Assessing the In Vitro and In Vivo Performance of L-Carnitine-Loaded Nanoparticles in Combating Obesity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Evaluation of Quantification
2.2. NLC Preparation
2.2.1. Lipid and Surfactant Screening Study
2.2.2. Evaluation of the Optimal Formulation
2.3. Morphological Evaluation of NLCs
2.4. Ex Vivo Drug Release Studies
2.5. In Vivo Study
2.6. OFT Data
2.7. Immunohistochemistry Studies
2.8. Cell Viability and Toxicology Study
3. Materials and Methods
3.1. Materials
3.2. Chromatographic Conditions
3.3. Screening Drug and Lipid
3.4. Selection of the Optimal Formulation
3.5. Preparation of LC-NLC Formulation
3.6. Characterization of the NLCs
3.6.1. Particle Size, Distribution, and Zeta Potential
3.6.2. Encapsulation Efficiency
3.6.3. Morphological Evaluation of NLCs
3.6.4. Ex Vivo Release Study
3.7. In Vivo Study
3.7.1. Open-Field Test
3.7.2. Immunohistochemistry Assay
3.8. Cell Viability and Toxicology Study
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Stienstra, R.; Duval, C.; Muller, M.; Kersten, S. PPARs, Obesity, and Inflammation. PPAR Res. 2007, 2007, 95974. [Google Scholar] [CrossRef] [PubMed]
- Mahase, E. Global cost of overweight and obesity will hit $4.32tn a year by 2035, report warns. Br. Med. J. Publ. Group 2023, 380, p523. [Google Scholar] [CrossRef] [PubMed]
- Federation, T.W.O. World Obesity Atlas 2023. Available online: https://s3-eu-west-1.amazonaws.com/wof-files/World_Obesity_Atlas_2023_Report.pdf (accessed on 28 May 2023).
- Fischer, M.; Varady, J.; Hirche, F.; Kluge, H.; Eder, K. Supplementation of L-carnitine in pigs: Absorption of carnitine and effect on plasma and tissue carnitine concentrations. Arch. Anim. Nutr. 2009, 63, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Reuter, S.E.; Evans, A.M. Carnitine and acylcarnitines: Pharmacokinetic, pharmacological and clinical aspects. Clin. Pharmacokinet. 2012, 51, 553–572. [Google Scholar] [CrossRef]
- Goa, K.L.; Brogden, R.N. l-Carnitine. A preliminary review of its pharmacokinetics, and its therapeutic use in ischaemic cardiac disease and primary and secondary carnitine deficiencies in relationship to its role in fatty acid metabolism. Drugs 1987, 34, 1–24. [Google Scholar] [CrossRef]
- Sangouni, A.A.; Pakravanfar, F.; Ghadiri-Anari, A.; Nadjarzadeh, A.; Fallahzadeh, H.; Hosseinzadeh, M. The effect of L-carnitine supplementation on insulin resistance, sex hormone-binding globulin and lipid profile in overweight/obese women with polycystic ovary syndrome: A randomized clinical trial. Eur. J. Nutr. 2022, 61, 1199–1207. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, W.; Chen, G.; Zhu, W.; Ding, W.; Ge, Z.; Tan, Y.; Ma, T.; Cui, G. L-carnitine treatment of insulin resistance: A systematic review and meta-analysis. Adv. Clin. Exp. Med. 2017, 26, 333–338. [Google Scholar] [CrossRef]
- Caballero-García, A.; Noriega-González, D.C.; Roche, E.; Drobnic, F.; Córdova, A. Effects of L-Carnitine Intake on Exercise-Induced Muscle Damage and Oxidative Stress: A Narrative Scoping Review. Nutrients 2023, 15, 2587. [Google Scholar] [CrossRef]
