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Abstract: The biological target identification process, a pivotal phase in the drug discovery workflow,
becomes particularly challenging when mutations affect proteins’ mechanisms of action. COVID-19
Spike glycoprotein mutations are known to modify the affinity toward the human angiotensin-
converting enzyme ACE2 and several antibodies, compromising their neutralizing effect. Predicting
new possible mutations would be an efficient way to develop specific and efficacious drugs, vaccines,
and antibodies. In this work, we developed and applied a computational procedure, combining
constrained logic programming and careful structural analysis based on the Structural Activity
Relationship (SAR) approach, to predict and determine the structure and behavior of new future
mutants. “Mutations rules” that would track statistical and functional types of substitutions for
each residue or combination of residues were extracted from the GISAID database and used to
define constraints for our software, having control of the process step by step. A careful molecular
dynamics analysis of the predicted mutated structures was carried out after an energy evaluation of
the intermolecular and intramolecular interactions using the HINT (Hydrophatic INTeraction) force
field. Our approach successfully predicted, among others, known Spike mutants.

Keywords: COVID-19; in silico mutation prediction; molecular modeling; HINT

1. Introduction

Identifying a biological target and analyzing its structural characteristics and mech-
anism of action is the first essential step in the drug discovery process. Thanks to the
availability of omics data and three-dimensional protein structures, different computational
approaches have been employed to predict pharmacological targets, assuming that a drug
may interact with proteins characterized by the same mechanism of action and/or similar
binding pocket characteristics [1]. Moreover, the increased development and application of
artificial intelligence techniques led to the implementation machine learning methods in
the drug discovery process to predict new targets and screen for active compounds [2].

The biological target identification process becomes more challenging when mutations
alter the protein mechanism of action, modifying or compromising drug interactions, as
in the case of the COVID-19 pandemic [3], whose rapid spread has prompted researchers
worldwide to analyze its structural and epidemiological characteristics to find efficacious
treatments in a short time [4–8].

Protein mutations are casual and occur with a very low frequency [9,10]. Spike
glycoprotein mutations have proven to affect viral replication, antibody neutralization
susceptibility, and drug efficacy [11,12]. Predicting new possible stable mutations is crucial
for the development of drugs, monoclonal antibodies (mAbs), and vaccines.

The COVID-19 fighting is like the cop and robber’s game. To win, the cop must be
ahead of the robber, predicting his moves. We can distinguish three actors in the COVID-
19 game: the Spike glycoprotein (the robber), the human ACE2 (the victim), and the
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antibodies (the cop). To survive, the mutated Spike glycoprotein must maximize its affinity
toward ACE2 and reduce, through amino acid substitutions or deletions, interactions with
antibodies or drugs.

This work aims to develop a procedure that, starting from chemical structure and
genomic sequence information, can predict a comprehensive set of possible new Spike
mutations evaluated through an intermolecular and intramolecular energy approach.

To reach this goal, we combine a type of artificial intelligence stemming from compu-
tational logic, constraint programming with molecular modeling, and molecular dynamics.

Since the analysis of this game evolution must rely on the quality of a large sequence
dataset, we focused on the repository GISAID (https://www.gisaid.org/), which, on
10 January 2020, released the first complete genome sequence of SARS-CoV-2 and, since
then, has become the main genomic sequence database in the world [13,14]. To date, it has
collected more than 13 M virus sequences. GISAID contained more than 6.9 M sequences
at the beginning of this research work.

Since data uploaded to the repository is collected with different standards and variable
quality, we validated the reliability of such experimental data. In our view, the main
limitation of the GISAID initiative for our purposes is the possibility of loading data from
anywhere without an actual preliminary quality check.

In a recent opinion paper in MedChem Letters [15], we argued about the need to
have a reliable COVID-19 sequences database, and we proposed to adopt big data and
blockchain technologies in a scenario where every National Health Authority is the local
collector, owner, and data-quality responsible.

