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Abstract: Aimed at discovering small molecules as anticancer drugs or lead compounds from plants,
a lindenane-type sesquiterpene dimer, chlorahololide D, was isolated from Chloranthus holostegius.
The literature review showed that there were few reports on the antitumor effects and mechanisms
of chlorahololide D. Our biological assay suggested that chlorahololide D blocked the growth and
triggered apoptosis of MCF-7 cells by stimulating the reactive oxygen species (ROS) levels and
arresting the cell cycle at the G2 stage. Further mechanism exploration suggested that chlorahololide
D regulated apoptosis-related proteins Bcl-2 and Bax. Moreover, chlorahololide D inhibited cell
migration by regulating the FAK signaling pathway. In the zebrafish xenograft model, chlorahololide
D was observed to suppress tumor proliferation and migration significantly. Considering the crucial
function of angiogenesis in tumor development, the anti-angiogenesis of chlorahololide D was also
investigated. All of the research preliminarily revealed that chlorahololide D could become an
anti-breast cancer drug.

Keywords: Chloranthus holostegius; lindenane-type sesquiterpenoid dimer; breast cancer; FAK;
zebrafish model

1. Introduction

Up to the present, breast cancer has officially replaced lung cancer as the most ubiqui-
tous cancer among women in the world [1]. According to the latest statistics in the “IARC
Biennial Report 2020–2021” published by International Agency for Research on Cancer
(IARC) [2], the proportions of new cases and deaths of breast cancer in global cancers had
reached 24.5% and 15.5% up to 2020, ranking the first and fifth places, respectively [3,4].
Breast cancer has seriously threatened the health and life of women around the world.
However, owing to the rapid proliferation and metastasis, the cure rate of breast cancer is
very low. At present, chemotherapy, radiotherapy, and surgery are still the main treatment
methods for breast cancer. Among them, the universal application of chemotherapy, as the
most widespread method, still faces challenges due to the recurrence, tolerance, and severe
side effects. Early diagnosis and treatment are the key to reducing the mortality of breast
cancer. Novel drugs with lower toxicities and higher efficiencies are urgently needed to
prevent and treat breast cancer.

Traditional Chinese medicines have been widely recognized for their uses in cancer
treatment [5,6]. Significant progress has been made in the use of structurally rich chemical
components in traditional Chinese medicine for clinical anticancer therapy. A tremendous
amount of work has gone into discovering antineoplastic natural products. Inspired by
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the clinical treatment of natural cancer medicines like podophyllotoxin and vinblastine,
we are committed to discovering natural lead compounds with anticancer activity from
medicinal plants.

Chloranthus holostegius (Hand.-Mazz.) Pei et Shan, belonging to the genus Chloranthus
(Chloranthaceae), is a folk Chinese herbal medicine mainly used for treating bone bruises
and injuries, paralysis, rubella, and liver wind headache [7]. With the development of
modern pharmacology, it has been discovered that C. holostegius contains rich bioactive
components with diverse structures [7,8]. It is well attested that lindenane-type sesquiter-
penoids and derivatives are the characteristic chemical constituents of C. holostegius [8–10].
Among them, lindenane-type sesquiterpenoid dimers with different skeletons are biosyn-
thesized through different biological pathways from two lindenane-type monomers, and
the most usual step is involving in an endo-Diels–Alder cycloaddition [11,12]. Lindenane-
type sesquiterpenoid dimers with the skeleton from intramolecular [4 + 2] cycloadditions
are the most common [7,8], which usually exhibit significant biological activities in anti-
cancer, anti-inflammation [13], K+ current inhibition [14], anti-HIV [15], anti-malaria [16],
and liver protection [17]. By virtue of the complex and novel skeletons, aside from natural
products, a total synthesis of lindenane [4 + 2] dimers with an intramolecular six-membered
ring has also been reported [18,19]. During our discovery of novel natural products, several
[4 + 2] type lindenane-type sesquiterpenoid dimers were purified from the herbal plant
of C. holostegius, which were identified as chlorahololide D [10], sarcandrolide A [20], and
shizukaol E [20], and an MTT screening against two tumor cells (HepG2 and MCF-7) was
carried out. It was found that chlorahololide D showed the most inhibitory activity toward
MCF-7 cells. Furthermore, based on the in vitro screening, in-depth research on the anti-
tumor activity of chlorahololide D was conducted using a zebrafish model, attempting to
elucidate its antitumor mechanism.