- Fielding, R.; Riede, L.; Lugo, J.P.; Bellamine, A. l-Carnitine Supplementation in Recovery after Exercise. Nutrients 2018, 10, 349. [Google Scholar] [CrossRef]
- Nałecz, K.A.; Miecz, D.; Berezowski, V.; Cecchelli, R. Carnitine: Transport and physiological functions in the brain. Mol. Asp. Med. 2004, 25, 551–567. [Google Scholar] [CrossRef]
- Alhasaniah, A.H. l-carnitine: Nutrition, pathology, and health benefits. Saudi J. Biol. Sci. 2023, 30, 103555. [Google Scholar] [CrossRef] [PubMed]
- Brass, E.P. Pharmacokinetic considerations for the therapeutic use of carnitine in hemodialysis patients. Clin. Ther. 1995, 17, 176–185; discussion 175. [Google Scholar] [CrossRef] [PubMed]
- Eskandani, M.; Navidshad, B.; Eskandani, M.; Vandghanooni, S.; Aghjehgheshlagh, F.M.; Nobakht, A.; Shahbazfar, A.A. The effects of L-carnitine-loaded solid lipid nanoparticles on performance, antioxidant parameters, and expression of genes associated with cholesterol metabolism in laying hens. Poult. Sci. 2022, 101, 102162. [Google Scholar] [CrossRef] [PubMed]
- Eskandani, M.; Eskandani, M.; Vandghanooni, S.; Navidshad, B.; Aghjehgheshlagh, F.M.; Nobakht, A. Protective effect of l-carnitine-loaded solid lipid nanoparticles against H2O2-induced genotoxicity and apoptosis. Colloids Surf. B Biointerfaces 2022, 212, 112365. [Google Scholar] [CrossRef]
- Beloqui, A.; Solinís, M.Á.; Rodríguez-Gascón, A.; Almeida, A.J.; Préat, V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 143–161. [Google Scholar] [CrossRef]
- Gonullu, U.; Uner, M.; Yener, G.; Karaman, E.F.; Aydogmus, Z. Formulation and characterization of solid lipid nanoparticles, nanostructured lipid carriers and nanoemulsion of lornoxicam for transdermal delivery. Acta Pharm. 2015, 65, 1–13. [Google Scholar] [CrossRef]
- Uner, B.; Ozdemir, S.; Tas, C.; Uner, M.; Ozsoy, Y. Loteprednol-Loaded Nanoformulations for Corneal Delivery by Quality-by-Design Concepts: Optimization, Characterization, and Anti-inflammatory Activity. AAPS PharmSciTech 2023, 24, 92. [Google Scholar] [CrossRef]
- Ansari, S.A.; Deshpande, M.; Sangshetti, J.N.; Ahmed, S.; Ansari, I.A. Application of Elements of Quality by Design to Development and Optimization of HPLC Method for Fingolimod. J. Pharm. Res. Int. 2021, 33, 318–328. [Google Scholar] [CrossRef]
- Al-Bakheit, A.; Traka, M.; Saha, S.; Mithen, R.; Melchini, A. Accumulation of Palmitoylcarnitine and Its Effect on Pro-Inflammatory Pathways and Calcium Influx in Prostate Cancer. Prostate 2016, 76, 1326–1337. [Google Scholar] [CrossRef]
- Matsumura, M.; Hatakeyama, S.; Koni, I.; Mabuchi, H. Effect of L-carnitine and palmitoyl-L-carnitine on erythroid colony formation in fetal mouse liver cell culture. Am. J. Nephrol. 1998, 18, 355–358. [Google Scholar] [CrossRef]
- Arroyo-Urea, E.M.; Munoz-Hernando, M.; Leo-Barriga, M.; Herranz, F.; Gonzalez-Paredes, A. A quality by design approach for the synthesis of palmitoyl-L-carnitine-loaded nanoemulsions as drug delivery systems. Drug Deliv. 2023, 30, 2179128. [Google Scholar] [CrossRef]
