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Abstract: An aqueous Cu2+ and Zn2+ indicator is reported based on copolymerizing aminopyridine
ligands and the environment-sensitive dansyl fluorophore into the responsive polymer poly(N-
isopropylacrylamide) (PNIPAm). The metal ion binding creates charge and solvation that triggers
PNIPAm’s thermal phase transition from hydrophobic globule to hydrophilic open coil. As a basis
for sensing the metal-binding, the dansyl fluorescence emission spectra provide a signal at ca. 530 nm
and a signal at 500 nm for the hydrophobic and hydrophilic environment, respectively, that are
ratiometrically interpreted. The synthesis of the title pyridylethyl-pyridylmethyl-amine ligand
(acronym PEPMA) with a 3-carbon linker to the copolymerizable group, aminopropylacrylamide
(PEPMA-C3-acrylamide), is reported, along with a nonpolymerizable model ligand derivative. The
response of the polymer is validated by increasing temperature from 25 ◦C to 49 ◦C, which causes a
shift in maximum emission wavelength from 536 nm to 505 nm, along with an increase in the ratio
of emission intensity of 505 nm/536 nm from 0.77 to 1.22 (λex = 330 nm) as the polymer releases
water. The addition of divalent Cu or Zn to the indicator resulted in a dansyl emission shift of
10 nm to a longer wavelength, accompanied by fluorescence quenching in the case of Cu2+. The
addition of EDTA to the Cu2+-loaded indicator reversed the fluorescence shift at 25 ◦C to 35 ◦C.
The affinities of Cu2+ and Zn2+ for the PEPMA derivatives are log Kf = 11.85 and log Kf = 5.67,
respectively, as determined by potentiometric titration. The single-crystal X-ray structure of the
Cu2+-PEPMA derivative is five-coordinate, of-geometry intermediate between square-pyramidal and
trigonal-bipyramidal, and is comparable to that of Cu2+ complexes with similar formation constants.

Keywords: ratiometric sensing; copper; zinc; pyridyl ligands; formation constant

1. Introduction

Water contamination due to industrial and agricultural development is a growing
problem. Framed in terms of planetary boundaries [1], freshwater use is presently at a level
of ca. 2600 km3 year–1, which is below an estimated boundary of 4000 km3 year–1; however,
freshwater use is exceeding local boundaries at parts of the planet in North America, Asia,
and Europe [1]. Contaminants that threaten the freshwater supply include aqueous copper,
for which the US Environmental Protection Agency’s accepted maximum level in drinking
water is 1.3 mg/L [2], and in wastewater effluents, no more than 6.5 mg/L [3]. Cu2+ in
amounts of 10–100 µg/L are essential for life [4,5]; however, amounts over the EPA limits
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cause human illness, and the death of aquatic organisms [6]. It is therefore important to
develop methods to monitor Cu2+ in natural waters.

To detect low copper concentrations from small samples, fluorescent indicators are
most desirable [7]. However, Cu2+ is a paramagnetic ion that quenches fluorescence when
bound near a fluorophore [8,9]. The mode of detection is therefore a loss of fluorescence
upon binding, or “turn-off” response [10,11]. A turn-off response cannot be distinguished
from other processes that diminish fluorescence, such as indicator degradation or photo-
bleaching. We have approached the challenges of paramagnetic ion sensing by designing
ratiometric fluorescent Cu2+ indicators that are based on polymer phase transitions mon-
itored by a fluorophore that is remote from the Cu2+-binding site [12–15]. The indicator
structure and its synthesis is shown in Figure 1a, and its mode of action in Figure 1b.
Poly(N-isopropylacrylamide) (PNIPAm) is soluble in water below its LCST due to the
hydrogen bonding between water and the amide group, and it exists in a coiled form.
Hydrogen bonds are broken at the lower critical solution temperature (LCST) of 32 ◦C,
and the polymer precipitates out of solution as a globule form. Complexation of a metal
ion to the polymer at a temperature above LCST makes the polymeric environment more
solvated, which drives the polymer to the soluble coiled form. The environment-sensitive
fluorophore dansyl provides a readout of polymer coil/globule status indicated by a fluo-
rescence shift. As dansyl is subjected to the more hydrophilic coil environment, emission
intensity increases and maximum emission wavelength decreases, which is due to an
increase in hydrogen bonding to the dimethylanilino group of dansyl.
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Figure 1. (a) Synthesis of the indicator 8 from PNIPAm, PEPMA-C3-acryamide (7), and dansyl-en-
acrylamide (5). (b) Pictorial representation of the sensor design with change in temperature and 
addition of metal ion: ligand (orange), fluorophore (purple), polymer backbone (black), and metal 
ion (green). 