2. Results

Three lindenane-type sesquiterpene dimers, chlorahololide D [10], sarcandrolide
A [20], and shizukaol E, were isolated from C. holostegius. The structures are elucidated as
shown in Figure 1. The 1H and 13C NMR spectra are given in the Supplementary Material.
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Figure 1. Chemical structure of chlorahololide D, sarcandrolide A, and shizukaol E. 

2.1. Chlorahololide D Inhibited Cancer Cell Growth In Vitro 
The in vitro biological activity of chlorahololide D against human tumor cell lines was 

preliminarily evaluated by an MTT method. Etoposide was employed as the positive 
control in this assay. The 50% inhibiting concentration (IC50) listed in Table 1 
demonstrated that only chlorahololide D possessed strong in vitro activity as expected 
(IC50 no more than 20 μM) with IC50 values of 13.7 and 6.7 μM for HepG2 and MCF-7 cells, 
respectively, while sarcandrolide A and shizukaol E, two lindenane-type sesquiterpenoid 
dimers from C. holostegius, showed weaker activities than chlorahololide D (Figure 1). 

Figure 1. Chemical structure of chlorahololide D, sarcandrolide A, and shizukaol E.

2.1. Chlorahololide D Inhibited Cancer Cell Growth In Vitro

The in vitro biological activity of chlorahololide D against human tumor cell lines
was preliminarily evaluated by an MTT method. Etoposide was employed as the positive
control in this assay. The 50% inhibiting concentration (IC50) listed in Table 1 demonstrated
that only chlorahololide D possessed strong in vitro activity as expected (IC50 no more
than 20 µM) with IC50 values of 13.7 and 6.7 µM for HepG2 and MCF-7 cells, respectively,
while sarcandrolide A and shizukaol E, two lindenane-type sesquiterpenoid dimers from
C. holostegius, showed weaker activities than chlorahololide D (Figure 1). According to the
MTT assay, chlorahololide D with the lowest IC50 for MCF-7 cell line (6.7 µM) was adopted
for the subsequent experiments.
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Table 1. Cytotoxicities of three compounds against two human cancer cell lines.

Compound
IC50 (µM)

HepG2 MCF-7

Chlorahololide D 13.7 ± 1.4 6.7 ± 1.0
Sarcandrolide A 40.6 ± 1.2 23.0 ± 3.3

Shizukaol E 34.8 ± 4.4 >60
Etoposide a 15.7 ± 1.6 33.3 ± 5.0

a Positive control. All results are presented as mean ± SD.

2.2. Chlorahololide D Induced Apoptosis of MCF-7 Cells

After confirming the cytotoxicity, flow cytometry was further employed to detect
whether the cytotoxicity of chlorahololide D on MCF-7 cells was due to apoptosis induction.
As depicted in Figure 2, the total number of apoptosis cells stagnated in Q2 and Q3 regions
raised intuitively with the increasing treatment concentrations of chlorahololide D (7.5, 15,
and 30 µM). The quantification analysis via ImageJ software (ImageJ 1.51k) revealed that the
percentages of apoptosis cells increased in a dose-dependent pattern from 16.0% (control
group) to 37.4% (7.5 µM), 55.1% (15 µM), and 73.0% (30 µM), respectively, indicating that
chlorahololide D could trigger apoptosis of MCF-7 cells.
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Figure 2. Chlorahololide D triggered apoptosis in MCF-7 cells. Various concentrations of chlo-
rahololide D (7.5, 15, and 30 µM) were administrated to MCF-7 cells and incubated for 48 h. Cells
were stained with Annexin V and propidium iodide (PI), and detected by flow cytometry sub-
sequently. (A) Flow cytometric analysis of MCF-7 cells with the treatment of chlorahololide D.
(B) Histogram of the proportions of apoptotic cells at 48 h after being treated with chlorahololide D.
The results are expressed as mean ± SD. ** p < 0.01 and *** p < 0.001 vs. control group.