We identified a remarkable number of unusable strings collected in GISAID after
spending several months deciphering and cleaning up the data. We built a database of 171 K
COVID-19 validated strings, starting from the original database of 6.9 M sequences. The
database was designed as a standard relational SQL database (Supplemental Material S1).

Given the large number of sequences and the potential combinations of mutations to
be considered, we resort to specific techniques from artificial intelligence that can learn rules
from data faster than manual work and use the same rules to generate new hypothetical
and plausible sequences.

Different studies have been recently carried out employing artificial intelligence tech-
niques to predict new possible Spike mutations [16,17]. In this work, we focus on declarative
programming [18–21] and constraint programming, which, in contrast to machine learning
and popular neural networks, allows us to build a model that can be directly understood
and modified. We designed a workflow that mimics human deductive capabilities in
problem-solving: we aimed to automatically deduce logic rules by observing the data we
gathered, to explain and validate them thanks to the Chemistry knowledge base, and finally
to use refined rules to model and generate new possible variants of SARS-CoV-2.

This method was implemented with statistical and chemical analysis due to severe
limitations caused by data quality, even on the validated dataset.

Biological computational analysis was focused on the evaluation of the effect of
extracted mutations, considering protein stability and the impact on interactions with
ACE2 and different classes of antibodies.

2. Results and Discussion

Single nucleotide polymorphisms (SNPs) are the most common genetic alterations
that lead to substitutions, deletions, or insertions in the protein aminoacidic encoded
sequence [22]. Mutations can affect protein structure, stability, and function and sometimes
have been related to pathological conditions and/or drug resistance [23,24].

Among mutated proteins, the COVID-19 Spike glycoprotein is sadly known for its mul-
tiple mutations, sometimes responsible for the virus’s increased diffusion and pathogenic-
ity [25–27], mainly when these mutations affect aminoacidic residues of the receptor bind-
ing domain (RBD), the main antigenic region involved in the interaction with the human
ACE2 [28,29]. The prediction of new possible RBD stable mutations could help conceive
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efficient weapons for pandemic containment, such as developing specific and effective
drugs, vaccines, and/or monoclonal antibodies.

The first step of our research consists of the analysis of the known Spike protein’s
aminoacidic sequences, with a focus on the RBD domain. We retrieved data from GISAID
and collected 6,908,513 sequences updated on 12 January 2022, in FASTA format. We
focused on the aminoacidic sequence and metadata, e.g., the virus collection date and the
world region. After filtering out low-quality non-human regions with no “original” passage
history and redundant sequences, we retained 171,862 sequences and designed a database
to allow some data analysis and extract the rules to create our predictive model.

Statistical analysis revealed the frequency of single nucleotide polymorphisms for
specific amino acids. It allowed us to derive a first set of probabilistic rules describing
the probability of observing a specific mutation at a specific position. The problem is
computationally demanding due to the number of possible combinations and requires a
set of rules that allow and/or avoid specific sub-combinations to reduce the set of non-
plausible combinations. Due to the discussed reliability of the Spike sequence data [15] and
the consequent difficulty in their analysis and evaluation, the structure-activity relationship
plays a critical preliminary role in constructing our predictive method. The evaluation
of the effects of known mutations on the stability of the protein and the interaction with
the target and different classes of antibodies has allowed the identification of potentially
mutable sites and to define the type of substitution to which amino acids of different
positions could go against.

Each aminoacidic sequence generation randomly selects mutated amino acids inde-
pendently. The approach resembles a Montecarlo-like generation, which, however, cannot
control the interrelationships between co-occurrent mutations.

The structural analysis of the effect of known mutations was focused on three funda-
mental points: the stability of the mutated proteins, the interaction with the human target,
and the susceptibility to antibody neutralization.