- Aburahma, M.H.; Badr-Eldin, S.M. Compritol 888 ATO: A multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals. Expert. Opin. Drug Deliv. 2014, 11, 1865–1883. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, I.; Yasir, M.; Verma, M.; Singh, A.P. Nanostructured Lipid Carriers: A Groundbreaking Approach for Transdermal Drug Delivery. Adv. Pharm. Bull. 2020, 10, 150–165. [Google Scholar] [CrossRef]
- Sarheed, O.; Dibi, M.; Ramesh, K. Studies on the Effect of Oil and Surfactant on the Formation of Alginate-Based O/W Lidocaine Nanocarriers Using Nanoemulsion Template. Pharmaceutics 2020, 12, 1223. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.C.; Yanez, O.; Salas-Huenuleo, E.; Morales, J.O. Development of a Nanostructured Lipid Carrier (NLC) by a Low-Energy Method, Comparison of Release Kinetics and Molecular Dynamics Simulation. Pharmaceutics 2021, 13, 531. [Google Scholar] [CrossRef]
- Castro, S.R.; Ribeiro, L.N.M.; Breitkreitz, M.C.; Guilherme, V.A.; Rodrigues da Silva, G.H.; Mitsutake, H.; Alcantara, A.C.S.; Yokaichiya, F.; Franco, M.; Clemens, D.; et al. A pre-formulation study of tetracaine loaded in optimized nanostructured lipid carriers. Sci. Rep. 2021, 11, 21463. [Google Scholar] [CrossRef]
- Ergin, A.D.; Üner, B.; Balcı, Ş.; Demirbağ, Ç.; Benetti, C.; Oltulu, Ç. Improving the Bioavailability and Efficacy of Coenzyme Q10 on Alzheimer’s Disease Through the Arginine Based Proniosomes. J. Pharm. Sci. 2023. [Google Scholar] [CrossRef]
- Ranjbar Kohan, N.; Tabandeh, M.R.; Nazifi, S.; Soleimani, Z. L-carnitine improves metabolic disorders and regulates apelin and apelin receptor genes expression in adipose tissue in diabetic rats. Physiol. Rep. 2020, 8, e14641. [Google Scholar] [CrossRef]
- Wu, T.; Guo, A.; Shu, Q.; Qi, Y.; Kong, Y.; Sun, Z.; Sun, S.; Fu, Z. L-Carnitine intake prevents irregular feeding-induced obesity and lipid metabolism disorder. Gene 2015, 554, 148–154. [Google Scholar] [CrossRef] [PubMed]
- El-Seidy, A.M.A.; Bashandy, S.A.; Ibrahim, F.A.A.; Abd El-Rahman, S.S.; Farid, O.; Moussa, S.; El-Baset, M.A. Zinc oxide nanoparticles characterization and therapeutic evaluation on high fat/sucrose diet induced-obesity. Egypt. J. Chem. 2022, 65, 497–511. [Google Scholar] [CrossRef]
- Kou, L.; Yao, Q.; Sivaprakasam, S.; Luo, Q.; Sun, Y.; Fu, Q.; He, Z.; Sun, J.; Ganapathy, V. Dual targeting of l-carnitine-conjugated nanoparticles to OCTN2 and ATB(0,+) to deliver chemotherapeutic agents for colon cancer therapy. Drug Deliv. 2017, 24, 1338–1349. [Google Scholar] [CrossRef] [PubMed]
- Askarpour, M.; Hadi, A.; Miraghajani, M.; Symonds, M.E.; Sheikhi, A.; Ghaedi, E. Beneficial effects of l-carnitine supplementation for weight management in overweight and obese adults: An updated systematic review and dose-response meta-analysis of randomized controlled trials. Pharmacol. Res. 2020, 151, 104554. [Google Scholar] [CrossRef] [PubMed]
