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Abstract: Current demands for the development of suitable biocatalysts showing high process per-
formance is stimulated by the need to replace current chemical synthesis with cleaner alternatives. A
drawback to the use of biocatalysts for unique applications is their low performance in industrial
conditions. Hence, enzymes with improved performance are needed to achieve innovative and
sustainable biocatalysis. In this study, we report the improved performance of an engineered acetyl
xylan esterase (BaAXE) in a hydrophilic organic solvent. The structure of BaAXE was partitioned
into a substrate-binding region and a solvent-affecting region. Using a rational design approach,
charged residues were introduced at protein surfaces in the solvent-affecting region. Two sites
present in the solvent-affecting region, A12D and Q143E, were selected for site-directed mutagenesis,
which generated the mutants MUT12, MUT143 and MUT12-143. The mutants MUT12 and MUT143
reported lower Km (0.29 mM and 0.27 mM, respectively) compared to the wildtype (0.41 mM). The
performance of the mutants in organic solvents was assessed after enzyme incubation in various
strengths of alcohols. The mutants showed improved activity and stability compared to the wild type
in low strengths of ethanol and methanol. However, the activity of MUT143 was lost in 40% methanol
while MUT12 and MUT12-143 retained over 70% residual activity in this environment. Computa-
tional analysis links the improved performance of MUT12 and MUT12-143 to novel intermolecular
interactions that are absent in MUT143. This work supports the rationale for protein engineering to
augment the characteristics of wild-type proteins and provides more insight into the role of charged
residues in conferring stability.

Keywords: protein engineering; biocatalyst; mutagenesis; acetyl xylan esterase; esterase

1. Introduction

Biocatalysts are fast replacing inorganic catalysts with enormous benefits in indus-
trial properties due to their distinct properties [1]. Biocatalysts promotes clean reactions
with low environmental damage, reactions with less toxic by-products, and the possibility
of synthesising novel products that were not feasible using inorganic catalysts [2]. For
example, biomass pretreatment using biocatalysts is a promising approach to achieving
sustainable biorefining and would replace the need for harsh inorganic chemicals and
energy-intense pretreatment techniques [3]. Despite the various advantages and undeni-
able potentials of enzyme-linked biocatalysis, the performance of enzymes in industrial
conditions is still a major drawback to their applications. Enzymes have evolved to per-
form optimally in biological environments; however, in an industrial environment, the
performance of an enzyme may be affected by the operating temperature, organic solvents
in the reaction medium, inhibitory compounds, and substrate concentration [4,5]. Thus,
the attempts to develop enzymes that overcome these limitations. The performance of an
enzyme in industrial conditions can be enhanced using various approaches such as en-
zyme immobilization—cross-linked enzyme aggregate (CLEA), adsorption on an insoluble
organic or inorganic support, entrapment in a carrier, encapsulation to membranes, and
protein engineering—directed evolution and rational design [6–8]. Protein engineering
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can enhance various attributes of an enzyme such as thermostability, stability in organic
solvent, substrate and product tolerance, stereoselectivity, activity, and introduction of new
catalytic routes [2].

Directed evolution and rational design are the widely applied protein engineering strate-
gies generating enzyme variants with modified catalytic or physiological properties [9–11]. In
a rational design approach, the structure–function link of the target enzyme is exploited in
formulating hypotheses, identifying hotspots for mutagenesis such as flexible regions, specific
modification of the enzyme surface, or the modification of the catalytic site, thereby gener-
ating the desired genetic diversity [12–14]. For example, improved stability of a lipase from
Geobacillus stearothermophilus in methanol was achieved by a rational design incorporating
bulky aromatic residues to occupy solvent channels and induce aromatic interaction. In silico
analysis was used to identify the tunnels and residues that were within 4–5 angstrom near
the channel for mutagenesis study [15]. In contrast to directed evolution, which probes the
molecular diversity generated by random mutagenesis to identify variants with improvements
in the desired phenotypes, the rational design approach limits the size of the mutagenesis
library and reduces screening and selection cycle [16]. The success of rational design strategies
lies on adequate understanding of the structure and catalytic mechanism of the target enzyme
hence, information on enzyme catalysis and the role of amino acid residues in the enzyme
function would aid a smarter rational design [14]. For example, the catalytic mechanism of
certain enzyme families such as the carboxylesterase superfamily (EC 3.3.1.1) has been largely
understood and indispensable residues for catalysis have been established [17–19]. Using
site-directed mutagenesis, the role of several residues in substrate binding and catalysis has
been identified. Such mutagenesis studies helped in identifying residues required for catalysis
and substrate binding and deciphering the mode of catalysis. For example, Glu28, Glu176
and Glu298 were identified as important residues for catalysis in α-L-arabinofuranosidase D3
from Thermobacillus xylanilyticus after site-directed mutagenesis of these residues to Ala, Asp
or Gln resulted in weak or no activity [20]. Computational tools have aided in understanding,
modelling, and developing novel variants [21]. The structure of target enzymes of known
sequence can be modelled based on molecular mechanics resulting in 3D conformations
with minimal potential energy. Modelling enzyme structures is beneficial for fast selection
of mutant sites, especially for proteins with structures not yet developed and deposited in
protein databases [21].