Through the design of appropriate Cu2+ ligands, incorporated in the structure of Fig-
ure 1a, we seek to detect specific ranges of Cu2+ concentration. The range to be monitored 
is determined by the concentration of aqueous, unligated Cu2+, and is prescribed by Cu2+ 

Figure 1. (a) Synthesis of the indicator 8 from PNIPAm, PEPMA-C3-acryamide (7), and dansyl-en-
acrylamide (5). (b) Pictorial representation of the sensor design with change in temperature and
addition of metal ion: ligand (orange), fluorophore (purple), polymer backbone (black), and metal
ion (green).

Through the design of appropriate Cu2+ ligands, incorporated in the structure of
Figure 1a, we seek to detect specific ranges of Cu2+ concentration. The range to be mon-
itored is determined by the concentration of aqueous, unligated Cu2+, and is prescribed
by Cu2+ speciation in natural waters and the uptake of copper by aquatic organisms [16].
Current theories of environmental copper toxicity focus on its bioavailability, referred to
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as the biotic ligand model (Figure 2). The copper in natural waters is usually bound to
natural aqueous ligands, particularly to the carboxylate groups of humic and fulvic acid.
Referred to as “dissolved organic carbon” (DOC), these acids’ affinity for Cu2+ yields an
approximate concentration of free Cu2+ in the 100 nM range. In the example of toxicity to
fish species, copper binds to carboxylate groups of membrane glycolipids, which thereby
fatally disrupts the Na+ ion regulatory process [17–19]. The toxicity of copper is therefore a
question of competition for copper between the natural ligands in water and the ligands of
the organism, both of which contain carboxylate ligands.
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solved organic carbon) and on the gill surface, referred to as a biotic ligand.

Herein, we report indicator development using the ligand (PEPMA-C3-acrylamide)
(Scheme 1) and the methodology of Figure 1b. The design of the base Cu2+–ligand, PEPMA,
was inspired by the desire to create an asymmetric bonding environment for Cu2+. PEPMA
binds Cu2+ providing two different ring sizes, one five-membered and one six-membered,
which can accommodate the differences in Cu2+–ligand bond lengths in accord with the
Jahn–Teller effect.
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2. Results and Discussion
2.1. Synthesis and Characterization of PEPMA-C3-Acrylamide, the PEPMA-C3-Isobutyramide
Model Ligand, and the Indicator Polymer 8

In order to use PEPMA in a polymeric indicator, it was necessary to prepare PEPMA-
C3-acrylamide 5. Acrylamide 5 was synthesized via condensation of 2-(2-ethylamino)
pyridine and 2-pyridinecarboxyaldehyde followed by in situ reduction with NaBH4 to
obtain the corresponding secondary amine 1 (Scheme 1). Because the attachment of the
coordinating N to the carbonyl of the acryloyl group would reduce its basicity and therefore
the ligand affinity for Cu2+, a three-carbon spacer unit was incorporated between the metal-
coordinating motif and the acrylamide group. Michael addition between 1 and acrylonitrile
afforded 2, which was then reduced to primary amine 3 with Raney-Ni and NaBH4.
The addition of isobutyryl chloride or acryloyl chloride to 3 afforded the PEPMA-C3-
isobutyramide model ligand 4 or the PEPMA-C3-acrylamide ligand 5, respectively. Ligand
4 was prepared for structural studies because the acryloyl group present in 5 would be
unstable during metal complexation studies. The Cu2+-complexation properties of PEPMA
in ligand 4 were verified by a Job’s plot study, which indicated maximum absorbance at
approximately 1:1 metal:ligand ratio (Supplementary Materials).

To incorporate the fluorescent group dansyl into the indicator, a polymerizable deriva-
tive was prepared by the addition of ethylenediamine to dansyl chloride, followed by
amidation with acryloyl chloride to afford 7. Copolymerization of ligand 5 and fluorophore
7 with N-isopropylacrylamide afforded the target metal ion indicator 8 (Figure 1a). The
indicator was prepared with 4.3 mol % of PEPMA-C3-acrylamide and 2.35 mol % of the
dansyl fluorophore, as informed by 1H NMR (Supplementary Materials). Monomer incor-
poration percentages of PEPMA ligand 5 and dansyl fluorophore 7 were determined as
4.1% and 2.1%, respectively, as determined with 1H-NMR (Supplemental Materials). An
average molecular weight of 34,000 g/mol was determined via diffusion order spectroscopy
(DOSY) NMR (Supplementary Materials) [19].