- Panchal, S.K.; Poudyal, H.; Ward, L.C.; Waanders, J.; Brown, L. Modulation of tissue fatty acids by L-carnitine attenuates metabolic syndrome in diet-induced obese rats. Food Funct. 2015, 6, 2496–2506. [Google Scholar] [CrossRef] [PubMed]
- Rebouche, C.J. Kinetics, pharmacokinetics, and regulation of L-carnitine and acetyl-L-carnitine metabolism. Ann. N. Y. Acad. Sci. 2004, 1033, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Mahdi, H.; Ghadhban, R. Protective effect of L-carnitine nanoparticles Vs carnitine on lead acetate-induced toxicity in male rats. J. Adv. Biotechnol. Exp. Ther. 2022, 5, 590–604. [Google Scholar] [CrossRef]
- Stephens, F.B.; Constantin-Teodosiu, D.; Laithwaite, D.; Simpson, E.J.; Greenhaff, P.L. Insulin stimulates L-carnitine accumulation in human skeletal muscle. FASEB J. 2006, 20, 377–379. [Google Scholar] [CrossRef]
- Schulz, M.; Zieglowski, L.; Kopaczka, M.; Tolba, R.H. The Open Field Test as a Tool for Behaviour Analysis in Pigs: Recommendations for Set-Up Standardization—A Systematic Review. Eur. Surg. Res. 2023, 64, 7–26. [Google Scholar] [CrossRef]
- Pala, R.; Genc, E.; Tuzcu, M.; Orhan, C.; Sahin, N.; Er, B.; Cinar, V.; Sahin, K. L-Carnitine supplementation increases expression of PPAR-Î3 and glucose transporters in skeletal muscle of chronically and acutely exercised rats. Cell. Mol. Biol. 2018, 64, 1–6. [Google Scholar] [CrossRef]
- Pandareesh, M.D.; Anand, T. Ergogenic effect of dietary L-carnitine and fat supplementation against exercise induced physical fatigue in Wistar rats. J. Physiol. Biochem. 2013, 69, 799–809. [Google Scholar] [CrossRef]
- Jain, S.; Singh, S.N. Effect of L-carnitine Supplementation on Nutritional Status and Physical Performance Under Calorie Restriction. Indian J. Clin. Biochem. 2015, 30, 187–193. [Google Scholar] [CrossRef]
- Sung, D.J.; Kim, S.; Kim, J.; An, H.S.; So, W.Y. Role of l-carnitine in sports performance: Focus on ergogenic aid and antioxidant. Sci. Sports 2016, 31, 177–188. [Google Scholar] [CrossRef]
- Cederblad, G.; Bylund, A.-C.; Holm, J.; Scherstén, T. Carnitine Concentration in Relation to Enzyme Activities and Substrate Utilization in Human Skeletal Muscles. Scand. J. Clin. Lab. Investig. 1976, 36, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Sahlin, K. Boosting fat burning with carnitine: An old friend comes out from the shadow. J. Physiol. 2011, 589, 1509–1510. [Google Scholar] [CrossRef] [PubMed]
- Sahebkar, A. Effect of L-carnitine Supplementation on Circulating C-reactive Protein Levels: A Systematic Review and Meta-Analysis. J. Med. Biochem. 2015, 34, 151–159. [Google Scholar] [CrossRef]
- Firdous, S. Correlation of CRP, fasting serum triglycerides and obesity as cardiovascular risk factors. J. Coll. Physicians Surg.-Pak. 2014, 24, 308–313. [Google Scholar]
- Darwish, N.M.; Gouda, W.; Almutairi, S.M.; Elshikh, M.S.; Morcos, G.N.B. PPARG expression patterns and correlations in obesity. J. King Saud. Univ.-Sci. 2022, 34, 102116. [Google Scholar] [CrossRef]