Intramolecular analysis of mutated receptor binding domains showed that all mutated
proteins are as stable as or more stable than wild-type proteins [30]. This could explain
the virus’s ability to live and replicate despite the considerable number of mutations
characterizing some variants of concern [31–33]. Analyzing the mutations distribution, it is
possible to observe how some residues are highly conserved, especially cysteines (C336,
C361, C379, C432, C391, C525, C480, and C488) involved in sulfide bridges and residues
located into the five ß-sheets of the core region (except for antigenic residues 375 to 379)
that seem to be crucial for the protein stability, compensating for the higher flexibility of
the large random coil regions. These residues were considered non-mutable amino acids
and excluded from the prediction algorithm.

To detect all RBD antigenic residues, we studied the interaction of different antibodies
with a focus on monoclonal ones, divided into four different classes based on their epitope
distribution [34], thanks to the availability of several experimental data sets to validate our
computational predictions.

Modeling the different mutations of the variants of concern, we observed that muta-
tions affect antigenic residues, and some non-conservative substitutions at residues K417,
E484, Q493, G446, Q498, N501, L452, S477, T478, and S371 directly influenced the interac-
tions with one or more different classes without compromising the interaction with ACE2
(Supplemental Materials, S2).

The Spike RBD and the human ACE2 interactions are well-known and character-
ized [35–37]. This involves some hydrogen bonds (N487-Y83, T500-D355, Q493-E35, Y449-
D38, Q498-K353, T500-Y41, Y505-E37), two main salt bridges (K417-D30 and E484-K31),
and some hydrophobic interactions (F486 and Y489 of the RBD with F28, L79 and M82 of
ACE2, as well as L455 and F456 with T27).

Mutated RBD-ACE2 complexes are at least as stable as the wild-type [30]. For this last
point, it is necessary to underline how all the VOCs, except for the alpha variant, which was
characterized by a single mutation, present different substitutions at the RBD residues at
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the same time. Even if some of these could compromise local interactions with ACE2, such
as E484A, that preclude the salt-bridge instauration with residue K31 of the human target,
these negative substitutions occur with others able to optimize the interaction with the
target, such as polar or basic ones, generating additional hydrogen bonds or electrostatic
interactions. Among these, the well-known N501Y guarantees a new π-π interaction with
the residue Y41 of ACE2. In contrast, the introduction of basic residues (Q493R, Q498R,
and Y505H) in Omicron variants is responsible for electrostatic interactions with the target
that present a prevalent negative polarization and/or the establishment of new hydrogen
bonds [35,38], as described in Figure 1.
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Figure 1. Omicron RBD-ACE2 complex stability. Even if the omicron variant is characterized by
a huge number of RBD mutations, the introduction of basic amino acids (blue regions) such as
arginine and histidine generates favorable interactions with ACE2 that present a prevalent negative
polarization (red regions).

All these aspects agree that for a mutation to be established, the RBD must remain
stable, maintain interactions with the target, and reduce affinity toward antibodies.

This structural analysis laid the foundation for the elaboration of our predictive
algorithm. In particular, it allowed us to detect 55 possible antigenic residues that could
be mutated (Figure 2) and that, to simplify the prediction algorithm, were divided into
three different clusters, called A, B, and C, such that the residues of each were 10 Å away
from those of the others (Supplemental Materials S3). Residues belonging to cluster A are
located in the main random coil regions and are mainly responsible for the interactions
with ACE2.

Since Omicron variants are the most common, we hypothesized that the evolution
of these could generate a new variant. Therefore, we developed a reference model char-
acterized by common mutations shared between BA.1 and BA.2: G339D, S373P, S375F,
K417N, S477N, T478K, E484A, Q493R, Q498R, N501Y, and Y505H. The number of mutations
produced was added to the already-imposed Omicron mutations.

