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Abstract: The interactions of amyloid proteins with membranes have been subject to many experimen-
tal and computational studies, as these interactions contribute in part to neurodegenerative diseases.
In this review, we report on recent simulations that have focused on the adsorption and insertion
modes of amyloid-β and tau proteins in membranes. The atomistic-resolution characterization of the
conformational changes of these amyloid proteins upon lipid cell membrane and free lipid interactions
is of interest to rationally design drugs targeting transient oligomers in Alzheimer’s disease.
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1. Introduction

Amyloid-β (Aβ) proteins of residues 40 and 42 and tau isoforms of residues
352–421, which are linked to Alzheimer’s disease (AD), have the propensity to aggregate
into amyloid fibrils with a cross-β structure [1,2] and multiple polymorphs, as observed
by Scheres et al. and Tycko et al. [3,4]. Aggregation proceeds through primary and sec-
ondary (surface catalysis and fragmentation) nucleation mechanisms, fibril growth, and
depolymerization in various experimental conditions [5].

The Aβ42 sequence consists of hydrophilic, charged, N-terminal residues 1–16; the
central hydrophobic core (CHC, residues 17–21); a hydrophilic region (residues 22–28) and
hydrophobic residues 30–42. Numerous studies have reported that low-molecular-weight
(LMW) oligomers of Aβ generated during the lag phase of aggregation or released from
the fibrils are the key players in AD [1,6,7]. The aggregation kinetics of Aβ42 in aqueous
solution has been continuously studied to understand the impact of pH variation [8],
N-terminal residues [9], and mixing with C-terminal truncated species such as Aβ24 [10].
The computational structure characterization of Aβ42 and tau monomer/dimer in aqueous
solution has been pursued [11–15].

Tau oligomers are toxic in vitro, seeding the propagation of AD pathology [16], and the
tau 297–391 fragments form fibrils under physiological conditions similar to those found in
AD brain tissues [17]. Single immunogold-labeled transmission electron microscope (TEM)
and fluorescence spectroscopy revealed the presence of a tyrosine–tyrosine crosslink at
position 310 on AD-brain-derived tau oligomers and fibrils [18].

The etiology of AD is linked in part to the mediated effects of Aβ and tau on neuronal
cell membranes. Atomic force spectroscopy (AFM) revealed that the self-assembly of Aβ

was enhanced and occurred at nanomolecular concentrations on two lipid bilayers formed
by 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC, PC) and 1-palmitoyl-2-oleoyl-sn-
glycero-3-phospho-l-serine (POPS, PS) [19]. The presence of cholesterol in the membrane
enhanced the primary nucleation of Aβ42 by several orders of magnitude compared with
that in aqueous solution, as assessed using thioflavin T (ThT) fluorescence [20]. The
experimental techniques used to study the amyloid–membrane interactions through the
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carpeting, detergent-like removal of lipids, and amyloid–pore hypotheses and to study
experimental imaging Aβ membrane interactions were recently reviewed [21,22].

Structures of Aβ–membrane assemblies are challenging experimentally as they are
metastable and heterogeneous. Among the new experimental results, using mass spec-
trometry and nuclear magnetic resonance (NMR) spectroscopy in docecylphosphocholine
(DPC) micelles, Carulla et al., at pH 9.0, provided the high-resolution structure of the
Aβ42 tetramer and octamer, revealing conductivity pores as a mechanism for the damage
of the membrane. The tetramer conformation comprises a six-stranded β-sheet core with
the two external Aβ peptides forming β hairpins (Figure 1) [23]. Cryoelectron tomography
was used to obtain 3D nanoscale images of the interactions of various Aβ assemblies
with liposomes. Aβ oligomers and protofibrils bind to the vesicles, and insert and carpet
the upper leaflet of the bilayer, allowing oligomers to establish a network of Aβ linked
to liposomes. The monomeric and fibrillar Aβ species have almost no impact on the
membrane [24]. It was also evidenced that the Aβ oligomers generated during secondary
surface nucleation disrupt membrane integrity, and time-resolved fluorescence microscopy
of individual synthetic vesicles demonstrated that the disruption of lipid bilayers correlates
with the levels of secondary nucleation-generated Aβ42 oligomers [25]. Experiments also
showed that ganglioside-enriched vesicles promoted Aβ oligomerization and disruption
of the membrane [26]. The impact of metal ions or lipid vesicles on Aβ aggregation has
been studied [2,27,28]; their combined effects are not well understood. It was shown,
however, that the co-effect of Cu2+ and lipid vesicles led to the rapid formation of abundant
Aβ40 LMW oligomers containing β-sheet-rich structures [29].
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Figure 1. Experimentally derived conformation of the Aβ42 tetramer in a membrane model with
a six-stranded β-sheet core and the two external Aβ peptides forming β hairpins, as proposed in
Ref. [23].