2.3. Chlorahololide D Increased Cellular ROS

Apoptosis of tumor cells is generally accompanied by the increasing production of ROS.
To explore whether chlorahololide D promoting the apoptosis of MCF-7 cells was in relation
to ROS levels, flow cytometry was performed. DCFH-DA was used as a probe. As illustrated
in Figure 3, after being administrated with chlorahololide D for 24 h, ROS levels were 1.13
(5 µM), 1.30 (10 µM), and 1.36 (20 µM) times that of the blank control group, respectively.
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Figure 3. Chlorahololide D increased ROS production in MCF-7 cells. MCF-7 cells were incubated
with chlorahololide D (5, 10, and 20 µM) for 48 h. MCF-7 cells were stained with DCFH-DA and
detected by the flow cytometer. (A) Flow cytometric analysis of MCF-7 cells after being treated with
chlorahololide D. (B) Histogram of relative ROS levels. The results are expressed as mean ± SD.
*** p < 0.001 vs. control group.

2.4. Chlorahololide D Arrested MCF-7 Cell Cycle

Flow cytometry was carried out to examine whether chlorahololide D induced cell
apoptosis by arresting the cell cycle. From Figure 4A, it can be clearly observed that
MCF-7 cells were arrested in the G2 stage upon treatment of various concentrations of
chlorahololide D (7.5, 15, and 30 µM). In addition, data analysis based on the histogram
(Figure 4B) showed that the proportions of cells in the G2 phase were significantly increased
from 9.0% (control group) to 10.6% (7.5 µM), 17.2% (15 µM), and 33.0% (30 µM), respectively.
These results suggested that the cell cycle was arrested at the G2 stage by chlorahololide D
to cause the apoptosis of MCF-7 cells.

Molecules 2023, 28, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 4. Chlorahololide D arrested G2 phase in MCF-7 cells. MCF-7 cells were treated with 
chlorahololide D (7.5, 15, and 30 μM) for 48 h. (A) The cells were harvested and stained with 
propidium iodide (PI), and the cell cycle distribution was detected using flow cytometry. (B) 
Histogram of cell cycle phases distribution. Data from three separate experiments are presented as 
mean ± SD. 

2.5. Chlorahololide D Affected the Expression of Apoptosis-Related Proteins 
The effects of chlorahololide D on the expression of anti-apoptotic Bcl-2 protein and 

pro-apoptotic Bax protein were examined via Western blotting. The results shown in 
Figure 5 were as expected. After being treated with chlorahololide D, the protein levels of 
Bcl-2 decreased while the expression levels of Bax increased in MCF-7 cells. It was 
deduced that chlorahololide D prompted apoptosis by regulating the apoptosis-related 
proteins Bcl-2 and Bax in MCF-7 cells.  

 
Figure 5. Chlorahololide D regulated apoptosis-related proteins. MCF-7 cells were pre-treated with 
chlorahololide D for 36 h, and Western blotting analysis was carried out. (A) The expression of Bcl-
2 and Bax. (B) Histogram of the protein relative expression levels. β-actin protein was used as an 
internal reference. The results are presented as mean ± SD. ** p < 0.01 and *** p < 0.001 vs. control 
group. 