Then, we produced the corresponding three-dimensional structures according to the
number of additional mutations reported in Table 1.
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Figure 2. Receptor Binding Domain Main Features: The receptor binding domain (residues 333–526)
is a structural domain responsible for the interaction with human ACE2 and different antibodies.
Cysteines and core region amino acids (red residues) essential for protein stability were excluded
from prediction algorithm development. The receptor binding motif, including residues 438 to 506
(yellow residues), is the region involved in the interaction with ACE2, as shown on the right side.
Antigenic residues (some green and yellow residues) were considered possible mutable residues.

Table 1. Number of generated models for each cluster. Each cluster presents different structures with
different mutations (one to four) added to the reference system.

1 Add.
Mutation

2 Add.
Mutations

3 Add.
Mutations

4 Add.
Mutations

Group A 130 structures 8178 structures = =

Group B 10 structures 33 structures 36 structures =

Group C 33 structures 461 structures 3531 structures 16,002 structures

These generated models were analyzed in HINT (Hydrophatic INTeractions), a force
field that uses the experimental amino acid residues LogPo/w values (partition coefficient
for solute transfer in 1-octanol/water) to calculate intermolecular and intramolecular
interactions [30,39,40]. Each model was compared with the reference system (Supplemental
Materials S4). The HINT score is automatically calculated as a summation of hydropathic
interactions (hydrogen bond, acid-base, hydrophobic, and Coulombic).

In this screening phase, the intramolecular HINT scoring function was used as a
sensitive, reliable, and fast method for evaluating stable mutants. Among the predicted,
there are known additional mutations that characterized the omicron sub-variants that had
been excluded for the construction of the reference structure (BA.1 and BA.2 mutations)
or that characterized the most recent variants, such as BA.4, BA.5, and XE, which have
spread after the beginning of our work. These mutants are at least as stable as the reference
model, as shown in Table 2, underscoring the robustness, sensitivity, and reliability of our
predictive and energy evaluation methods.
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Table 2. Validation phase. Some of the predicted additional mutations characterized shared by most
recent variants, such as omicron subvariants, were excluded from algorithm prediction construction
and unknown at the beginning of this work. They all characterized structures that are at least stable
as the reference model.

Additional
Mutations HINTscore ∆HINTscore Variant

R408S 10,972.15 223.76 BA.2, BA.4, BA.5

L452R 11,552.56 804.17 BA.4, BA.5, XE

D405N 10,978.56 229.72 BA.4, BA.5, XE

G476S 11,384.25 635.86 BA.1

D405N, L452R 10,860.45 112.06 BA.4, BA.5, XE

D405N, R408S 11,047.57 299.18 BA.2, BA.4, BA.5, XE

R408S, L452R 10,818.82 70.43 BA.4, BA.5, XE

S371F 10,926.9 178.51 BA.2, BA.4, BA.5, XE

T376A 11,025.84 277.45 BA.2, BA.4, BA.5, XE

S371F, T376A 11,216.69 468.3 BA.2, BA.4, BA.5, XE

Since additional mutations belonging to cluster A are related to residues of the receptor
binding motif, which include all residues taking part in the interaction with the target, their
effect on the affinity and stability toward hACE2 was analyzed in HINT, considering both
the intermolecular connections (target affinity) and the intramolecular energy (complex
stability). This preliminary analysis allowed the selection of 95 different RBD-ACE2 com-
plexes with higher affinity and stability than the reference complex. A molecular dynamics
simulation was performed to evaluate the stability of each complex over time. Since all the
analyzed VOCs achieved their stability within 125 ns (Figure 3A), the simulation time was
set to 250 ns. The RMSD analysis confirmed the HINT prediction, showing the stability
of all the analyzed complexes. The RMSD of some representative models is reported in
Figure 3B, while all the other data are reported in Supplemental Materials S5.
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3. Materials and Methods

This research work aims at developing and applying a computational procedure able
to predict a comprehensive set of possible new RBD Spike mutations, starting from chemical
structure and genomic sequence information and combining constraint programming with
molecular modeling. Generated mutants were evaluated through an intermolecular and
intramolecular HINT energy approach (Figure 4).
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Figure 4. Computational workflow. COVID-19 sequences were retrieved from the GISAID repository
and organized as a SQL database. Mutation rules were derived from statistical and chemical analysis
and used to develop a procedure based on the constraint programming language. Produced mutations
were analyzed through molecular dynamics and HINT-based analysis.