Surface-enhanced infrared (IR) absorption spectroscopy and atomic force microscopy
(AFM) were used to study the structural morphology of Aβ42 aggregation on distinct
two-dimensional self-assembled monolayers (SAMs). On hydrophobic interfaces, the
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interactions with the C terminus of Aβ42 promote the formation of small oligomers with
low contents of β-sheet structures. On hydrophilic interfaces, H-bond and electrostatic
interactions result in the promotion of large oligomers with a β-sheet structure [30]. Solid-
state NMR (ss-NMR) was used to investigate the interactions between Aβ40 peptides and
synaptic plasma membranes extracted from rat brain tissues. It was found that, at the
membrane-associated nucleation stage, the G25-V36 residues initialized the assembling of
low-order β-sheet structures, and the F19-G25 residues were closely linked with lipids [31].
Using high speed AFM and nanoscale infrared spectroscopy (IR) on Aβ42 L34T and
G37C variants with a POPC/sphingomyelin (SM)/cholesterol/monosialotetrahexosyl-
ganglioside (GM1) membrane, Molinari et al. showed that membrane disruption was
associated to small oligomers with an antiparallel β-sheet structure [32]. It is worth noting
that nonequilibrium flowing conditions promote the aggregation of Aβ on 1,2-dimyristoyl-
sn-glycero-3-phosphocholine (DMPC) bilayers [33].

Various studies have reported the presence of both extracellular and intracellular
Aβ assemblies. Using large unilamellar vesicles to model different locations of membranes,
including the inner leaflet (IL) and outer leaflet (OL) of the plasma membrane, late en-
dosomes, the endoplasmatic reticulum (ER), and the Golgi apparatus, Aβ42 aggregation
was monitored using fibril mass concentration as a function of time. Aβ42 aggregation
enhancement was observed in IL, OL, and late endosomes. The membrane in the inner
leaflet consisted of 22% PC, 40% PE, 26% PS, and 12% cholesterol (chol); the membrane in
the outer leaflet consisted of 30% PC, 5% PS, 35% SMm and 30% chol; and the membrane
in late endosomes consisted of 40% PC, 15% PE, 7% SM, 23% chol, and 11% bis(monoacyl-
glycero)phosphate (BMP). Aβ42 aggregation inhibition was observed in the Golgi mem-
brane, consisting of 43% PC, 17% phosphatidylethanolamine (PE), 9% phosphatidylinositol
(PI), 17% SM, and 14% chol; and in the ER membrane, consisting of 52% PC, 26% PE, 9% PI,
and 13% chol [34].

In comparison with Aβ, the number of experimental studies on LMW tau oligomers-
membranes is fairly small. It is known that tau oligomers interact with the plasma mem-
brane via multiple binding modes with the N-terminal projection domain (residues 1–243
containing a proline-rich region), and the R1−R4 repeats (residues 244–369) [1,35]. Tau in-
teracts with phospholipid tails, facilitating the formation of stable protein–lipid complexes,
facilitating cell-to-cell transport [36]. Like Aβ oligomers, tau oligomers can remodel and
disrupt membranes, extract lipids, and form pores, and these effects are modulated by
protein concentrations and lipid compositions [37–39].