Enzymes are dynamic molecules exhibiting oscillatory motions and the dynamics
of each part contribute to its tertiary structure, functional activity, and stability [22]. The
functional characteristics of an enzyme are strongly linked to the folds forming the spatial
structure, hence the three-dimensional structure is important in developing a mutagenesis
strategy and identifying amino acid residues that would influence the desired proper-
ties [23]. For example, in rigidifying the protein structure (a strategy been explored for
improving stability), the flexibility of amino acid residues or regions in a protein struc-
ture can be modulated [24–26]. Rigidifying the flexible regions is understood to enhance
stability, while improving flexibility in regions is considered to enhance the activity of an
enzyme [27,28]. In a study to enhance the activity and stability of lipase B from Canadida
antarctica through site-directed mutagenesis exploring rational design, the enzyme structure
was divided into two regions (substrate-binding regions and hydrophilic solvent-affecting
region). Simultaneously modulating flexibility within these regions yielded variants with
improved activity and stability [2]. However, the role of the introduced beneficial mutants
has not been well characterised and is still debated in the literature over the role of certain
amino acid groups in conferring stability. To target enhanced stability of enzymes in hy-
drophilic organic solvents, several studies and hypotheses have been developed. One of
the strong propositions is the formation and strengthening of hydrated ion networks by
charged amino acids [29]. Polar organic solvents have a devastating effect on the structure
of enzymes because of their high degree of partitioning into the aqueous layer [30–32].
Loss of structural conformation caused by the disruption of the hydrogen bond network
and hydrophobic interactions forming the water hydration shell of the protein resulting in
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the loss of enzyme activity in polar organic solvents [33–35]. A hydrated ion network pre-
vents the aggregation of proteins via electrostatic charge repulsion and plays crucial roles
in maintaining activity and improving resistance to hydrophilic organic solvents [34,36].
Hence, the stability of an enzyme is largely influenced by the intramolecular interactions of
the functional groups and their interaction with the solvent environment [37]. Polar organic
solvents tend to strip water off the enzyme surface, thereby dehydrating the enzyme so
that activity is destroyed [38], thus considerations for improving stability targets water
activity in and around the protein moiety are needed [39].

Esterases with novel properties are widely needed due to their potential in catalysing
diverse reactions such as deacetylation of the xylan backbone, degradation of poly(ethylene
terephthalate), and the synthesis of short-chain esters [40,41]. Biocatalysis in organic sol-
vents is desired due to the possibility of performing reactions that are restricted kinetically
or thermodynamically in an aqueous environment, improved solubility of substrates, easier
product recovery, and because the possibility of side-reactions and inhibitory compounds
occurrence is reduced [42]. Furthermore, some reactions perform better in polar organic
solvents due to improved solubility of the substrates, hence biocatalysts that are stable
in organic solvents are needed in industrial applications [41]. The stability of enzymes
in a hydrophilic organic solvent is reduced due to the deforming effect of the penetrated
solvents on the enzyme structure, which leads to a loss of activity [42]. Thus, strategies to
rigidify the enzyme structure might develop beneficial mutants with improved stability in
organic solvents. The biochemical and functional characterisation of a novel acetyl xylan
esterase (BaAXE, EC 3.1.1.72) mined from the gut microbiota of the common black slug was
previously reported [43–45]. BaAXE showed desirable characteristics of industrial enzymes
and properties that can be utilized for biotechnological applications such as thermostability
and moderate tolerance in polar and non-polar organic solvents [43]. Although BaAXE
shows properties of a viable industrial enzyme, the enhancement of the enzyme proper-
ties has not been explored using protein engineering strategies. In this study, a rational
design strategy was explored to develop beneficial mutants of BaAXE that expands the
understanding of charged residues as suitable candidates for improving enzyme stability
in organic solvents.

