Hierarchical Porous Activated Carbon Derived from Coconut Shell for Ultrahigh-Performance Supercapacitors
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Preparation of Coconut Shell-Derived Activated Carbon
3.2. Characterization
3.3. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Arico, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Han, S.A.; Qutaish, H.; Lee, J.W.; Park, M.S.; Kim, J.H. Metal-organic framework derived porous structures towards lithium rechargeable batteries. EcoMat 2023, 5, 12283. [Google Scholar] [CrossRef]
- Shao, H.; Wu, Y.C.; Lin, Z.F.; Taberna, P.L.; Simon, P. Nanoporous carbon for electrochemical capacitive energy storage. Chem. Soc. Rev. 2020, 49, 3005–3039. [Google Scholar] [CrossRef] [PubMed]
- Simon, P.; Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 2020, 19, 1151–1163. [Google Scholar] [CrossRef]
- Wang, G.P.; Zhang, L.; Zhang, J.J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828. [Google Scholar] [CrossRef]
- Miao, L.; Song, Z.Y.; Zhu, D.Z.; Li, L.C.; Gan, L.H.; Liu, M.X. Ionic liquids for supercapacitive energy storage: A mini-review. Energ. Fuel. 2021, 35, 8443–8455. [Google Scholar] [CrossRef]
- Song, Z.Y.; Miao, L.; Ruhlmann, L.; Lv, Y.K.; Zhu, D.Z.; Li, L.C.; Gan, L.H.; Liu, M.X. Self-assembled carbon superstructures achieving ultra-stable and fast proton-coupled charge storage kinetics. Adv. Mater. 2021, 33, e2104148. [Google Scholar] [CrossRef] [PubMed]
- Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energ. Environ. Sci. 2014, 7, 1597–1614. [Google Scholar] [CrossRef]
- Muzaffar, A.; Ahamed, M.B.; Deshmukh, K.; Thirumalai, J. A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renew. Sust. Energ. Rev. 2019, 101, 123–145. [Google Scholar] [CrossRef]
- Yan, J.; Li, S.H.; Lan, B.B.; Wu, Y.C.; Lee, P.S. Rational design of nanostructured electrode materials toward multifunctional supercapacitors. Adv. Funct. Mater. 2020, 30, 1902564. [Google Scholar] [CrossRef]
- Noori, A.; El-Kady, M.F.; Rahmanifar, M.S.; Kaner, R.B.; Mousavi, M.F. Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 2019, 48, 1272–1341. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.L.; El-Kady, M.F.; Sun, J.Y.; Li, Y.G.; Zhang, Q.H.; Zhu, M.F.; Wang, H.Z.; Dunn, B.; Kaner, R.B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 2018, 118, 9233–9280. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.W.; Hao, L.N.; Zeng, Y.; Cao, X.H.; Huang, H.N.; Liu, J.H.; Chen, X.D.; Wei, S.H.; Gan, L.H.; Yang, P.H.; et al. Three-dimensional hierarchical porous carbon derived from resorcinol formaldehyde-zinc tatrateipoly(styrene-maleic anhydride) for high performance supercapacitor electrode. J. Alloys Compd. 2021, 886, 161176. [Google Scholar] [CrossRef]
- Wang, Y.W.; Zeng, Y.; Zhu, J.B.; Yang, C.; Huang, H.A.; Chen, X.D.; Wang, R.R.; Yan, P.; Wei, S.H.; Liu, M.X.; et al. From dual-aerogels with semi-interpenetrating polymer network structure to hierarchical porous carbons for advanced supercapacitor electrodes. Colloid. Surface. A 2022, 649, 129356. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, W.L.; Alhebshi, N.A.; Salah, N.; Alshareef, H.N. Synthesis strategies of porous carbon for supercapacitor applications. Small Methods 2020, 4, 1900853. [Google Scholar] [CrossRef]