The aim of this review is to report on recent computational studies starting the year
2020, aimed at understanding the effects of Aβ40 and Aβ42 alloforms and long tau isoforms
on and in cell membranes and vice versa, and the interactions between free lipids and
Aβ peptides.

2. Adsorption and Insertion of Amyloid-β

Determining the structures of Aβ–membrane assemblies is a computational challenge.
The interaction of an Aβ monomer with membranes was investigated via a series of sim-
ulations. Using a CHARMM36m force field and molecular dynamics (MD) simulation,
Strodel et al. showed the partial insertion of an Aβ42/POPC complex into a 1,2-dioleoyl-
sn-glycero-3-phosphocholine (DOPC) bilayer and a deeper insertion of parts of Aβ42
compared with a single peptide [40]. Alonso et al. investigated the interactions of
Aβ42 monomers with lipid bilayers consisting of POPC and small amounts (1–5 mol%)
of GM1. Using MD simulations with the GROMOS force field, isothermal calorimetry,
and Langmuir balance experiments, they showed that Aβ42 adsorbs, and cannot insert
into, GM1-containing phospholipid membranes in the liquid-disordered (Ld) state. They
also found that GM1, up to 3 mol%, increased Aβ42 binding to the bilayer [41]. Using the
same experimental techniques and a membrane consisting of 47.5% POPC, 47.5% SM, and
5% GM1, they found that Aβ42 monomer, but also oligomers and to a lesser extent fibril
preparations, inserted into membranes in the liquid-ordered (Lo) state [42].



Molecules 2023, 28, 7080 4 of 13

Hamiltonian replica exchange molecular dynamics simulations with the OPLS force
field were performed to determine the impact of oxidized (ox) G25, G29, and G33 residues
on monomeric Aβ42 interacting with a membrane made of 70% POPC, 25% cholesterol, and
5% GM1. Owen et al. found that Aβ42 wild-type (WT) and Aβ42-oxG25 peptides have a
lower tendency to bind to GM1 than Aβ42-oxG29 and Aβ42-oxG33, and the WT monomer
has a higher propensity to insert into the membrane than the three oxidized alloforms [43].
A 2.5 µs MD simulation of Aβ42-Cu2+ with a DMPC bilayer revealed that the presence
of calcium ions mediated membrane perturbation and inhibited the penetration of the
Aβ42 monomer into the membrane [44]. Interestingly, the decrease in the bending rigidity
of the POPC membrane, as a result of the incorporation of Aβ40 and Aβ42 monomers,
was observed using MD studies and experimental flicker-noise techniques [45]. Finally,
Localito et al. studied the interaction of monomeric alpha-helical Aβ40 (WT, H13P, H14P,
L17P, and F20P) using three replicates with a single DEPC lipid. From their simulations,
they hypothesized that the alpha-helix is a fundamental requirement to fulfill the lipid-
chaperon model [46].

The dynamics of Aβ dimers at the surface or inserted into multiple membrane models
were also explored. Chang et al. used atomistic Brownian dynamics simulations to study
the association of two Aβ42 monomers on SAM surfaces. The conformations included
the fibril-like β-rich structure and a random coil structure with a low alpha-helix con-
tent. Four SAM surfaces were used, including undecanethiol (hydrophobic, referred to as
CH3-SAM), 11-mercapto-1-undecanol (hydrophilic, OH-SAM), 11-amino-1-undecanethiol
(cationic, NH+-SAM), and 11-mercaptoundecanoic acid (anionic, COO−-SAM) on a gold
substrate. Monomers started to diffuse from a random position at a height of 40 nm above
the SAM surfaces. A total of 1000 trajectories for each rigid-body protein conformation
was performed to calculate the association and residence times on the four SAM surfaces.
For three SAM surfaces, the exception being NH+-SAM, the averaged monomer–dimer
association time was in the order of 9–10 µs for the β-rich conformation and 5 µs for
the random coil conformation, indicating a 5–35% decrease in association time due to
the presence of a surface. The residence time was found to vary from 7.4 (OH-SAM) to
8.8 (CH3-SAM) µs. The monomer–dimer association time on NH+-SAM with heteroge-
neous charge distribution could not be assessed as the monomers were not able to associate,
because they were strongly bound to the SAM. The addition of Na+ greatly enhanced the
diffusion on the COO--SAM. This finding emphasizes the importance of considering the
role of Na+ in vitro [47].