2.6. Chlorahololide D Inhibited MCF-7 Cell Metastasis by Regulating FAK Signaling Pathway 
Except for inhibiting proliferation and inducing apoptosis, antineoplastic drugs are 

usually involved in the mechanism of inhibiting metastasis of tumors. A wound-healing 
assay was performed in this study to detect the inhibitory effects of chlorahololide D on 
cell migration. As shown in Figure 6A, after incubation with chlorahololide D for 48 h, the 
migration of MCF-7 cells was inhibited to varying degrees. The outcome, after being 

Figure 4. Chlorahololide D arrested G2 phase in MCF-7 cells. MCF-7 cells were treated with chlo-
rahololide D (7.5, 15, and 30 µM) for 48 h. (A) The cells were harvested and stained with propidium
iodide (PI), and the cell cycle distribution was detected using flow cytometry. (B) Histogram of cell
cycle phases distribution. Data from three separate experiments are presented as mean ± SD.
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2.5. Chlorahololide D Affected the Expression of Apoptosis-Related Proteins

The effects of chlorahololide D on the expression of anti-apoptotic Bcl-2 protein and
pro-apoptotic Bax protein were examined via Western blotting. The results shown in
Figure 5 were as expected. After being treated with chlorahololide D, the protein levels of
Bcl-2 decreased while the expression levels of Bax increased in MCF-7 cells. It was deduced
that chlorahololide D prompted apoptosis by regulating the apoptosis-related proteins
Bcl-2 and Bax in MCF-7 cells.
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chlorahololide D for 36 h, and Western blotting analysis was carried out. (A) The expression of
Bcl-2 and Bax. (B) Histogram of the protein relative expression levels. β-actin protein was used
as an internal reference. The results are presented as mean ± SD. ** p < 0.01 and *** p < 0.001 vs.
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2.6. Chlorahololide D Inhibited MCF-7 Cell Metastasis by Regulating FAK Signaling Pathway

Except for inhibiting proliferation and inducing apoptosis, antineoplastic drugs are
usually involved in the mechanism of inhibiting metastasis of tumors. A wound-healing
assay was performed in this study to detect the inhibitory effects of chlorahololide D on
cell migration. As shown in Figure 6A, after incubation with chlorahololide D for 48 h,
the migration of MCF-7 cells was inhibited to varying degrees. The outcome, after being
deeply analyzed with ImageJ software (Figure 6B) exhibited that the migration rates were
reduced by 1.83, 2.31, and 6.68 times that of the control group from 7.5 to 15 and 30 µM.
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out. (A) MCF-7 cells were photographed at 0 h and 48 h. (B) Histogram of the migration rate
(%). (C) The expression of FAK and p-FAK. (D) Histogram of the protein relative expression levels.
β-actin protein was an internal reference. The results are expressed as mean ± SD.*** p < 0.001 vs.
control group.

A Western blotting experiment was employed to further explore the influence of chlo-
rahololide D on migration-related proteins. As shown in Figure 6C,D, with the increasing
concentrations of chlorahololide D, no significant impact was observed on the expression
of FAK protein, but a dose-dependent reduction occurred in the p-FAK levels.

2.7. In Vivo Antitumor Activity of Chlorahololide D Using a Zebrafish Model

The similarity of signal pathways related to tumors between humans and zebrafish
allows the zebrafish xenograft model to be ideal for examining the antitumor activity of
chlorahololide D in vivo. MCF-7 cells stained with CM-DiI were administrated into the
yolk sac of 2 dpf embryos, and the yolk sac of the zebrafish embryo grew under normal
conditions, revealing the zebrafish xenograft model was developed successfully. Etoposide
served as the positive control here. After treatment with chlorahololide D (2.5, 5, and
10 µM), the intensity and distribution of the red fluorescence were both inhibited obviously
(Figure 7A). Further, data from Figure 7B,C showed that the relative intensity and the foci of
red fluorescence were reduced from 72.0% to 38.0% and from 92.6% to 62.9%, respectively,
when compared with the blank control group. Notably, at the same concentration (10 µM),
chlorahololide D had stronger inhibitory effects than etoposide. The results indicated that
chlorahololide D suppressed tumor proliferation, invasion, and metastasis.
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Figure 7. Chlorahololide D inhibited proliferation and migration in vivo. CM-DiI stained MCF-7 cells
were microinjected into 2 dpf zebrafish embryos. After 4 h, tumor-bearing embryos were treated with
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chlorahololide D (2.5, 5, and 10 µM) for 48 h (n = 15/group). Etoposide (10 µM) was used as the
positive control. (A) Intensity and distribution of the red fluorescence were photographed using a
confocal microscope of disseminated foci in zebrafish. (B) The proliferation was quantified by ImageJ
software. (C) The metastasis of MCF-7 cells was analyzed using ImageJ software. All of the results
are expressed as the mean ± SD. * p < 0.05 and *** p < 0.001 vs. the control group.