- Wang, J.C.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710–23725. [Google Scholar] [CrossRef]
- Meng, Y.; Gu, D.; Zhang, F.Q.; Shi, Y.F.; Yang, H.F.; Li, Z.; Yu, C.Z.; Tu, B.; Zhao, D.Y. Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation. Angew. Chem. Int. Edit. 2005, 44, 7053–7059. [Google Scholar] [CrossRef]
- Wang, H.; Niu, H.T.; Wang, H.J.; Wang, W.Y.; Jin, X.; Wang, H.X.; Zhou, H.; Lin, T. Micro-meso porous structured carbon nanofibers with ultra-high surface area and large supercapacitor electrode capacitance. J. Power Sources 2021, 482, 228986. [Google Scholar] [CrossRef]
- Wang, Q.; Yan, J.; Wang, Y.B.; Wei, T.; Zhang, M.L.; Jing, X.Y.; Fan, Z.J. Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 2014, 67, 119–127. [Google Scholar] [CrossRef]
- Lu, W.; Cao, X.; Hao, L.; Zhou, Y.; Wang, Y. Activated carbon derived from pitaya peel for supercapacitor applications with high capacitance performance. Mater. Lett. 2020, 264, 127339. [Google Scholar] [CrossRef]
- Qu, W.H.; Xu, Y.Y.; Lu, A.H.; Zhang, X.Q.; Li, W.C. Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes. Bioresour. Technol. 2015, 189, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Li, J.T.; Xiao, R.; Li, M.; Zhang, H.Y.; Wu, S.L.; Xia, C.L. Template-synthesized hierarchical porous carbons from bio-oil with high performance for supercapacitor electrodes. Fuel Process. Technol. 2019, 192, 239–249. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, W.; Xu, X.; Pang, F.; Feng, X.; Zhang, X.; Zeng, Y.; Yang, Z.; Wang, R.; Yang, P.; et al. Ternary-doped hierarchical porous carbons derived from durian kernel as electrode materials for efficient energy storage devices. Diam. Relat. Mater. 2022, 130, 109451. [Google Scholar] [CrossRef]
- Xu, X.H.; Sun, S.C.; Luo, J.; Ma, R.; Lin, J.H.; Fang, L.; Zhang, P.X.; Chen, Y. Few-layer graphene prepared via microwave irradiation of black sesame for supercapacitor applications. Chem. Eng. J. 2021, 425, 130664. [Google Scholar] [CrossRef]
- Shen, Y.F. A review on hydrothermal carbonization of biomass and plastic wastes to energy products. Biomass Bioenerg. 2020, 134, 105479. [Google Scholar] [CrossRef]
- Yang, Z.H.; Cao, J.P.; Zhuang, Q.Q.; Wu, Y.; Zhou, Z.; Wei, Y.L.; Zhao, X.Y. Oxygen-enriched porous carbon derived from acid washed and oxidized lignite via H3PO4 hydrothermal for high-performance supercapacitors. Fuel Process. Technol. 2023, 243, 107665. [Google Scholar] [CrossRef]
- Wang, B.; Li, Y.G.; Gu, Z.J.; Wang, H.D.; Liu, X.F.; Li, S.P.; Chen, X.X.; Liang, X.H.; Jiang, Z.X.; Ogino, K.; et al. Synthesis and design of biomass-derived heteroatom-doped hierarchical porous carbon systems for high-voltage supercapacitors. Fuel Process. Technol. 2023, 247, 107776. [Google Scholar] [CrossRef]