2.2. Structural Studies

To determine bonding modes of the PEPMA-C3-amide motif with Cu2+, a complex
was formed between the PEPMA model ligand 4 and Cu(ClO4)2, isolated as single crystals,
and subjected to single-crystal X-ray crystallographic study. We observe two independent
complexes, (a) and (b), of Cu bound to 4 and to one ClO4 counterion in the asymmetric
unit (Figure 3). In both complexes, a distorted trigonal-bipyramidal coordination geometry
obtains. In form a, Cu2+ is coordinated to the three nitrogen donor atoms of PEPMA with
bond distances Cu2-N6 = 2.037(5) Å, Cu2-N7 = 1.991(4) Å, and Cu2-N10 = 1.979(3) Å. Cop-
per is also coordinated to water and one perchlorate molecule, where the bond lengths for
Cu2-O24 and Cu2-O25 are 2.055(3) Å and 2.128(6), respectively. Form b is also coordinated
to the three nitrogen atoms from the PEPMA-C3-model ligand, but contrasts to a because
the oxygen of the amide group, O4, is coordinated to copper in place of water. The bond
lengths for Cu1-N1, Cu1-N2, Cu2-N3, Cu1-O4, and Cu1-O5 are 1.962(3) Å, 2.042(4) Å,
1.956(3) Å, 2.097(3) Å, and 2.164(3) Å, respectively.

Interestingly, the coordination sphere of form b reveals the flexibility of the three-
carbon spacer unit that can allow coordination of the amide oxygen, which may also
occur in the polymeric indicator 8. Flexibility in the coordination sphere of form a is also
seen in the disorder of oxygens in the coordinated perchlorate anion. In other aspects,
the distortions from the ideal trigonal-bipyramid are seen in both the a and b forms of
[Cu(8)(ClO4)]+, marked by the angles N10-Cu2-N7 = 171.9(2)◦ and N6-Cu2-N7 = 83.8(2)◦

in a compared with N1-Cu1-N2 = 82.6(1)◦ and N1-Cu1-N3 = 168.3(1)◦ in b, similarly
distorted from the values of 180◦ and 90◦. These are typical behaviors of Cu2+ coordination
complexes [20].
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2.3. Formation Constants of PEPMA-C3-Isobutyramide (4) with Cu2+ and Zn2+

To estimate the working concentration of indicator 8 for Cu2+ and its selectivity for
Cu2+ vs. the other transition metal dication in wastewater, Zn2+, we measured formation
constants of 4 for Cu2+ and Zn2+. Potentiometric titrations to measure pKas and formation
constants were performed on the PEPMA-C3-isobutyramide 4 rather than 5 because it
more closely resembles the ligand substituents once polymerized. Because this technique
is based on the competition of H+(aq) for M2+, pKas were measured first. The pKa1
and pKa2 of 4 were 3.84 and 7.45, respectively (Figure 4A). Because of the weak basicity
(pKa1 = 3.84) of 4 and its relatively high affinity for Cu2+, 4 makes a complex with Cu2+

as soon their solutions are mixed. To allow for competition between protons and metal
ions, the more basic ligand tris(2-aminoethyl) amine (TREN) was used as a competing Cu2+

ligand for the potentiometric titrations (Figure 4B) [21].
Distribution analysis revealed that Cu(PEPMA-C3)2+ is the dominant species at acidic

pH (below pH 6), followed by formation of Cu(TREN)2+ and copper hydroxide species at
higher pH values (Figure 4C). The data were fitted via least squares analysis to afford a Cu2+

affinity of log Kf = 11.65. To assess competition between Zn2+ and Cu2+ for the indicator
ligand, we performed a potentiometric titration to determine the formation constant of 4
for Zn2+. The speciation diagram (Figure 4D) of Zn2+ and 4 showed that free Zn2+ ions are
the dominant species at acidic pHs. Increasing pH resulted in the formation of [Zn(L)]2+

with a log Kf of 5.67 at approximately pH 6, followed by formation of Zn(TREN)2+ and
ZnOHTREN+ at higher pH. These studies showed that 4 is selective for Cu2+ relative to
Zn2+ in accordance with the Irving–Williams series [22].
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Figure 4. Speciation plots for formation constant determinations of the PEPMA-C3 model ligand 4
with I = 0.1 NaNO3 at 25 ◦C. (A): pKa determination of the PEPMA-C3-model ligand 4 (here denoted
as PEPMA-C3 or i-BuPEPMA-C3) with 2 mol equiv. of HNO3. [ML] = 1.86 mM and I = 0.1 NaNO3

at 25 ◦C. (B) Equation for formation constant determination; here, 4, denoted as L. TREN, is used
as a competing ligand: [M(L)x]2+ + [TRENH3]3+. Ý [M(TREN)]2+ + LH+ + 2H+. (C): Distribution
diagram of the PEPMA-C3-model ligand 4 with Cu2+ and TREN species. [Cu2+] = [4] = [TREN•3HCl]
= 1.86 mM. (D): Distribution diagram of PEPMA-C3 model ligand 4 with Zn2+ and TREN species.
[Zn2+] = [4]= [TREN•3HCl] = 1.86 mM.