In a second µs MD simulation, Lyubchenko et al. examined the formation of the
Aβ42 dimer modeled using the ff99sb-ildn force field with a POPC bilayer. They revealed a
β-sheet content of 10% and an alpha-helix content fluctuating between 10 and 35%, with
the N-terminal residues and residues 29–31 having the highest propensity to interact. Of
interest is that the on-surface aggregation process is dynamic, and oligomers assembled
on the surface can dissociate into the solution. These results suggest that on-surface
aggregation is one mechanism through which Aβ42 oligomeric species in solution are
produced [19].

In a third µs MD simulation, Strodel et al. compared Aβ42 dimerization, modeled
using the CHARMM36m force field, in aqueous solution and at a lipid bilayer surface
mimicking a neuronal membrane composed of 38% PC, 24% PE, 5% PS, 20% chol, 9% SM,
and 4% GM1. They found that the neuronal membrane reduces the dynamics of membrane-
bound Aβ42 and inhibits β-sheet formation (β-sheet content of 28%) due to the hydrogen
bonds with the sugar groups of GM1. This result is in contrast to the dimerization in
the aqueous phase characterized by a random coil to β-sheet transition, which leads to
a β-sheet content of 36%, similar to the content observed in Aβ fibrils. The insertion of
the peptides into the hydrophobic region of the membrane was not observed, and the
membrane was marginally affected [48].

In a fourth study, Fazli et al. performed three MD simulations of 200 ns each at three
temperatures with the OPLS force field for proteins to explore the early interaction steps of
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two separated parallel Aβ40 peptides with the helix-structure content spanning residues
15–37 partially inserted into a DPPC bilayer. Upon association, the helical region becomes
disrupted to two smaller fragments with a kink, and the dimeric Aβ species has two types
of distribution in DPPC at 300, 310 and 330 K. In the first distribution, the two peptides
remain embedded in top leaflet, while in the second distribution, at least one of the peptides
penetrates into the bottom leaflet, leading to the local disordering of the DPPC bilayer [49].

Guo and Wang used atomistic MD simulations for a total of 48 µs to investigate the
effects of cholesterol on Aβ42 dimerization in lipid DOPC bilayers with different molar
ratios of cholesterol (0, 20, and 40 mol %). Cholesterol reduces the time for the formation
of stable dimers and has two effects on Aβ−membrane interactions. Firstly, cholesterol
enhances the extraction of the C-terminal region from the membrane to the bulk solution.
At the ratios of 0 and 20 mol %, Aβ dimers are attached at the membrane−water interface,
and at a ratio of 40 mol %, they are repelled to water. Secondly, cholesterol reduces
Aβ−membrane interactions, thereby augmenting dimeric interactions [50].

Other coarse-grained (CG) 120 µs MD simulations, performed by Parisini et al., demon-
strated the interactions between trimeric or hexameric Aβ40 fibrils with a 100% DPPC
bilayer, a 70% DPPC-30% chol bilayer, or a 50% DPPC-50% chol bilayer. The spontaneous
binding of the Aβ40 fibrils to the membranes was captured with the CHC (residues 17–21),
the K16 residue, and the C-terminal hydrophobic residues involved in the process. More-
over, they showed that while the Aβ40 fibril does not bind to the 100% DPPC bilayer, its
binding affinity to the membrane increases with the amount of cholesterol [51].