- Yu, P.F.; Zeng, Y.; Zeng, Y.X.; Dong, H.W.; Hu, H.; Liu, Y.L.; Zheng, M.T.; Xiao, Y.; Lu, X.H.; Liang, Y.R. Achieving high-energy-density and ultra-stable zinc-ion hybrid supercapacitors by engineering hierarchical porous carbon architecture. Electrochim. Acta 2019, 327, 134999. [Google Scholar] [CrossRef]
- Javed, M.S.; Najam, T.; Hussain, I.; Idrees, M.; Ahmad, A.; Imran, M.; Shah, S.S.A.; Luque, R.; Han, W.H. Fundamentals and scientific challenges in structural design of cathode materials for zinc-ion hybrid supercapacitors. Adv. Energy Mater. 2023, 13, 2202303. [Google Scholar] [CrossRef]
- Li, Z.W.; Chen, D.H.; An, Y.F.; Chen, C.L.; Wu, L.Y.; Chen, Z.J.; Sun, Y.; Zhang, X.G. Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy Storage Mater. 2020, 28, 307–314. [Google Scholar] [CrossRef]
- Lou, G.B.; Pei, G.; Wu, Y.T.; Lu, Y.Z.; Wu, Y.T.; Zhu, X.Q.; Pang, Y.J.; Shen, Z.H.; Wu, Q.; Fu, S.Y.; et al. Combustion conversion of wood to N, O co-doped 2D carbon nanosheets for zinc-ion hybrid supercapacitors. Chem. Eng. J. 2021, 413, 127502. [Google Scholar] [CrossRef]
- Qian, X.Y.; Miao, L.; Jiang, J.X.; Ping, G.C.; Xiong, W.; Lv, Y.K.; Liu, Y.F.; Gan, L.H.; Zhua, D.Z.; Liu, M.X. Hydrangea -like N/O codoped porous carbons for high-energy supercapacitors. Chem. Eng. J. 2020, 388, 124208. [Google Scholar] [CrossRef]
- Wu, X.K.; Yu, M.; Liu, J.H.; Li, S.M.; Zhang, X.L. sp3-Defect and pore engineered carbon framework for high energy density supercapacitors. J. Power Sources 2020, 464, 228203. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhao, M.K.; Li, M.R.; Xiao, Q.G.; Shi, H.W.; He, W.; Bian, Z.T.; Zhang, P.H.; Zhu, G.; Chen, C. Three-dimensional honeycomb-like porous carbon derived from Ganoderma lucidum spore for high-performance electrochemical capacitors. Ionics 2020, 26, 5805–5815. [Google Scholar] [CrossRef]
- Teng, W.L.; Zhou, Q.Q.; Wang, X.K.; Gao, J.Y.; Hu, P.; Du, Y.C.; Li, H.Y.; Wang, J.S. Enhancing ions/electrons dual transport in rGO/PEDOT:PSS fiber for high-performance supercapacitor. Carbon 2022, 189, 284–292. [Google Scholar] [CrossRef]
- Gu, Y.Y.; Miao, L.; Yin, Y.; Liu, M.X.; Gan, L.H.; Li, L.C. Highly N/O co-doped ultramicroporous carbons derived from nonporous metal-organic framework for high performance supercapacitors. Chin. Chem. Lett. 2021, 32, 1491–1496. [Google Scholar] [CrossRef]
- Wang, Z.; Tan, Y.T.; Yang, Y.L.; Zhao, X.N.; Liu, Y.; Niu, L.Y.; Tichnell, B.; Kong, L.B.; Kang, L.; Liu, Z.; et al. Pomelo peels-derived porous activated carbon microsheets dual-doped with nitrogen and phosphorus for high performance electrochemical capacitors. J. Power Sources 2018, 378, 499–510. [Google Scholar] [CrossRef]
- Sheng, Z.; Lin, X.C.; Wei, H.; Zhang, Y.K.; Tian, Z.; Wang, C.H.; Xu, D.P.; Wang, Y.G. Green synthesis of nitrogen-doped hierarchical porous carbon nanosheets derived from polyvinyl chloride towards high-performance supercapacitor. J. Power Sources 2021, 515, 230629. [Google Scholar] [CrossRef]
- Cheng, Y.F.; Li, B.Q.; Huang, Y.J.; Wang, Y.M.; Chen, J.C.; Wei, D.Q.; Feng, Y.J.; Jia, D.C.; Zhou, Y. Molten salt synthesis of nitrogen and oxygen enriched hierarchically porous carbons derived from biomass via rapid microwave carbonization for high voltage supercapacitors. Appl. Surf. Sci. 2018, 439, 712–723. [Google Scholar] [CrossRef]