2.4. Thermally Dependent Fluorescence of Indicator 8 Alone and in Presence of Metal Ion

To evaluate the indicator 8, the phase transition LCST behavior of the PNIPAm copoly-
mer was first measured in the absence of metal ion using the shift of the dansyl fluorophore’s
maximum emission intensity upon increasing temperature (Figure 5). A solution containing
0.005 g/L of 8 in 0.1 M 2-(N-morpholino)ethanesulfonic acid (MES) buffer at pH 6.0 was an-
alyzed for its emission properties. The ratio of emission intensity at 536 nm and 505 nm was
monitored to observe the relationship between intensity ratio and temperature (Supplemen-
tary Materials, Figure S1). Upon increasing temperature from 25 ◦C to 49 ◦C, we observed
a blue shift in maximum emission wavelength from 536 nm to 505 nm and an increase in
the ratio of emission intensity (I505 nm/I536 nm) from 0.77 to 1.23. This corresponds to the



Molecules 2023, 28, 7097 7 of 15

expected PNIPAm thermal phase transition, whereby increasing temperature drives the
polymer toward the globule state and results in a more hydrophobic environment around
the dansyl fluorophore.
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Figure 5. Fluorescence spectra of the indicator 8 (0.1 M MES buffer, pH 6.0) as a function of increasing
temperature. λex = 330 nm; excitation slit width = 10; and emission width = 10. (a) Addition of
0.01 mM of Cu2+ to 8, 0.005 g/L; (b) addition of 0.01 mM of Zn2+ to 8, 0.005 g/L; (c) temperature-range
fluorescence spectrum of indicator only, 0.005 g/L; (d) full scale fluorescence spectrum of indicator
only, 0.005 g/L, 31 ◦C.
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The response of indicator 8 to Cu2+ was obtained at 0.01 mM Cu2+ added to 0.005 g/L
of 8 in MES buffer at pH 6.0 (Figure 5). A red shift of approximately 40 nm in the maxi-
mum emission wavelength with increasing temperature from 25 ◦C to 49 ◦C is observed,
indicating that Cu2+ produces the desired ratiometric response. Relative to the measured
Cu2+ formation constant for the model ligand 4 of log Kf = 11.65, the amount of Cu2+

required for a response in these studies seems high because the corresponding dissociation
constant Kd of 10−11.65 would indicate binding of submicromolar Cu2+. However, we
have observed in the past that binding affinities are decreased for polymer-bound ligands,
likely because a more hydrophobic environment exists which destabilizes the formation of
catalytic complexes [13]. Addition of 0.01 mM Zn2+ to the aqueous indicator (0.005 g/L) at
25 ◦C yields a lesser red shift of 10 nm, consistent with our observation of a smaller Kf for
[ZnPEPMA]2+ relative to [CuPEPMA]2+ (Figure 5).

2.5. Indicator Response to Aqueous Cu2+and Zn2 at Fixed Temperature+

The indicator 8 response to added Cu2+ and Zn2+ was determined via fluorescence
titration at 45 ◦C (Figure 6). The shift of the dansyl fluorescence maxima was used to obtain
calibration curves for the metal ions. The approximate limit of detection (LOD) for either
metal ion is 500 µM, or approximately 31 µg/mL.
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2.6. Selectivity of the Metal Indicator for Cu2+ Relative to Ni2+, Fe2+, and Zn2+

Indicator selectivity for Cu2+ was studied via addition of a competing metal ion to the
Cu2+-indicator bound form. First, the ability of the indicator to respond to Ni2+ and Fe2+

was checked (Figure 7A), indicating that the fluorescence maximum of Ni2+ was similar
to Zn2+ at ca. 540 nm and the maximum of Fe2+ at 550 nm. Next, a solution of the Cu2+-
complexed indicator was treated with an equal concentration of one of the ions Fe2+, Ni2+,
or Zn2+. No change in the fluorescence response of the indicator was observed, consistent
with the inability of these ions to compete with or disturb the response to copper(II).
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2.7. Reversibility of the Metal Indicator