Coarse-grained Martini MD simulations, performed by Cheng et al., revealed the
binding of Aβ17–42 fibrillar dimers–pentamers to interfacial liquid-ordered (Lo) and liquid-
disordered (Ld) regions in phase separated lipid rafts with distinct membrane-bound
conformations [52]. CG Martini simulations of several µs, generated by Cruz et al., showed
the role of cholesterol in the binding of Aβ11–42 and Aβ17–42 fibrils to lipid bilayers
containing 30 and 50% cholesterol by promoting electrostatic interactions [53]. By using
atomistic MD simulations, Aβ 12 mers were found to more disrupt a neuronal membrane
than a fibril [54], with the peptide and membrane parameterized by the CHARMM36m
and CHARMM36 force fields, respectively.

3. Detergent Effect of Amyloid-β

Amyloid-β oligomers have a strong detergent effect on lipid bilayers [2]. Cholesterol,
a component of membranes, is a risk factor in AD, being present in AD senile plaques with
a molar ratio of 1:1 [55], and its level in the brain correlating with the severity of dementia
in AD individuals [56].

Nguyen and Derreumaux performed atomistic replica exchange molecular dynamics
and replica exchange with solute tempering on the dimer/trimer of Aβ42 with cholesterol
at a ratio 1:1 [57,58]. They found that the binding spots of cholesterol essentially involve
the CHC and L30-M35 residues. The contribution of D22-K28 and the N-terminus residues
was also detected. Cholesterol is rarely inserted into the aggregates. Rather, cholesterol
molecules are attached as dimers and trimers at the surface of Aβ42 trimers, proposing
that they act as a glue to promote the formation of larger aggregates. The formation of
larger Aβ42 aggregates due to the presence of free cholesterol was confirmed using AFM
images of Aβ42/cholesterol on a lipid bilayer, and it was shown that these aggregates can
accumulate in the bulk solution [59].

The impact of free GM1, abundant in mammalian brains, on the two Aβ isoforms
was investigated in a combined NMR-MD study performed by Brooks et al. This study
revealed the formation of well-ordered, structurally compact GM1+Aβ complexes, altering
Aβ aggregation [60]. The presence of free fatty acids such as lauric acid was found compu-
tationally by Hansmann et al. to stabilize ring-like and barrel-shaped Aβ42 oligomers [61].
Similar to the simulation results of Aβ42/cholesterol, simulations of the Aβ42 monomer
with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) provided evidence that the
unfolded Aβ42 peptide adheres to the lipid cluster rather than embeds into it [62]. MD sim-
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ulations on the µs time scale revealed that three free POPC lipids trigger a disorder-order
(alpha-helix, β-strand) transition in the Aβ42 monomer [48].

4. Amyloid-β Pore Formation

Membrane-embedded Aβ species with membrane conductance, which do not display
a ThT fluorescence signal, can have a wide range of conformations and oligomer sizes [2].
Some form well-defined pores [63–65] made, for instance, of six-stranded β-sheet and
β-sandwich structures (Figure 1), and other species are spherical without any evidence of
discrete channel or pore formation. Atomistic MD simulations showed that many concen-
tric β barrels are consistent with image-averaged electron micrographs [66,67], revealing
the strong role of Aβ β-sheet edge conformations in the permeabilization of the mem-
brane [68]. Interestingly, using MD simulations, quantum mechanics, and experimental
techniques, La Rosa et al. showed that Aβ40 can also form alpha-helix channels through the
GxxG motif [69].