- Chen, Y.; Abbate, M.; Tang, L.; Cai, G.; Gong, Z.; Wei, R.; Zhou, J.; Chen, X. l-Carnitine supplementation for adults with end-stage kidney disease requiring maintenance hemodialysis: A systematic review and meta-analysis1234. Am. J. Clin. Nutr. 2014, 99, 408–422. [Google Scholar] [CrossRef]
- Tkach, V.; Morozova, T.; Prymachenko, S.; Korniienko, I.; Yastremska, L.; Kuznetsova, O.; Chychun, V.; Martins, J.I.; Reis, L.; Karakoyun, N.; et al. The Theoretical Description of Furfural and Lactic Acid Cathodic Determination in Bread and Milk. Biointerface Res. Appl. Chem. 2023, 13, 600. [Google Scholar] [CrossRef]
- Sun, C.; Mao, S.; Chen, S.; Zhang, W.; Liu, C. PPARs-Orchestrated Metabolic Homeostasis in the Adipose Tissue. Int. J. Mol. Sci. 2021, 22, 8974. [Google Scholar]
- Wu, H.; Li, X.; Shen, C. Peroxisome proliferator-activated receptor gamma in white and brown adipocyte regulation and differentiation. Physiol. Res. 2020, 69, 759–773. [Google Scholar] [CrossRef]
- Uner, B.M.; Macit Celebi, M.S. Anti-obesity effects of chlorogenic acid and caffeine-loaded lipid nanoparticles through PPAR-γ/C/EBP-a pathways. Int. J. Obes. 2023; in press. [Google Scholar] [CrossRef] [PubMed]
- Martin, H. Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Mutat. Res. 2010, 690, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Villapol, S. Roles of Peroxisome Proliferator-Activated Receptor Gamma on Brain and Peripheral Inflammation. Cell. Mol. Neurobiol. 2018, 38, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, R.M.; Silva, C.M.G.d.; Bella, T.S.; Araújo, D.R.d.; Marcato, P.D.; Durán, N.; Paula, E.d. Cytotoxicity of solid lipid nanoparticles and nanostructured lipid carriers containing the local anesthetic dibucaine designed for topical application. J. Phys. Conf. Ser. 2013, 429, 012035. [Google Scholar] [CrossRef]
- Poovi, G.; Damodharan, N. Development of tamoxifen-loaded surface-modified nanostructured lipid carrier using experimental design: In vitro and ex vivo characterisation. IET Nanobiotechnol. 2020, 14, 261–274. [Google Scholar] [CrossRef] [PubMed]
- Kang, Q.; Liu, J.; Liu, X.-Y.; Mo, N.-L.; Wang, Y.-J.; Zhao, Y.; Liu, X.; Wu, Q. Application of quality by design approach to formulate and optimize tripterine loaded in nanostructured lipid carriers for transdermal delivery. J. Drug Deliv. Sci. Technol. 2019, 52, 1032–1041. [Google Scholar] [CrossRef]
- Freimüller, S.; Altorfer, H. A chiral HPLC method for the determination of low amounts of d-carnitine in l-carnitine after derivatization with (+)-FLEC. J. Pharm. Biomed. Anal. 2002, 30, 209–218. [Google Scholar] [CrossRef]
- ICH. Validation of Analytical Procedures:text and Methodology. Q2 (R1) 2005, 1, 5. [Google Scholar]
- Sharma, K.K.; Mane, M.A.; Shrirnag, J.M. Evaluating the Protective Potential of Nano L-Carnitine on the Gonadal Pathway in Lead Acetate-Exposed Male Rats. Rev. Electron. De Vet. 2023, 24, 81–95. [Google Scholar]
- H Muller, R.; Shegokar, R.; M Keck, C. 20 years of lipid nanoparticles (SLN & NLC): Present state of development & industrial applications. Curr. Drug Discov. Technol. 2011, 8, 207–227. [Google Scholar]