To assess the suitability of this indicator for dynamic measurements of metal ion
concentration, reversibility of the response was studied. Ethylenediaminetetraacetic acid
(EDTA), a Cu2+ chelating agent, was added to 0.005 g/L 8 containing 10 µM Cu2+. Below
the LCST, one equivalent of EDTA was able to essentially quantitatively remove the Cu2+

from 8 (Supplementary Materials, Figure S1) within a time frame of 5 min. However, at
and above the LCST, an excess concentration of about 15-fold EDTA was needed in order
to regain comparable fluorescence emission intensities, for which a time of about 25 min
was required (Figure 8). This was expected because the globular polymer form can present
a great kinetic barrier to Cu2+ removal relative to the coiled form. This demonstrates the
reversibility of Cu2+ binding and suggests that the system may be used to detect slow
changes in Cu2+ concentrations at 35 ◦C and more rapid changes at 25 ◦C. Additionally,
this supports the hypothesis that 8 may be regenerated with EDTA treatment and used for
subsequent testing.
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3. Discussion and Conclusions

This work has demonstrated a novel ratiometric indicator of Cu2+ and Zn2+ based on
a high-affinity ligand that modulates polymer conformation upon metal binding, resulting
in a shift in maximum fluorescence. Due to the quenching nature of the Cu2+ ion, many
studies have sought to create turn-on sensors based on structural changes in the sensor.
Thus, for example, a BODIPY-adamantyl fluorophore is quenched via self-assembly with
bovine serum albumin (BSA) into nanoparticles, which, in turn, are decomplexed by
Cu2+, resulting in a turn-on response to copper(II) [23]. This unique system is of interest
for biological environments which do not denature BSA. Another useful strategy is an
activity-based one, in which Cu2+ causes or allows a chemical transformation that may
lead to a fluorescence enhancement. Fluorescent spirobifluorenes form complexes with
borderline-to-soft bases, including Cu2+, Hg+, and Pb2+, with resultant quenching that
can be reversed by competitive complexation with cyanide, which allows nonselective
Cu2+ sensing but requires (or also detects) the cyanide ion [24]. Unlike many irreversible
copper-mediated reactions, the complexation in this system is reversible, allowing for
dynamic concentration sensing.

Our PEPMA-C3-ligand-based indicator 8 has a measured Cu2+ affinity of ca. log 11,
which is compatible with amounts of bioavailable Cu2+ in natural waters and the expected
preference for Cu2+ over Zn2+. The present work studied zinc detection only as a control
metal ion for the sensor, but many turn-on zinc sensors exist because Zn2+ does not quench
fluorescence [25–27]. The present sensor is reversible, and therefore can be viable for use in
various aqueous Cu2+ systems where concentrations can fluctuate. The suitability for use
in natural waters will require possible adjustments to this system; for example, an increase
in the amount of chelator in the PNIPAm framework may yield greater sensitivity and a
more rapid response. The present studies give insight towards the design of an indicator
with potential application in monitoring Cu2+ concentration in diverse systems, and with
the potential to regenerate the system through treatment with a small molecule chelator.

4. Materials and Methods
4.1. General

All materials listed below were of research grade or a spectro grade in the highest pu-
rity available and were generally used without purification except 2-pyridinecarboxaldehyde,
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which was distilled, and acrylonitrile, which was passed through a plug of basic alumina.
1H and proton-decoupled 13C NMR were obtained using a Varian Mercury 400 MHz NMR
instrument, and chemical shifts are reported in ppm relative to the deuterated solvent used.
Elemental analysis was performed by Atlantic Microlabs (Atlanta, GA, USA). Mass spectral
data were obtained on a Bruker AmaZon SL ion trap LC/MS (Northwestern University).
X-ray crystallography was performed on a Bruker APEX-II CCD Diffractometer (UC San
Diego). Potentiometric titrations were performed using a 785 DMP Titrino equipped
with an Accumet double injection pH electrode and thermally regulated titration vessel.
Formation-constant data were evaluated using the Hyperquad2008 program suite [28]. The
fluorescence spectra were recorded using a Cary Eclipse fluorescence spectrophotometer
with 3 cm3 quartz cuvette (1 cm pathlength).

Caution! Perchlorates of metal complex cations have been known to explode. No
explosions occurred during this work.