2.8. Antiangiogenetic Activity of Chlorahololide D Using a Transgenic Zebrafish Model

Considering the important role of angiogenetics in the process of tumor growth, the effects
of chlorahololide D on intersegmental vessel formation in transgenic zebrafish Tg(fli1: EGFP)
were estimated. As revealed in Figure 8, treatment with different doses of chlorahololide D
(5, 10, and 20 µM) caused varying degrees of destruction on the intersegmental vessels (ISVs)
and dorsal longitudinal anastomotic vessels (DLAVs). It could be observed that both ISVs and
DLAVs were perceptibly absent and broken in Figure 8A (pointed out with red arrows). The
statistical outcome via ImageJ software in Figure 8B revealed the average length of ISVs under
chlorahololide D were 2559.8± 135.3 µm (0 µM), 2235.4± 106.0 µm (5 µM), 1801.1± 116.6 µm
(10µM), and 1715.9± 32.3µm (20µM), respectively, which displayed a concentration-dependent
reduction. In summary, chlorahololide D blocked the neoplasm proliferation, invasion, and
metastasis by inhibiting angiogenesis.
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Figure 8. The embryos of transgenic zebrafish Tg(fli1: EGFP) were treated with the positive control,
sunitinib malate (2 µM), and chlorahololide D (5, 10, and 20 µM) for 48 h. (A) Representative images
of ISVs in zebrafish under a confocal microscope. (B) The average length of ISVs in zebrafish after
treatment with sunitinib malate and chlorahololide D (5, 10, and 20 µM) (n = 15/group). All of the
results are expressed as the mean ± SD. * p < 0.05 and *** p < 0.001 vs. the control group.

3. Materials and Methods
3.1. Biological Materials and Cell Culture

Fetal bovine serum (FBS, BI, Israel) and Dulbecco’s modified Eagle’s medium (DMEM)
were provided by LABBIOTECH Co., Ltd. (Shandong, China). Dimethyl sulfoxide (DMSO)
and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) were purchased from
Solarbio (Beijing, China). Cell tracker CM-DiI was obtained from Yeasen Biotechnology Co., Ltd.
(Shanghai, China). Annexin V-FITC apoptosis detection kit, cell cycle and apoptosis kit, and BCA
protein assay kit were supplied by Beyotime Biotechnology Co., Ltd. (Shanghai, China). Rabbit
monoclonal antibodies against FAK, p-FAK (Tyr 397), Bax, Bcl-2, and β-actin were purchased
from Cell Signaling Technology (Danvers, MA, USA). HepG2 and MCF-7 were acquired from
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Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (Shanghai, China). The
cells were cultured in DMEM containing 10% (v/v) FBS and 100 U/mL penicillin/streptomycin
under a water-saturated atmosphere of 95% air and 5% CO2. Adult AB and transgenic zebrafish
were obtained from Shanghai Feixi Biotechnology Co., Ltd. (Shanghai, China).

3.2. Extraction, Isolation, and Purification

The details of chemical materials as well as extraction, isolation, and purification of
the plants of C. holostegius are supplied in the Supplementary Materials.