- Lu, Y.Y.; Li, Z.W.; Bai, Z.Y.; Mi, H.Y.; Ji, C.C.; Pang, H.; Yu, C.; Qiu, J.S. High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy 2019, 66, 104132. [Google Scholar] [CrossRef]
- Ma, Y.; Xie, X.L.; Lv, R.H.; Na, B.; Ouyang, J.B.; Liu, H.S. Nanostructured polyaniline-cellulose papers for solid-state flexibleaqueous Zn-ion battery. ACS Sustain. Chem. Eng. 2018, 6, 8697–8703. [Google Scholar] [CrossRef]
- Dong, L.B.; Ma, X.P.; Li, Y.; Zhao, L.; Liu, W.B.; Cheng, J.Y.; Xu, C.J.; Li, B.H.; Yang, Q.H.; Kang, F.Y. Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 2018, 13, 96–102. [Google Scholar] [CrossRef]
- He, H.C.; Lian, J.C.; Chen, C.M.; Xiong, Q.T.; Zhang, M. Super hydrophilic carbon fiber film for freestanding and flexible cathodes of zinc-ion hybrid supercapacitors. Chem. Eng. J. 2021, 421, 129786. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Liu, Q.Y.; Fang, Y.B.; Teng, C.L.; Liu, X.Q.; Fang, P.P.; Tong, Y.X.; Lu, X.H. Boosting Zn-Ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv. Mater. 2019, 31, e1904948. [Google Scholar] [CrossRef]
- Zhou, S.X.; Li, C.; Gao, G.M.; Fan, H.L.; Hu, X. Bio-based resins with tannin and hydroxymethylfurfural derived high-yield carbon for Zn-ion hybrid supercapacitors. J. Clean. Prod. 2023, 389, 136067. [Google Scholar] [CrossRef]
- Wei, X.; Qiu, B.P.; Tian, H.D.; Lv, Y.H.; Zhang, W.; Qin, Q.Q.; Liu, Z.L.; Wei, F. Co-precipitation reaction: A facile strategy for designing hierarchical porous carbon nanosheets for EDLCs and zinc-ion hybrid supercapacitors. Appl. Surf. Sci. 2023, 615, 156280. [Google Scholar] [CrossRef]
- Shang, K.Z.; Liu, Y.J.; Cai, P.W.; Li, K.K.; Wen, Z.H. N, P, and S co-doped 3D porous carbon-architectured cathode for high-performance Zn-ion hybrid capacitors. J. Mater. Chem. A 2022, 10, 6489–6498. [Google Scholar] [CrossRef]
- Liu, H.; Chen, W.; Peng, H.; Huang, X.L.; Li, S.; Jiang, L.; Zheng, M.Q.; Xu, M.D.; Zhu, J. Bioinspired design of graphene-based N/O self-doped nanoporous carbon from carp scales for advanced Zn-ion hybrid supercapacitors. Electrochim. Acta 2022, 434, 141312. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, Y.; Yang, J.; Ye, P.C.; Ali, T.; Wang, H.Y.; Ning, J.Q.; Zhong, Y.J.; Hu, Y. Achieving fast Zn-ion storage kinetics by confining nitrogen-enriched carbon nanofragments in a honeycomb-like matrix. Appl. Surf. Sci. 2022, 604, 154526. [Google Scholar] [CrossRef]
- Wang, H.; Wang, M.; Tang, Y.B. A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater. 2018, 13, 1–7. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, H.Z.; Zeng, S.Q.; Wang, J.; Cao, X.S.; Liu, X.Q.; Lu, X.H. Pyrrolic-dominated nitrogen eedox enhances reaction kinetics of pitch-derived carbon materials in aqueous zinc ion hybrid supercapacitors. Acs Mater. Lett. 2021, 3, 1291–1299. [Google Scholar] [CrossRef]