4.2. Synthesis of Compounds
4.2.1. N-(2-pyridinylethyl)-2-pyridinemethanamine (PEPMA) (1)

2-(2-ethylamino)pyridine (2.10 g, 17.2 mmol) and 2-pyridinecarboxaldehyde (2.018 g,
18.87 mmol) were combined in MeOH (30 mL) and stirred at room temperature under
nitrogen atmosphere for 2 h. Then, sodium borohydride (0.705 g, 18.6 mmol) was added
slowly and the mixture was stirred at room temperature for 24 h. After 24 h, the yellow
solution was concentrated under reduced pressure and the resulting yellow residue was
dissolved in water (ca. 20 mL). The obtained solution was acidified to pH ca. 4 via dropwise
addition of 6 M HCl. The aqueous layer was extracted with CHCl3 (2 × 20 mL). Then, the
aqueous layer was basified to pH ca. 11 via dropwise addition of 2 M NaOH. The basic
solution was extracted with CHCl3 (3 × 15 mL). The extracted organic layer was dried
over magnesium sulfate, vacuum filtered, concentrated via rotary evaporator, and dried to
yield the product as a brown oil (3.223 g, 15.11 mmol, 88%). 1H NMR (400 MHz, CDCl3)
δ 8.54 (d, J = 4.9 Hz, 2H), 7.60 (d, J = 7.78 Hz, 2H), 7.34 (m, 1H), 7.30 (m, 3H), 3.95 (s, 2H),
3.06 (m, 4H), 2.14 (s, N,H 1H).13C NMR (101 MHz, CDCl3): 160.40, 160.10, 149.50, 149.43,
136.54, 136.46, 123.43, 123.31, 121.99, 121.37, 55.24, 49.14, 38.72; Exact mass calculated for
C13H15N3 [M-H]−, 213.13. Found, 213.98.

4.2.2. 3-((2-(pyridin-2-yl)ethyl)(pyridin-2-ylmethyl)amino)propionitrile (2)

Acrylonitrile (0.687 g, 12.8 mmol) was filtered through a plug of basic alumina and
added to a 100 mL round bottom flask equipped with a Teflon-coated stir bar. Ligand 1
(1.3702 g, 6.14 mmol) and MeOH (30 mL) were added to the flask, respectively. The reaction
mixture was refluxed under N2 atmosphere for 72 h. After cooling, the resulting mixture
was concentrated via rotary evaporator and vacuum dried to yield the product as a brown
oil (1.524 g, 5.726 mmol, 93%). 1H NMR (400 MHz, CDCl3): 8.51 (2H, m), 7.61 (2H, m),
7.39 (1H, m), 7.15 (3H, m), 3.87 (2H, s), 3.02 (4H, m), 2.89 (2H, t, J = 6.8 Hz), 2.45 (2H, t,
J = 6.9 Hz). 13C NMR (101 MHz, CDCl3): 160.05, 159.25, 149.76, 149.45, 149.12, 136.82,
136.55, 123.72, 123.11, 122.40, 119.04, 64.55, 60.30, 54.11, 49.81, 36.25, and 16.67; Exact mass
calculated for C16H18N4 [M-H]−, 266.15. Found, 266.07.

4.2.3. N-(2-(pyridin-2-yl)ethyl)-N-(pyridin-2-ylmethyl)propane-1,3-diamine (3)

To a 50% suspension of active Raney-Ni (8.1 g) in water (ca. 190 mL), we added a
solution of 2 (13.84 g, 52 mmol) in MeOH (225 mL). The resulting mixture was vigorously
stirred and NaBH4 (4.04 g, 106 mmol) in 8 M of NaOH (57 mL) was added at such a rate
as to maintain temperature at 60 ◦C. After the addition, the reaction was stirred overnight
at room temperature. Raney-Ni catalyst was removed via filtration through Celite and
the solvent was removed under reduced pressure. A portion of 8 M NaOH (57 mL) was
added subsequently to the residue, which was then extracted with CH2Cl2 (5 × 50 mL).
The organic layers were combined and dried over anhydrous Na2SO4. After filtration,
the organic layer was concentrated via rotary evaporator and vacuum dried to yield the



Molecules 2023, 28, 7097 12 of 15

product as brown oil (7.500 g, 27.73 mmol, 53.35%). 1H NMR (400 MHz, CDCl3): 8.51 (2H,
d, J = 5.0 Hz), 7.57 (2H, d, J = 7.6 Hz), 7.33 (1H, m), 7.11 (3H, t, J = 7.4 Hz), 3.80 (2H, s), 2.94
(4H, m), 2.61 (4H, m), 1.61 (2H, m). 13C NMR (101 MHz, CDCl3): 160.82, 160,52, 149.34,
149.02, 136.44, 136.28, 123.46, 122.89, 121.913, 121.21, 60.71, 54.49, 51.85, 40.35, 36.07, 31.32;
Exact mass calculated for C16H22N4 [M − H]−, 270.18. Found, 271.09.