Chlorahololide D: 1H NMR (400 MHz, CDCl3): δH 2.05 (1H, m, H-1), 1.00 (1H, m,
H-2α), 0.30 (1H, dd, J = 7.2, 4.0 Hz, H-2β), 1.83 (1H, m, H-3), 3.92 (1H, d, J = 3.1 Hz, H-6),
3.95 (1H, s, H-9), 1.88 (3H, s, H3-13), 1.02 (3H, s, H3-14), 2.78 (1H, d, J = 6.2 Hz, H-15α), 2.59
(1H, m, H-15β), 1.57 (1H, m, H-1′), 0.71 (1H, ddd, J = 14.5, 8.7, 5.9 Hz, H-2′α), 1.27 (1H, m,
H-2′β), 1.50 (1H, m, H-3′), 1.77 (1H, dd, J = 13.7, 5.9 Hz, H-5′), 2.35 (1H, dd, J = 18.6, 5.9 Hz,
H-6′α), 2.73 (1H, dd, J = 18.6, 13.7 Hz, H-6′β), 1.86 (1H, m, H-9′), 4.82 (1H, d, J = 13.0 Hz,
H-13′a), 4.77 (1H, d, J = 13.0 Hz, H-13′b), 0.86 (3H, s, H3-14′), 4.21 (1H, d, J = 11.6 Hz,
H-15′a), 3.81 (1H, d, J = 11.6 Hz, H-15′b), 6.90 (1H, m, H-3′′), 1.85 (1H, d, overlapped,
H-4′′), 1.86 (3H, s, H3-5′′), 3.76 (3H, s, H3-OMe), 2.08 (3H, s, H3-COMe); 13C NMR (400 Hz,
CDCl3): δC 25.7 (C-1), 15.9 (C-2), 24.7 (C-3), 142.3 (C-4), 131.8 (C-5), 40.9 (C-6), 147.6 (C-7),
200.4 (C-8), 80.2 (C-9), 51.1 (C-10), 131.5 (C-11), 170.4 (C-12), 20.3 (C-13), 15.2 (C-14), 25.3
(C-15), 25.3 (C-1′), 11.9 (C-2′), 28.3 (C-3′), 77.5 (C-4′), 60.4 (C-5′), 22.6 (C-6′), 172.1 (C-7′),
93.2 (C-8′), 55.7 (C-9′), 44.7 (C-10′), 123.6 (C-11′), 171.3 (C-12′), 55.0 (C-13′), 26.3 (C-14′), 70.7
(C-15′), 168.3 (C-1′′), 128.0 (C-2′′), 138.8 (C-3′′), 14.5 (C-4′′), 12.1 (C-5′′), 52.5 (C-OCH3), 170.3
(C-OOCCH3), 20.4 (C-OOCCH3).

3.3. Cytotoxic Activity Assay

The MTT assay was designed to evaluate the cytotoxic activity. The details of this
experiment are described in the Supplementary Materials.

3.4. Apoptosis Analysis by Flow Cytometry

Flow cytometry was employed to analyze the effects of chlorahololide D on the MCF-7
cell’s apoptosis. The details were supplied in the Supplementary Materials.

3.5. Measurement of Reactive Oxygen Species (ROS)

The intracellular ROS levels were detected by the ROS assay kit (Beyotime, Shanghai,
China) using a flow cytometry experiment. The details of this experiment are described in
the Supplementary Materials.

3.6. Cell Cycle Analysis

The distribution of the cell cycle of MCF-7 cells affected by chlorahololide D was per-
formed by flow cytometric analysis. The details are provided in the Supplementary Materials.

3.7. Western Blotting Analysis

Western blotting was used to determine the levels of protein expression including
Bax, Bcl-2, FAK, and p-FAK. The experimental procedures for Western blotting analysis are
supplied in the Supplementary Materials.

3.8. Wound-Scratch Assay

Wound-scratch assay was routinely performed for the detection of the migration
ability of MCF-7 cells. The experimental process is stated in the Supplementary Materials.