3.1. Constraint-Based Modeling

We used Minizinc [41], a programming language that models constraint satisfaction
problems. It allows the developer to express constraints in a fast, declarative way (at a high
level).
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We modeled how mutations occur in SARS-CoV-2: each amino acid was represented
by its position in sequence; we enforced positions where no mutation would be generated
(the ones in which we observed few to no occurrences of mutations); for the other ones, we
were able to constrain the potential mutation set to the one we observed inside GISAID
data.

We scored mutations according to the logarithm of the single nucleotide polymorphism
(SNP) frequency to occur, and we maximized the sum of each location’s contribution.
Optimal sequences had a weak correspondence with expected relevant mutations, leading
to the next-generation model.

We replaced the scoring function with a chemistry-based one, considering the pos-
itive or negative interaction with the antibodies and ACE2 protein. We changed the set
constraints to impose Omicron’s mutations occurring inside the Receptor Binding Domain
(RBD), impose conserved positions that could not mutate, and impose mutable ones as the
result of a possible single base change in the DNA triplet that encodes the amino acid.

3.2. Protein Structures Selection

Several structures of Spike protein in complex with the human Angiotensin Converting
Enzyme 2 (ACE2, EC number 3.4.17.23) or different antibodies are available in the Protein
Data Bank (https://www.rcsb.org/).

For our preliminary analysis to evaluate the effect of different mutations on Spike
stability and behavior, we chose the most representative complex of monoclonal antibodies
belonging to different classes and currently approved for the treatment of COVID-19. We
selected X-ray or Cryo-EM structures characterized by a resolution better than 3 Å, a B
value (isotropic) from Wilson Plot lower than 35 Å, and without mutations in the RBD.

Among the structures of Spike-ACE2 complexes, we selected 6M0J, an X-ray diffraction
structure with a resolution of 2.45 Å [37].

3.3. RBD VOC Mutations

Mutations characterizing the receptor binding domain of different variants of concern
(VOC) were retrieved from GISAID: Alpha (B.1.1.7): N501Y; Beta (B.1.351): K417N, E484K,
N501Y; Gamma (P.1): K417T, E484K; N501Y; Delta (B.1.351): L452R, T478K; Omicron 1
(BA.1): G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R,
Q498R, N501Y, Y505H; Omicron 2 (BA.2): G339D, S371F, S373P, S375F, T376A, D405N,
R408S, K417N, N440K, S477N, T478K, E484A, Q493R, Q498R, N501Y, Y505H.

Since omicron variants are widespread, we generated a starting model characterized
by common mutations shared between BA1 and BA2: G339D, S373P, S375F, K417N, N440K,
S477N, T478K, E484A, Q493R, Q498R, N501Y, and Y505H.

3.4. Protein Preparation

Mutations were introduced in the RBD structure using the Pymol wizard mutagenesis
module (https://pymol.org/2/). Proteins were prepared and minimized in Gromacs
v.2021.4 (https://www.gromacs.org), choosing the Amber force field.

Proteins were solvated in a triclinic box of 15 Å radius with a TIP3P water model. Each
system was neutralized and salted to 0.15 M NaCl. Energy minimization was performed
using the steepest descendent minimization algorithm and stopped when the maximum
force was less than 100 KJ/(mol nm).