4.2.4. N-(3-((2-(pyridin-2-yl)ethyl)(pyridin-2-ylmethyl)aminopropylisobutyramide (4)

Triethylamine (8.0 mL, 56 mmol) and 3 (4.0 g, 12 mmol) were dissolved in CH2Cl2
(80 mL). The resulting mixture was stirred in at 0 ◦C for 10 min. Isobutyryl chloride (1.36 mL,
13.0 mmol) was then added slowly and the reaction was stirred at room temperature. After
24 h, the reaction mixture was dissolved in 0.1 M HCl (150 mL) and extracted with CH2Cl2
(3 × 50 mL). The organic layers were combined, dried with anhydrous Na2SO4, filtered,
and concentrated via rotary evaporator to yield crude product, which was then purified
with alumina column chromatography (EtOAc:hexanes 9:1) to afford the product as a
yellow oil (1.787 g, 30%). TLC (alumina), Rf = 0.30. 1H NMR (400 MHz, CDCl3): 8.48 (2H,
m), 7.66 (1H, t, J = 5.7 Hz), 7.56 (1H, t, J = 7.7 Hz), 7.47 (1H, m), 7.14 (2H, m), 7.05 (1H, d,
J = 7.8 Hz), 6.97 (1H, d, J = 7.8 Hz) 3.70 (2H, s,), 3.25 (2H, t, J = 5.9 Hz), 2.95 (2H, t, J = 6.6 Hz),
2.85 (2H, t, J = 6.6 Hz), 2.66 (2H, t, J = 6.2 Hz), 2.43 (1H, m), 1.70 (2H, t, J = 6.2 Hz), 1.15 (6H,
d, J = 6.9 Hz). 13C NMR (101 MHz, CDCl3): 177.20, 160.63, 159.65, 148.89, 148.67, 136.38,
136.26, 123.33, 122.76, 121.88, 121.18, 59.90, 54.65, 51.24, 37.40, 35.67, 35.36, 26.11, 19.79;
Exact mass calculated for C20H28N4O [M − H]−, 340.23. Found, 340.19.

4.2.5. N-(3-((2-(pyridin-2-yl)ethyl)(pyridin-2-ylmethyl)aminopropylacrylamide
(PEPMA-C3-acrylamide) (5)

Triethylamine (7.0 mL, 51 mmol) and 3 (3.00 g, 11 mmol) were dissolved in CH2Cl2
(75 mL) and stirred at 0 ◦C for 10 min before adding acryloyl chloride (1.07 g, 11.88 mmol).
The resulting mixture was stirred at room temperature for 24 h. The solvent was removed
under reduced pressure and the resulting crude mixture was washed with 0.1 M HCl
(150 mL). The aqueous layer was extracted with CH2Cl2 (3× 50 mL), and the organic layers
were dried with anhydrous Na2SO4. After filtration, the organic layer was concentrated
via rotary evaporator to yield crude product, which was then purified by alumina column
chromatography (EtOAc, 100%) to afford the product as a yellow oil (1.32 g, 37%). TLC
(alumina) Rf = 0.38. 1H NMR (400 MHz, CDCl3): 8.47 (2H, d, J = 4.9 Hz), 7.55 (1H, t,
J = 7.7 Hz), 7.43 (1H, t, J = 7.7 Hz), 7.12 (2H, m), 7.03 (1H, d, J = 7.8 Hz), 6.88 (1H, d,
J = 7.8 Hz), 6.29 (2H, m), 5.57 (1H, dd, J = 8.7 Hz), 3.65 (2H, s), 3.35 (2H, t, J = 5.9), 2.93 (2H,
m), 2.82 (2H, t, J = 6.7), 2.69 (2H, t, J = 6.0 Hz), 1.76 (2H, t, J = 6.0 Hz). 13C NMR (101 MHz,
CDCl3): 165.94, 160.85, 159.70, 149.14, 148.74, 136.45, 136.45, 131.82, 125.32, 123.57, 122.91,
122.09, 121.42, 59.97, 55.04, 51.58, 37.84, 35.91, 25.88; Exact mass calculated for C19H24N4O
[M − H]−, 324.20. Found, 324.16.