3.9. In Vivo Anti-Tumor Assay

The anti-tumor activity of chlorahololide D on the tumor cell proliferation and metas-
tasis in vivo was evaluated by the zebrafish xenograft model based on the reported method.
The particular processes are provided in the Supplementary Materials.
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3.10. Antiangiogenetic Assay Using Transgenic Zebrafish Model

The angiogenesis inhibitory effects of chlorahololide D were conducted in transgenic
zebrafish Tg (fli1: EGFP) embryos. All operating steps of this experiment are described in
the Supplementary Materials.

3.11. Statistical Analysis

GraphPad Prism is use to analyze data. All the data presented as mean ± SD. Prob-
abilities p < 0.05 indicated to be significant by analysis of variance (ANOVA). One-way
ANOVA multiple comparisons were used to analyze the differences between three or more
groups. There were three repetitions of each experiment.

4. Discussion

In the present study, three natural products possessing the same skeleton of lindenane-
type sesquiterpenoid dimer were isolated from C. holostegius. An MTT assay revealed that
chlorahololide D exhibited potent cytotoxicity against HepG2 and MCF-7 cell lines, and had
more cytotoxic effects against MCF-7 cells with an IC50 value of 6.7 µM. Chlorahololide D
possessed stronger activity than most of those natural antitumor products we have reported,
like xipsxanthone H against A549, HepG2, K562, and HeLa cells (IC50, 15.3, 16.1,15.0, and
17.3 µM) [21], cratoxylumxanthone C against A549, HepG2, and MCF-7 cells (IC50, 17.5,
17.7, and 21.9 µM) [22], kurzipenes D against HepG2 and K562 cells (IC50, 9.7 µM and
7.2 µM), and xipsxanthone D against HeLa cells (IC50, 9.6 µM) [23]. Subsequently, a series
of experiments were designed and carried out to assess the effects of chlorahololide D on
MCF-7 cells in vitro and in vivo. Chlorahololide D could promote apoptosis and block the
proliferation and migration of MCF-7 cells in vitro. Furthermore, an experiment based on
the zebrafish model, a recognized and credible preclinical animal model, demonstrated
that chlorahololide D also inhibited the proliferation and metastasis of MCF-7 cells in vivo.
The results above indicated that it was worthwhile to explore the antitumor mechanism of
chlorahololide D deeply.

Inducing apoptosis is an important mechanism of antineoplastic effects of chemother-
apy drugs [24]. ROS and cell cycle are considered to be closely related to cell apopto-
sis [22,25]. ROS including peroxides, superoxides, hydroxyl radicals, singlet oxygen, and
α-oxygen, are small molecules with high activities and a short lifespan in cells [26]. When
produced excessively in cells, ROS will bring damage to proteins, nucleic acids, lipids,
cell membranes, and organelles in cells, thereby inducing apoptosis [27]. In addition,
an imbalance of the cell cycle usually causes cell apoptosis [25]. Different physical and
chemical stimuli have different degrees of damage to cells in different cycles, and cells in
various cycles also have different repair abilities to resist damage, both of which result in
cell cycle specificity [28]. Some antitumor drugs cause cell apoptosis precisely by specifi-
cally blocking the cell cycle [29]. For example, trigothysoid N and cratoxylumxanthone C
were both found to arrest the A549 cell cycle at the G0/G1 stage, while xipsxanthone H
blocked the cell cycle at the S stage in the same cell line [21,22,30]. Kurzipene D blocked
the HepG2 cell cycle at the S stage [31], and curcin C made U2OS cells stagnate both in the
S and G2/M phases [32]. Our study showed that chlorahololide D could stimulate ROS
production and arrest the MCF-7 cell cycle in the G2 phase, which may be an explanation
for chlorahololide D inducing apoptosis.