In a recent study, the dynamics of an S-shaped Aβ42 cross-β hexamer model inserted
into a lipid bilayer membrane were explored by Nguyen and Derreumaux using two atom-
istic MD simulations, each two microseconds long [70]. The initial model was characterized
by the CHC and residues 30–42 embedded into a DOPC bilayer membrane (Figure 2).
Structural secondary, tertiary, and quaternary rearrangements were observed, leading to
two distinct metastable species, hexamer and two trimers, accompanied by membrane
disruption and water permeation. The study provides evidence of hexamers and trimers
with the N-terminal residues located in the top and bottom leaflets of the membrane and
a minimal lifetime of several microseconds. Some conformations, but not the majority,
have the CHC and C-terminal hydrophobic residues exposed to the solvent. The MD
simulations also showed that residues 1–10 in both trimers of run 1, in trimer 1 of run 2, and
residues 1–16 in trimer 2 of run 2 were exposed to the solvent (Figure 3). This result is con-
sistent with many simulations of Aβ42 oligomers partially embedded in the membrane [2].
We did not find evidence of β hairpins in the N terminus, as reported for Aβ42 dimers in
DOPC bilayers [71]. Overall, the high solvent accessibility of residues 1–16 may help with
understanding the linking of liposomes through Aβ oligomers, as assessed via cryoelectron
tomography [22].
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Figure 2. Initial conformation of the Aβ42 hexamer. View in the x direction, parallel to the fibril axis.
We show the ribbon structure of the hexamer, the phosphate atoms (tan), and the O21 and O22 atoms
of the glycerol (black). Also shown are the Cα atom of V12 (yellow), Q15 (blue), V18 (orange),
E22 (purple), and K28 (red) [70].



Molecules 2023, 28, 7080 7 of 13

Figure 3. MD-generated insertion depths of the residues belonging to trimer 1 and trimer 2 in two
time intervals: 0–100 ns and 1900–2000 ns. (A,B) MD run 1 at 303 K and (C,D) MD run 2 at 310 K [70].
The three chains in aqueous solution at the upper leaflet of the membrane are referred to as trimer 1
and the other three chains at the lower leaflet of the membrane are referred to as trimer 2.

5. Tau–Membrane Interactions

Zhou et al. reported the computational results of the tau K19 (R1, R3, and R4) monomer
bound to a POPC/POPS membrane using the ff14SB force field for proteins [72]. Based on
previous electron paramagnetic resonance (EPR) results, which established the presence of
one helix in each repeat [73], their biased MD simulations on the microsecond timescale
showed that the three amphipathic helices stably bind to a POPC–POPS membrane and
revealed an important difference in membrane binding stability between the repeats R1 and
R3 and R4. In each amphipathic helix, however, a lysine conserved among the microtubule-
binding regions, along with other charged and polar sidechains, interacts with lipid head-
groups. Furthermore, a conserved valine along with two other nonpolar sidechains insert
into the hydrophobic region of the membrane. These two conserved residues form similar
interactions with microtubules as observed from the cryo-EM microtubule-bound structure
of tau 202–395 [74]. Zhou et al. proposed that this partial mimicry facilitates the transfer of
tau from membranes to microtubules [72].

Nguyen and Derreumaux performed MD simulations of the tau R3-R4 domain
monomer at the surface of a DOPC–DOPS lipid bilayer, with residues 306–378 form-
ing the fibril core of full-length tau alloforms in the brain of individuals with AD [75].
The two simulations showed that the surface of the membrane does not induce β-sheet
formation and leads to an ensemble of structures very different from those in the bulk
solution. They also revealed the dynamic interactions of the membrane-bound state of the
tau R3-R4 monomer, allowing insertion of the PHF6 motif (residues 306–311), and residues
312–318 and 376–378.

As tau dimers are observed in cells and in the cerebrospinal fluid of AD patients [76],
Nguyen and Derreumaux performed MD simulations on the tau R3-R4 domain dimer
starting from a cryo-EM state and a compact globular state (Figure 4). They found distinct
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insertion depths depending on the initial conformation and transient adsorption of the
PHF6 motif on the membrane as the results of the high propensity of PHF6 to form parallel
β-sheets, and insertion of the C-terminal R4 region into the membrane (Figure 5) [77]. There
are therefore differences between the monomer and dimer results. To what extent the dimer
results can be extrapolated to full-length tau remains to be determined, as the R2 repeat
interacts with negatively charged vesicles [38].