3.5. HINT Calculation

HINT (Hydrophatic Interactions) is a LogP-based force field [39,40] chosen for the
evaluation of protein stability (intramolecular scoring function) [30,42] and the calculation
of hydrophobic and polar interactions between proteins (intermolecular scoring function).
In this work, it was used to validate the generated three-dimensional models, define the
effect of mutations on RBD stability and its interactions with the human target, and use
different antibody classes to predict new mutations and evaluate their effect.

https://www.rcsb.org/
https://pymol.org/2/
https://www.gromacs.org
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Protein partitioning was performed in HINT under neutral pH conditions, using
the “Dictionary” option and setting a semi-essential hydrogen treatment that explicitly
polarized, unsaturated, and alpha-to heteroatom hydrogens.

The HINT score was calculated, starting from the minimized structure, as a summation
of hydropathic interactions between all atom pairs, considering the hydrophobic atom
constant (a), the solvent accessible surface area (Sasa), and the functional distance behavior
for the interaction (R).

B = ∑ ∑ bij

bij = Si ai Sj aj Rij

For intermolecular calculations, i and j are atoms of two interacting proteins, while for
intramolecular calculations, i and j are two atoms of the same macromolecule where i is not
equal to, covalently bonded to, or involved in a 1–3 interaction with j.

The output analysis reveals specific information about atom-atom interactions: pos-
itive values represent favorable binding situations, while a negative value represents
unfavorable interactions such as acid-acid, base-base, hydrophobic-polar (desolvation),
and steric clashes. Interactions between residue sidechains and their environment are ana-
lyzed as a three-dimensional map that is a backbone angle-dependent library of interaction
profiles that shows interaction types, strength, and optimal 3D position [43,44].

The intramolecular HINT force field has already been employed for the evaluation of
mutated RBD stability and behavior with respect to available experimental data. As HINT
has proven to be a fast and reliable tool to estimate small energy changes related to stability
induced by mutations, it is used for an accurate evaluation of generated mutants’ stability
with a focus on RBD stability (intramolecular analysis) and RBD behavior (RBD-ACE2
intermolecular affinity).

3.6. Molecular Dynamics Simulations

Molecular dynamics simulations were carried out in Gromacs, choosing the Amber
force field. Proteins were prepared as previously described in Section 3.4.

Three steps of 0.1 ns of NVT equilibration were carried out using the Langevin ther-
mostat, followed by 0.5 ns of NPT equilibration to heat the system to 300 K gradually and
set the pressure at 1 bar.

The total simulation time was 250 ns. To analyze the stability of each system during the
simulation time, the root mean square deviation (RMSD), the root mean square fluctuation
(RMSF), and the number of hydrogen bonds between the two interacting chains were
calculated using the gmx rmsdist, gmx rmsf, and gmx hbond, respectively (Supplemental
Materials S5 and S6).

4. Conclusions

In this research, we applied a combined technique of special programming and energy
function estimation to discover new possible COVID-19 mutants produced following rules
from the computational biological analysis of the known mutations extracted from the
GISAID repository.

Because the data collected in the GISAID repository is our milestone in defining
mutation rule prediction, we spent much of our efforts cleaning up this huge database to
extract a reliable data set.

The stability of the generated mutants was considered the first crucial aspect to be
analyzed in determining survival. The HINT force field proved to be a sensitive and reliable
tool that allowed us to quickly select only mutants containing additional mutations com-
pared with those in the stable reference model. Among these, mutations that characterized
the variants of recent diffusion have been predicted, confirming our method’s reliability
and predictive power.
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A deeper analysis of the stability and affinity toward ACE2 was conducted, combining
an energy evaluation of minimized models with molecular dynamics simulation to evaluate
complexes’ stability over time.

Because it is very hard for many labs to produce new Spike mutants, we validated our
approach against wild-type and known variants.

The final goal is to be ready to develop new drugs or new antibodies against new
COVID-19 mutants.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28207082/s1, S1: Database SQL structure; S2: Analysis
of the effect of known mutations with a focus on the interactions with different monoclonal antibodies
to detect all RBD’s antigenic residues; S3: List of the 55 mutable residues; S4: Intramolecular stability
of the generated models; S5: MD analysis of the RBD-ACE-generated complexes; S6: Further MD
analysis.
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