Bcl-2 family in the mitochondrial pathway plays a significant role in apoptosis. Bcl-2
and Bax, a pair of the most important regulatory genes with opposing functions in the
mitochondria-mediated apoptosis pathway in the Bcl-2 family, are responsible for apoptosis
promotion and suppression [33], respectively. Our results showed that chlorahololide D
significantly prompted apoptosis in MCF-7 cells. Apart from this, the outcome of Western
blotting pointed out that chlorahololide D could decrease the production level of the Bcl-2
protein and increase the Bax protein level dose-dependently, suggesting the promotional
effects of chlorahololide D on apoptosis may be related to the downregulation of the Bcl-2
level and upregulation of the Bax level in the mitochondrial pathway.
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In addition to proliferation, invasion and metastasis are another two fatal difficulties
in the cure of malignant tumors. Also known as protein tyrosine kinase 2 (PTK2), focal
adhesion kinase (FAK) plays a vital role in tumor invasion and metastasis. Stimulation
with growth factors or integrins leads to self-phosphorylation on the Y397 point at the N-
terminus of FAK protein (Tyr397), which results in the activation of FAK [34]. Subsequently,
the downstream signaling pathway is regulated in a kinase-dependent manner or the focal-
adhesion-associated protein (FAAP) is recruited in a kinase-independent manner, thereby
regulating tumor growth, invasion, and metastasis [35,36]. Therefore, FAK is considered
as an important target for the development of anti-metastatic agents. Results showed that
chlorahololide D significantly inhibited the migration by inhibiting the phosphorylation
of FAK.

The importance of angiogenesis in the occurrence and development of tumor tissues
is widely recognized. Inhibiting angiogenesis in tumors can limit the oxygen and nutrients
required for tumor growth [37]. Based on this point, many antitumor drugs are developed
to exert their effects. After demonstrating the in vivo antitumor effects of chlorahololide D
using a zebrafish xenograft model, further analysis was conducted on its anti-angiogenesis
effects in a transgenic zebrafish model. Chlorahololide D was turned out to significantly
suppress the formation of blood vessels, thereby exerting antitumor effects.

The current study investigated the antitumor effects of chlorahololide D and revealed
that this compound had strong cytotoxic activity on both MCF-7 and HepG2 cells (IC50
values, 6.7 and 13.7 µM). According to the literature, chlorahololide D was reported to have
moderate cytotoxic activity toward the HeLa cell line (IC50 = 32.2 µM) [38]. In summary,
chlorahololide D showed inhibitory effects on various tumor cells, which had different sen-
sitivities to different tumor cells. The subsequent in vivo experiments confirmed the antitu-
mor activity, and a series of investigations on the antitumor mechanism of chlorahololide D
conducted may provide a reference and basis for future research of chlorahololide D as an
antitumor agent.

5. Conclusions

With the increasing threat to human life and health from breast cancer and the shortage
of ideal therapeutic drugs, it is urgent to develop drugs for breast cancer. Researchers place
hopes on natural products, the natural resource pool for drug development. Chlorahololide
D is a lindenane-type sesquiterpenoid dimer isolated from C. holostegius, which has signifi-
cant cytotoxicity on MCF-7 cells. Furthermore, by increasing ROS level and blocking the cell
cycle at the G2 phase, chlorahololide D significantly induced cell apoptosis. The mechanis-
tic examination showed that chlorahololide D regulated the expression of apoptosis-related
proteins (Bax and Bcl-2) to induce apoptosis. In addition, chlorahololide D inhibited cell
migration by regulating the FAK signaling pathway. In addition, the in vivo antitumor
effects and mechanism of chlorahololide D were confirmed using zebrafish xenograft and
transgenic zebrafish models. Although the activity evaluation and preliminary mechanism
study of chlorahololide D have been investigated in this paper, deeper exploration needs to
be sought to promote its antitumor application in breast cancer.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28207070/s1, Figure S1. 1H NMR spectrum of chlorahololide D;
Figure S2. 13C NMR spectrum of chlorahololide D; Figure S3. 1H NMR spectrum of sarcandrolide
A; Figure S4. 13C NMR spectrum of sarcandrolide A; Figure S5. 1H NMR spectrum of shizukaol E;
Figure S6. 13C NMR spectrum of shizukaol E.
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