4.2.6. N-(2-aminoethyl)-5-(dimethylamino)naphthalene-1-sulfonamide (6)

A solution of ethylenediamine (5.560 mL, 83.00 mmol) and dry THF (20 mL) was
cooled at 0 ◦C. After 10 min, dansyl chloride (0.500 g, 1.85 mmol) in dry THF (5 mL) was
added dropwise over a period of 1.5 h. After stirring at room temperature for 2 h, 1.0 M
NaOH (5 mL) was added. THF was removed on the rotary evaporator and the aqueous
solution was extracted with CH2Cl2 (3× 20 mL). The combined organic extracts were dried
over anhydrous Na2SO4 and filtered. The solvent was removed under reduced pressure
and the resulting crude material was recrystallized from a 1:1 benzene: hexanes mixture
to afford a light-yellow solid (0.187 g, 34%). 1H NMR (400 MHz, CDCl3) δ 8.54 (dt, J = 8.5,
1.1 Hz, 1H), 8.34–8.22 (m, 2H), 7.55 (m, 2H), 7.19 (dd, J = 7.6, 0.9 Hz, 1H), 2.89 (m, 8H), 2.70
(m, 2H). 13C NMR (101 MHz, CDCl3) δ 152.25, 134.86, 130.65, 130.11, 129.92, 129.83, 128.62,
123.42, 118.90, 115.42, 45.73, 45.64, 41.00.
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4.2.7. N-(2-(5-(dimethylamino)naphthalene-1-sulfonamido)ethyl)acrylamide (7)

Ligand 6 (0.1868 g, 0.605 mmol) and triethylamine (0.0677 g, 0.670 mmol) were dis-
solved in dry CH2Cl2 (50 mL). The resulting mixture was cooled at 0 ◦C, and acryloyl
chloride (0.0606 g, 0.669 mmol) was added dropwise. After stirring for 5 h at room temper-
ature, the precipitate was removed by filtration and the filtrate was concentrated under
reduced pressure to yield crude product, which was then purified via silica gel column
chromatography (EtOAc, 100%) to afford a yellow solid (0.1425 g, 68%). 1H NMR (400 MHz,
CDCl3) δ 8.54 (d, J = 8.9 Hz, 1H), 8.25 (d, J = 8.9 Hz, 2H), 7.60–7.47 (m, 2H), 7.17 (d, J = 7.6 Hz,
1H), 6.34 (t, NH, J = 5.8 Hz, 1H), 6.16 (dt, J = 16.9, 0.9 Hz, 1H), 5.97–5.85 (m, 2H), 5.58–5.50
(m, 1H), 3.38 (dt, J = 5.7 Hz, 2H), 3.07 (dt, J = 5.8 Hz, 2H), 2.88 (d, J = 0.5 Hz, 6H). 13C NMR
(101 MHz, CDCl3) δ 166.53, 152.31, 134.44, 130.94, 130.61, 130.15, 129.89, 129.68, 128.85,
126.95, 123.42, 118.80, 115.52, 45.64, 43.28, 39.58.

4.2.8. [Cu(4)](ClO4)2•0.5 H2O

Cu(ClO4)2•6H2O (0.025 g, 0.067 mmol) in MeOH (2 mL) was added to ligand 4 (0.023 g,
0.068 mmol) in MeOH (2 mL), causing a color change from pale blue to deep blue. Vapor
diffusion of Et2O into this solution (24 h) afforded blue crystals. These were isolated via
decantation of solvent and air-dried at ambient temperature, yield 0.029 g (70%). Anal.
Calcd (%) for C20H29Cl2CuN4O9.5: C, 39.25; H, 4.74; N, 9.16. Found: C, 39.01; H, 4.52; N,
9.01. UV (MeOH) 698 nm (ε = 110.5) MS m/z 503.32 (M-ClO4-0.5 H2O).

4.3. Polymer Synthesis

General procedure for polymerization: NIPAM (0.9261 g, 8.184 mmol), PEPMA-
C3-acrylamide 5 (0.1427 g, 0.44 mmol), dansyl acrylamide 7 (0.06115 g, 0.176 mmol),
2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (3.21 mg, 8.8 µmol), and azo-
bisisobutyronitrile (AIBN) (0.1445 mg, 0.88 µmol) were dissolved in DMF (5 mL). The
resulting solution was purged with N2 for 30 min at room temperature and brought to
70 ◦C for 24 h. The resulting polymer was dialyzed in water for 3 days. Water was removed
and the polymer was dried on the vacuum before characterization with 1H NMR and
DOSY [19] NMR.

4.4. Structural Studies

Single crystals of C40H58Cl4Cu2N8O19 were obtained by vapor-phase diffusion of Et2O
into a MeOH solution of the complex. A suitable crystal was selected and mounted on a
Bruker APEX-II CCD diffractometer. The crystal was kept at 100.0 K during data collection.
Using Olex2 [29], the structure was solved with the ShelXS [30] structure solution program
using direct methods and refined with the ShelXL [31] refinement package using least
squares minimization.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/molecules28207097/s1: 1H NMR, 13C NMR, and DOSY spectral plots;
fluorescence spectra, and crystal structure data. The structure data are also deposited with The Cam-
bridge Crystallographic Data Centre: CCDC 2221208 contains the supplementary crystallographic
data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/structures, accessed 14 October 2023.
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