminum-magnesium silicate. This material
can selectively capture cis-diols, such as nucleosides, and it has been applied to the selective
extraction of nucleosides from human urine.

Although the design of synthetic adsorbents based on the special functional groups of
target molecules can effectively separate nucleosides, there is still a need for further im-
provement in the selectivity of conventional adsorbents for nucleosides with rich structures
and similar functional groups. Molecular Imprinting Technology (MIT) is a method that
mimics the principles of specific binding, similar to how enzymes bind to substrates or anti-
gens bind to antibodies, in order to achieve strong and specific identification of particular
targets [121,122]. MIT utilizes the target molecule as a template and selects appropriate
functional monomers to synthesize polymers known as Molecularly Imprinted Polymers
(MIPs), which exhibit specific recognition of the target molecule [123,124]. Nowadays,
some researchers have proposed the use of MIPs as adsorbents for the specific separation
and recognition of nucleoside analogs. Tse Sum Bui groups [125] reported the preparation
of molecularly imprinted polymers for adenosine monophosphate (AMP) through the
solid-phase synthesis method, which is shown in Figure 6. The experimental results of
selective adsorption studies demonstrated that the molecularly imprinted polymers exhibit
high binding capacity and selectivity for the target molecules AMP. Pan groups [126] used
the electron-activated regenerative atom transfer radical polymerization (ARGET-ATRP)
technique to graft dA-MIPs of dA onto the inner and outer surfaces of hollow mesoporous
silica particles, resulting in the formation of imprinted nanoparticles MMHS. Additionally,
a single microgel encapsulated-emulsion template method was employed to prepare a
composite gel adsorbent (MMHSG) (Figure 7) for selective extraction of dA, exhibiting
an adsorption capacity of 20.22 µmol g−1. Luigi A Agrofoglio groups [127] successfully
prepared a highly cross-linked polymer imprinted with monophosphate (AMP) by utilizing
a phosphate functional group. This synthesized imprinted polymer was then packaged in
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an SPE column. The results of the selectivity analysis showed that the imprinted polymer
exhibited good specificity not only for AMP but also for other nucleotides.

Molecules 2023, 28, x FOR PEER REVIEW 9 of 16 

results of selective adsorption studies demonstrated that the molecularly imprinted poly-
mers exhibit high binding capacity and selectivity for the target molecules AMP. Pan 
groups [126] used the electron-activated regenerative atom transfer radical polymeriza-
tion (ARGET-ATRP) technique to graft dA-MIPs of dA onto the inner and outer surfaces 
of hollow mesoporous silica particles, resulting in the formation of imprinted nanoparti-
cles MMHS. Additionally, a single microgel encapsulated-emulsion template method was 
employed to prepare a composite gel adsorbent (MMHSG) (Figure 7) for selective extrac-
tion of dA, exhibiting an adsorption capacity of 20.22 µmol g−1. Luigi A Agrofoglio groups 
[127] successfully prepared a highly cross-linked polymer imprinted with monophos-
phate (AMP) by utilizing a phosphate functional group. This synthesized imprinted pol-
ymer was then packaged in an SPE column. The results of the selectivity analysis showed
that the imprinted polymer exhibited good specificity not only for AMP but also for other
nucleotides.

Figure 6. Synthesis route of MIP-NPs [125]. 

Figure 7. Synthesis route of composite hydrogel adsorbent encapsulating imprinted hollow meso-
porous nanoparticles (MMHSG) [126]. 

Figure 6. Synthesis route of MIP-NPs [125].

Molecules 2023, 28, x FOR PEER REVIEW 9 of 16 

results of selective adsorption studies demonstrated that the molecularly imprinted poly-
mers exhibit high binding capacity and selectivity for the target molecules AMP. Pan 
groups [126] used the electron-activated regenerative atom transfer radical polymeriza-
tion (ARGET-ATRP) technique to graft dA-MIPs of dA onto the inner and outer surfaces 
of hollow mesoporous silica particles, resulting in the formation of imprinted nanoparti-
cles MMHS. Additionally, a single microgel encapsulated-emulsion template method was 
employed to prepare a composite gel adsorbent (MMHSG) (Figure 7) for selective extrac-
tion of dA, exhibiting an adsorption capacity of 20.22 µmol g−1. Luigi A Agrofoglio groups 
[127] successfully prepared a highly cross-linked polymer imprinted with monophos-
phate (AMP) by utilizing a phosphate functional group. This synthesized imprinted pol-
ymer was then packaged in an SPE column. The results of the selectivity analysis showed
that the imprinted polymer exhibited good specificity not only for AMP but also for other
nucleotides.

Figure 6. Synthesis route of MIP-NPs [125]. 