Figure 4. The two initial tau 306–378 dimer conformations. In both panels, the phosphate atoms
of the lipid heads are in tan, and we show the van der Waals representation of the side chains of
F378 residue in green. (A) Initial cryo-EM state. (B) Initial globular compact state [77].
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Figure 5. Average insertion depth of each residue of the two tau 306–378 chains using 1950−2000 ns
of the MD simulation starting from the cryo-EM structure (left) and the globular compact structure
(right) [77].

Using 15 µs coarse-grained Martini MD simulations followed by all-atom (AMBER99sb
and Slipid force fields) 200 ns MD simulations with the residues spanning the R2-R3 domain
initially adopting the fibril cryo-EM conformation, the transient interactions of tau K18
(containing the four repeats) oligomers (dimer and tetramer) on three lipid rafts (control
raft, modified CO-raft0containing GM1 clusters on one leaflet (GM-raft), and modified
CO-raft-containing PS clusters on one leaflet (PS-raft)) were investigated. Their raft systems
included DPPC, DLPC, and cholesterol in all cases. It was found that tau K18 prefers to
bind to the boundary domains (Lod) created by the coexisting Lo and Ld domains in the
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lipid rafts. The stronger binding of tau K18 oligomers to the GM1 and phosphatidylserine
(PS) domains was reported, and K18-induced lipid chain order disruption and tau K18
β-sheet formation were detected. The results suggest that GM1 and PS domains, located in
the outer and inner leaflets of the neuronal membranes, respectively, are specific membrane
domain targets of tau oligomers, and the Lod domains are not. Clearly, much longer
all-atom MD simulations are required to identify more stable β-sheet structures on the raft
surfaces [78].

Finally, the interactions of tau fibrils with membrane lipids were studied via a multi-
scale simulation. Based on the CG Martini protocol followed by all-atom CHARMM36 force
field 400 ns MD simulations, Bargava et al. studied the interactions of R3-R4 tau filament
consisting of two protofibrils with 14 membrane systems consisting of POPC, 1-palmitoyl-2-
oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphatidyl-glycerol (POPG) along with cholesterol for seven different compositions. Tau
proteins do not interact similarly with the zwitterionic lipid membranes compared with
the charged lipid membranes, with the negatively charged POPG membranes enhancing
the binding propensity of tau fibrils. Cholesterol addition alters tau binding affinity with
the membrane. The binding of tau fibril induces the loss of the β sheet of the tau residues,
destabilizes β-sheet regions depending on the lipid composition and the percentage of
cholesterol concentration, and changes the membrane properties including thickness and
order parameters of the tails [79].

6. Conclusions

We focused on recent simulations, aimed at understanding the adsorption and inser-
tion modes of the two main amyloid proteins associated with AD in various membrane
models. Our experimental and computational knowledge on the aggregation and structures
of tau isoforms is increasing at a much slower pace than that of Aβ.

Major challenges were identified in the field. For instance, new experimental methods
of biomolecular processes in membranes, spanning the microsecond time resolution and
detecting populations of intermediates below the percent range, would be very useful for
validating the MD-generated models. The impact of fluid flow on lipid bilayers–amyloid
protein interactions should also be investigated both experimentally and computation-
ally, as it is known that cells have extracellular matrices that may have very different
behaviors compared to vesicles and planar lipid bilayers in the absence of membrane
protein receptors.

Most simulations have started from the alpha-helical and fibrillar states, so repeat-
ing the simulations with antiparallel orientations of the peptides and longer timescales
would provide more information on the conformational ensemble and its impacts on the
membrane. The results of recent computations showed that free lipids (cholesterol, GM1)
and fatty acids alter the energy landscape of Aβ42 species, and cholesterol induces the
formation of much larger Aβ42 aggregates, which might generate species more difficult
to clean from the brain’s interstitial system. More information on the large gap between
simulations and in vivo conditions can be found in Ref. [15].
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