- Üner, B.; Özdemir, S.; Taş, Ç.; Özsoy, Y.; Üner, M. Development of lipid nanoparticles for transdermal loteprednol etabonate delivery. J. Microencapsul. 2022, 39, 327–340. [Google Scholar] [CrossRef]
- Özdemir, S.; Çelik, B.; Üner, M. Properties and therapeutic potential of solid lipid nanoparticles and nanostructured lipid carriers as promising colloidal drug delivery systems. In Materials for Biomedical Engineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 457–505. [Google Scholar]
- Wulff-Pérez, M.; Torcello-Gómez, A.; Gálvez-Ruíz, M.; Martín-Rodríguez, A. Stability of emulsions for parenteral feeding: Preparation and characterization of o/w nanoemulsions with natural oils and Pluronic f68 as surfactant. Food Hydrocoll. 2009, 23, 1096–1102. [Google Scholar] [CrossRef]
- Michels, L.R.; Fachel, F.N.S.; Schuh, R.S.; Azambuja, J.H.; de Souza, P.O.; Gelsleichter, N.E.; Lenz, G.S.; Visioli, F.; Braganhol, E.; Teixeira, H.F. Nasal administration of a temozolomide-loaded thermoresponsive nanoemulsion reduces tumor growth in a preclinical glioblastoma model. J. Control. Release 2023, 355, 343–357. [Google Scholar] [CrossRef]
- Elkhatib, M.M.; Ali, A.I.; Al-Badrawy, A.S. In vitro and in vivo comparative study of oral nanoparticles and gut iontophoresis as oral delivery systems for insulin. Biol. Pharm. Bull. 2021, 44, 251–258. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, Y.X.; Liu, C.J.; Wang, L.X.; Han, Z.W.; Wang, C.B. Comparison of pharmacokinetics of L-carnitine, acetyl-L-carnitine and propionyl-L-carnitine after single oral administration of L-carnitine in healthy volunteers. Clin. Investig. Med. 2009, 32, E13–E19. [Google Scholar] [CrossRef]
- Oliveira, C.d.; Oliveira, C.M.d.; de Macedo, I.C.; Quevedo, A.S.; Filho, P.R.M.; Silva, F.R.d.; Vercelino, R.; de Souza, I.C.C.; Caumo, W.; Torres, I.L. Hypercaloric diet modulates effects of chronic stress: A behavioral and biometric study on rats. Stress 2015, 18, 514–523. [Google Scholar] [CrossRef]
- Macarulla, M.; Alberdi, G.; Gómez, S.; Tueros, I.; Bald, C.; Rodríguez, V.; Martínez, J.; Portillo, M. Effects of different doses of resveratrol on body fat and serum parameters in rats fed a hypercaloric diet. J. Physiol. Biochem. 2009, 65, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Carlini, V.P.; Monzón, M.a.E.; Varas, M.M.; Cragnolini, A.B.; Schiöth, H.B.; Scimonelli, T.N.; de Barioglio, S.R. Ghrelin increases anxiety-like behavior and memory retention in rats. Biochem. Biophys. Res. Commun. 2002, 299, 739–743. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, M.; Shi, M.; Zhang, T.; Lu, W.; Yang, S.; Cui, Q.; Li, Z. Adipose-derived mesenchymal stromal cell-derived exosomes promote tendon healing by activating both SMAD1/5/9 and SMAD2/3. Stem Cell Res. Ther. 2021, 12, 338. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Sun, X.; Gupta, H.B.; Yuan, B.; Li, J.; Ge, F.; Chiang, H.C.; Zhang, X.; Zhang, C.; Zhang, D.; et al. Adipose PD-L1 Modulates PD-1/PD-L1 Checkpoint Blockade Immunotherapy Efficacy in Breast Cancer. Oncoimmunology 2018, 7, e1500107. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Zhang, J.; Lu, L.; Xu, J.; Qin, L. The Fto Gene Regulates the Proliferation and Differentiation of Pre-Adipocytes in Vitro. Nutrients 2016, 8, 102. [Google Scholar] [CrossRef] [PubMed]