Figure 7. Synthesis route of composite hydrogel adsorbent encapsulating imprinted hollow meso-
porous nanoparticles (MMHSG) [126]. 

Figure 7. Synthesis route of composite hydrogel adsorbent encapsulating imprinted hollow meso-
porous nanoparticles (MMHSG) [126].

Adsorption is a simple and cost-effective process, which is also easy to regenerate
and environmentally friendly. Many researchers have designed and developed a wide
range of adsorbents for the specific identification of nucleosides [128–130]. However, the
conventional adsorbent materials for various nucleoside analogs also have a low adsorp-
tion capacity, a slow adsorption rate, and selectivity that needs improvement. Therefore,
many researchers have designed and developed a variety of adsorbents for the specific
recognition of nucleosides. Their focus includes selecting suitable monomers, optimizing
polymerization methods, and creating favorable polymerization environments. These
efforts are carried out due to the diverse functional groups present in nucleosides [131,132].
For instance, Xie et al. [133] utilized polystyrene nanoparticles as the substrate material,
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acrylamide (AM) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as
the cross-linking agent, and adenosine as the template molecule. The adsorbent of adeno-
sine for MIPs was then synthesized via surface-initiated polymerization of the substrates
(Figure 8). The resulting imprinted adsorbent exhibited excellent molecular selectivity
towards adenosine, with an adsorption capacity of 683 nmol g−1, significantly higher than
that of guanosine, cytidine, and uridine (91 nmol g−1, 24 nmol g−1, and 54 nmol g−1, respec-
tively). In the research conducted by Krzysztof Szczubiałka’s group [134], silica gel particles
were utilized as a substrate material. They utilized dA or 5′-deoxy-5′-(methylthio)adenosine
(MTA) as template molecules. Additionally, poly(N-(acryloyloxypropyl)thymine) (MAPIB-
APT) and polyanionic (N-(acrylamidooxyethyl)thymine) (AOET-AMPS) were employed
as functional monomers. These materials were used to prepare selectively adsorptive
materials for discernment imprinting. Liu groups [135] chose 3-acrylamidoethyl adeno-
sine (3-DTA) and 5′-deoxy-5′-(methylthio)adenosine (MTA) as template molecules, while
deoxyadenosine does not have a cis-dihydroxyl group. Aptamer-MIPs were prepared
using 3-acrylamidophenylboronic acid (AAPBA) as the functional monomer to adsorb
adenosine (Figure 9) in this study. The binding between the recognition site and the tem-
plate molecule was measured by isothermal titration calorimetry (ITC). It was proven
that the cis-dihydroxyl of the adenosine molecule showed better affinity for boron. The
AAPBA-containing MIPs exhibited a binding capacity for adenosine that was 115 times
higher than that of deoxyadenosine and 230 times higher than that of cytidine at pH = 7.6.
Table 2 presents a summary of the imprinted polymers’ adsorption capacity, equilibrium
time, and ability to selectively identify and separate nucleosides. From the table, it can be
seen that different adsorbents have distinct advantages in nucleoside adsorption. However,
they still face challenges in terms of low adsorption capacity, slow mass transfer efficiency,
and selective identification [124,126,133,136–138]. Therefore, a detailed study of efficient
adsorbents for the separation of nucleosides is still needed.
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Table 2. Comparison of the selectivity adsorption capacities for nucleosides analogs with the other
reported MIPs.

Sorbents Capacity (µmol g−1) Equilibrium (Min) Imprinting Factor (IF) Reference

J-SNs-MMIPs-Pickering 73.04 60 1.499 [124]
J-MIPs 13.69 240 2.182 [136]

J-SNs-MMIPs 61.22 70 1.570 [137]
MIPs shell 0.363 120 2.011 [133]

J-HNPs-MIPs@Gel 10.31 40 1.730 [126]
ATP-Fe3O4-NH2-DFFPBA 27.17 9 - [138]

4. Conclusions and Future Perspective

In summary, different methods for separating nucleoside analogs have both advan-
tages and disadvantages, with adsorption being a widely used, highly efficient, and envi-
ronmentally friendly method. Although the research on the applications of adsorbents for
different nucleoside analogs has a long history, traditional adsorbents also have drawbacks
such as low adsorption capacity, slow adsorption rate, and low selectivity. With the continu-
ous breakthroughs in types and quantities of nucleoside analogs, there is also an increasing
demand for adsorbents and improved performance requirements. Therefore, achieving
the selective separation of nucleosides has become a focal point in research, focusing on
the development of new adsorbents with large adsorption capacity, high selectivity, fast
adsorption rate, easy regeneration, and good structural stability. The research results play a
vital role in promoting the development of antitumor and antiviral drugs. They are also
crucial for preventing and controlling serious diseases, as well as enhancing the overall
national health.
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