- Xia, J.S.; Zhang, N.; Chong, S.K.; Li, D.; Chen, Y.; Sun, C.H. Three-dimensional porous graphene-like sheets synthesized from biocarbon via low-temperature graphitization for a supercapacitor. Green Chem. 2018, 20, 694–700. [Google Scholar] [CrossRef]
- Zhao, Y.; Mu, J.; Wang, Y.; Liu, Y.; Wang, H.; Song, H. Preparation of hierarchical porous carbon through one-step KOH activation of coconut shell biomass for high-performance supercapacitor. J. Mater. Sci-Mater. El. 2023, 34, 527. [Google Scholar] [CrossRef]
- Bora, M.; Bhattacharjya, D.; Hazarika, S.; Fan, X.; Saikia, B.K. Blending of activated low-grade coal powder with coconut shell waste for supercapacitor applications. Energ. Fuel. 2022, 36, 14476–14489. [Google Scholar] [CrossRef]
- Altinci, O.C.; Demir, M. Beyond conventional activating methods, a green approach for the synthesis of biocarbon and its supercapacitor electrode performance. Energ. Fuel. 2020, 34, 7658–7665. [Google Scholar] [CrossRef]
- Rani, M.U.; Nanaji, K.; Rao, T.N.; Deshpande, A.S. Corn husk derived activated carbon with enhanced electrochemical performance for high-voltage supercapacitors. J. Power Sources 2020, 471, 228387. [Google Scholar] [CrossRef]
- Lian, Y.M.; Ni, M.; Huang, Z.H.; Chen, R.J.; Zhou, L.; Utetiwabo, W.; Yang, W. Polyethylene waste carbons with a mesoporous network towards highly efficient supercapacitors. Chem. Eng. J. 2019, 366, 313–320. [Google Scholar] [CrossRef]
- Senthil, R.A.; Yang, V.K.; Pan, J.Q.; Sun, Y.Z. A green and economical approach to derive biomass porous carbon from freely available feather finger grass flower for advanced symmetric supercapacitors. J. Energy Storage 2021, 35, 102287. [Google Scholar] [CrossRef]
- Zhang, G.X.; Chen, Y.M.; Chen, Y.G.; Guo, H.B. Activated biomass carbon made from bamboo as electrode material for supercapacitors. Mater. Res. Bull. 2018, 102, 391–398. [Google Scholar] [CrossRef]
- Wang, C.J.; Wu, D.P.; Wang, H.J.; Gao, Z.Y.; Xu, F.; Jiang, K. A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity. J. Mater. Chem. A 2018, 6, 1244–1254. [Google Scholar] [CrossRef]
- Tian, X.; Ma, H.G.; Li, Z.; Yan, S.C.; Ma, L.; Yu, F.; Wang, G.; Guo, X.H.; Ma, Y.Q.; Wong, C.P. Flute type micropores activated carbon from cotton stalk for high performance supercapacitors. J. Power Sources 2017, 359, 88–96. [Google Scholar] [CrossRef]
- Liu, S.B.; Zhao, Y.; Zhang, B.H.; Xia, H.; Zhou, J.F.; Xie, W.K.; Li, H.J. Nano-micro carbon spheres anchored on porous carbon derived from dual-biomass as high rate performance supercapacitor electrodes. J. Power Sources 2018, 381, 116–126. [Google Scholar] [CrossRef]
- Qu, S.S.; Wan, J.F.; Dai, C.C.; Jin, T.Y.; Ma, F.W. Promising as high-performance supercapacitor electrode materials porous carbons derived from biological lotus leaf. J. Alloys Compd. 2018, 751, 107–116. [Google Scholar] [CrossRef]
- Zhao, C.J.; Huang, Y.X.; Zhao, C.H.; Shao, X.X.; Zhu, Z.Q. Rose-derived 3D carbon nanosheets for high cyclability and extended voltage supercapacitors. Electrochim. Acta 2018, 291, 287–296. [Google Scholar] [CrossRef]