Code | X1 (C888) (%) | X2 (OE) (%) | X3 (P407) (%) | Y1 (PS) (d. nm) | Y2 (ZP) (mV) | Y3 (PDI) | Y4 (EE) (%) |
---|---|---|---|---|---|---|---|
NLC1 | 2 | 6 | 1 | 101.5 ± 2.8 | −28.9 ± 1.5 | 0.38 ± 0.03 | 65.4 ± 2.2 |
NLC2 | 3 | 5 | 4 | 73.8 ± 2.1 | −25.8 ± 1.3 | 0.12 ± 0.02 | 92.5 ± 0.1 |
NLC3 | 3 | 5 | 3 | 76.4 ± 3.4 | −26.5 ± 0.5 | 0.22 ± 0.01 | 90.5 ± 1.2 |
NLC4 | 3 | 5 | 2 | 79.9 ± 2.7 | −26.8 ± 0.6 | 0.23 ± 0.02 | 88.9 ± 0.9 |
NLC5 | 2 | 6 | 5 | 75.4 ± 1.5 | −27 ± 0.4 | 0.12 ± 0.01 | 90.6 ± 0.3 |
NLC6 | 2 | 2 | 1 | 109.8 ± 3.1 | −22.6 ± 0.5 | 0.42 ± 0.02 | 54.5 ± 0.7 |
NLC7 | 2 | 6 | 2 | 88.5 ± 2.2 | −27.3 ± 0.5 | 0.26 ± 0.01 | 79.3 ± 2.2 |
NLC8 | 1 | 7 | 3 | 83.4 ± 2.9 | −28.4 ± 1.5 | 0.23 ± 0.01 | 81.4 ± 0.9 |
NLC9 | 1 | 7 | 2 | 89.6 ± 2.2 | −28.7 ± 0.5 | 0.23 ± 0.02 | 77.5 ± 1.1 |
Model | Equation | R2 | R2adjusted | n |
---|---|---|---|---|
Zero-order model | F = k0 × t | 0.4435 | 0.3801 | - |
First-order model | F = 100 × (1 − e−k1 × t) | 0.3618 | 0.3618 | - |
Hixson–Crowell | F = 100 × [1 − (1 − kHC × t)3] | 0.1684 | 0.1684 | - |
Higuchi | F = kH × t0.5 | 0.7169 | 0.6969 | - |
Hopfenberg | F = 100 × [1 − (1 − kHB × t)n] | 0.1857 | 0.0229 | - |
Korsmeyer–Peppas | F = kKP × tn | 0.9703 | 0.9908 | 0.416 |
Formulation Code | C888 (% w/w) | OE (% w/w) | LC (% w/w) | P407 (% w/w) |
---|---|---|---|---|
NLC1 | 2 | 6 | 0.2 | 1 |
NLC2 | 3 | 5 | 0.2 | 4 |
NLC3 | 3 | 5 | 0.2 | 3 |
NLC4 | 3 | 5 | 0.2 | 2 |
NLC5 | 2 | 6 | 0.2 | 5 |
NLC6 | 2 | 2 | 0.2 | 1 |
NLC7 | 2 | 6 | 0.2 | 2 |
NLC8 | 1 | 7 | 0.2 | 3 |
NLC9 | 1 | 7 | 0.2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uner, B.; Ergin, A.D.; Ansari, I.A.; Macit-Celebi, M.S.; Ansari, S.A.; Kahtani, H.M.A. Assessing the In Vitro and In Vivo Performance of L-Carnitine-Loaded Nanoparticles in Combating Obesity. Molecules 2023, 28, 7115. https://doi.org/10.3390/molecules28207115
Uner B, Ergin AD, Ansari IA, Macit-Celebi MS, Ansari SA, Kahtani HMA. Assessing the In Vitro and In Vivo Performance of L-Carnitine-Loaded Nanoparticles in Combating Obesity. Molecules. 2023; 28(20):7115. https://doi.org/10.3390/molecules28207115
Chicago/Turabian StyleUner, Burcu, Ahmet Dogan Ergin, Irfan Aamer Ansari, Melahat Sedanur Macit-Celebi, Siddique Akber Ansari, and Hamad M. Al Kahtani. 2023. "Assessing the In Vitro and In Vivo Performance of L-Carnitine-Loaded Nanoparticles in Combating Obesity" Molecules 28, no. 20: 7115. https://doi.org/10.3390/molecules28207115
APA StyleUner, B., Ergin, A. D., Ansari, I. A., Macit-Celebi, M. S., Ansari, S. A., & Kahtani, H. M. A. (2023). Assessing the In Vitro and In Vivo Performance of L-Carnitine-Loaded Nanoparticles in Combating Obesity. Molecules, 28(20), 7115. https://doi.org/10.3390/molecules28207115