- Dong, S.; He, X.J.; Zhang, H.F.; Xie, X.Y.; Yu, M.X.; Yu, C.; Xiao, N.; Qiu, J.S. Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors. J. Mater. Chem. A 2018, 6, 15954–15960. [Google Scholar] [CrossRef]
- Chen, D.; Li, L.; Xi, Y.L.; Li, J.Z.; Lu, M.J.; Cao, J.M.; Han, W. Self-assembly of biomass microfibers into 3D layer-stacking hierarchical porous carbon for high performance supercapacitors. Electrochim. Acta 2018, 286, 264–270. [Google Scholar] [CrossRef]
Samples | SBET (m2 g−1) | Vtotal (cm3 g−1) | Vmicro (cm3 g−1) | C (at.%) | O (at.%) | Ct (F g−1) | CE (F g−1) | CP (F g−1) |
---|---|---|---|---|---|---|---|---|
CSC | 204 | 0.19 | 0.15 | 81.82 | 18.18 | 121 | 87 | 34 |
CSAC | 2228 | 1.07 | 0.64 | 88.08 | 11.92 | 367 | 314 | 53 |
Cathode Materials | Electrolyte | V (V) | Clc (mAh g−1) | Chc (mAh g−1) | E (Wh kg−1) | Ref. |
---|---|---|---|---|---|---|
CSAC | 1 M ZnSO4 | 0.05–1.8 | 152 (0.2 A g−1) | 75 (10 A g−1) | 134.9 | This work |
BN-LDC | 1 M ZnSO4 | 0.2–1.8 | 127.7 (0.5 A g−1) | 42.8 (10 A g−1) | 97.6 | [40] |
PANI | 2 M ZnCl2 | 0.7–1.7 | 142.3 (0.2 A g−1) | 81.1 (4 A g−1) | 117.5 | [41] |
AC | 2 M ZnSO4 | 0.2–1.8 | 121.0 (0.1 A g−1) | 41.0 (1 A g−1) | 84 | [42] |
OPCNF-20 | 1 M ZnSO4 | 0.2–1.8 | 136.4 (0.1 A g−1) | 38.7 (20 A g−1) | 97.7 | [43] |
HNPC | 1 M ZnSO4 | 0–1.8 | 177.8 (4.2 A g−1) | 108.2 (33.3 A g−1) | 107.3 | [44] |
TFMA | 2 M ZnSO4 | 0.1–1.8 | 107.0 (1 A g−1) | 53 (10 A g−1) | 110.8 | [45] |
C-0.6 | 2 M ZnSO4 | 0.2–1.8 | 181.7 (0.05 A g−1) | 66.7 (20 A g−1) | 145.2 | [46] |
HPCS-900 | 2 M ZnSO4 | 0.1–1.7 | 104.7 (0.1 A g−1) | 40.2 (20 A g−1) | 90.2 | [47] |
CSGC | 2 M ZnSO4 | 0.2–1.8 | 138.8 (0.1 A g−1) | 85.6 (20 A g−1) | 111.1 | [48] |
N-HHPC | 2 M ZnSO4 | 0.1–1.8 | 140.7 (0.2 A g−1) | 101.3 (100 A g−1) | 130.2 | [49] |
AC-CS | 1 M Zn(CF3SO3) | 0–1.8 | 85.7 (0.1 A g−1) | 38.1 (2 A g−1) | 52.7 | [50] |
NPC | 1 M ZnSO4 | 0–1.8 | 136.2 (0.3 A g−1) | 69.2 (15 A g−1) | 81.1 | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Duan, Y.; Liang, X.; Tang, L.; Sun, L.; Wang, R.; Wei, S.; Huang, H.; Yang, P.; Hu, H. Hierarchical Porous Activated Carbon Derived from Coconut Shell for Ultrahigh-Performance Supercapacitors. Molecules 2023, 28, 7187. https://doi.org/10.3390/molecules28207187
Wang Y, Duan Y, Liang X, Tang L, Sun L, Wang R, Wei S, Huang H, Yang P, Hu H. Hierarchical Porous Activated Carbon Derived from Coconut Shell for Ultrahigh-Performance Supercapacitors. Molecules. 2023; 28(20):7187. https://doi.org/10.3390/molecules28207187
Chicago/Turabian StyleWang, Yawei, Yuhui Duan, Xia Liang, Liang Tang, Lei Sun, Ruirui Wang, Shunhang Wei, Huanan Huang, Pinghua Yang, and Huanan Hu. 2023. "Hierarchical Porous Activated Carbon Derived from Coconut Shell for Ultrahigh-Performance Supercapacitors" Molecules 28, no. 20: 7187. https://doi.org/10.3390/molecules28207187
APA StyleWang, Y., Duan, Y., Liang, X., Tang, L., Sun, L., Wang, R., Wei, S., Huang, H., Yang, P., & Hu, H. (2023). Hierarchical Porous Activated Carbon Derived from Coconut Shell for Ultrahigh-Performance Supercapacitors. Molecules, 28(20), 7187. https://doi.org/10.3390/molecules28207187