2. Results and Discussion
2.1. Enzyme Flexibility and Mutant Sites

The properties of the protein structure were computed in silico using the computa-
tionally solved structure of BaAXE. The highly flexible regions were mostly located within
the loop structure while the sheets were less flexible (Figure 1), hence the loop region was
selected for rigidifying the enzyme structure. The structure of BaAXE was partitioned
into two regions—substrate binding and solvent affecting regions (Figure 2). Two residues
located in the hydrophilic solvent affecting area were selected based on a strategy to in-
troduce charged residues and intramolecular interactions, hence the development of the
mutants MUT12, MUT143, and MUT12-143. The selected amino acid residues (A12 and
Q143) were located on the loop structure near the N- and C-terminals, respectively, and
reported high (A12) and intermediate (Q143) relative B-values (PROFbval) (Table 1) and
A12 appears to be in proximity with D45 for a possible intermolecular interaction.

A flexibility analysis of BaAXE WT and mutants was performed using molecular
dynamics. The mutants lowered the RMSF values and maintained less fluctuation over
time (Figure 3). A change in dynamics was observed in the mutants during simulations at a
higher temperature, notably MUT143, which showed the biggest deviation (Figure 4). The
mutants lowered the RMSF value in other parts of the protein and showed less fluctuation
between residues compared to the wild type (Figure 5). Although the mutant residues did
not return lower B-factor values at their position, Molecular Dynamics Simulation (MDS)
showed that the mutations influenced the global flexibility profile of BaAXE, showing
a lowered flexibility score and less fluctuation in the mutants. MDS is a useful tool for
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establishing a correlation between the protein structure and stability and is remarkably
consistent with corresponding experimental data [9,46].
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Figure 2. Orientation of BaAXE. The computationally developed structure of BaAXE was oriented to
show the regions—substrate binding region, and the hydrophilic solvent affecting region. The active
site residues (S111, H191 and D159) are shown in grey and mutant sites for stability enhancement are
shown as sticks coloured in magenta. The protein model was annotated and displayed in PyMOL
(https://pymol.org/2/).

Table 1. Mutant sites. The properties of the mutant residues were computed using the amino acid
sequence of BaAXE. a Solvent accessible surface area reported in exposure ratio (%); b predicted
normalised B-factor (normalised by Z-score transformation); c secondary structure.

Residue Number
Amino Acid

SASA (%) a nBF b SS c

Original Mutant

12 A D 44.8 0.92 Loop
143 Q E 71.6 0.99 Loop

https://pymol.org/2/
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Figure 3. Molecular dynamics. The molecular dynamics of the WT and mutants was simulated using
the computationally developed structures. Simulation data were generated for 20 ns for both WT
(in blue) and mutants (in orange) with 1TCA simulations as reference. RMSD data were compared
between BaAXE WT and (A) MUT12, (B) MUT143, (C) MUT12-143 and (D) 1TCA WT and 1TCA
mutant (A92E). Molecular dynamics simulation was performed on WebGro and data presented in
GraphPad Prism 9.

Molecules 2023, 28, x FOR PEER REVIEW 5 of 14 
 

 

establishing a correlation between the protein structure and stability and is remarkably 
consistent with corresponding experimental data [9,46]. 

 
Figure 3. Molecular dynamics. The molecular dynamics of the WT and mutants was simulated using 
the computationally developed structures. Simulation data were generated for 20 ns for both WT 
(in blue) and mutants (in orange) with 1TCA simulations as reference. RMSD data were compared 
between BaAXE WT and (A) MUT12, (B) MUT143, (C) MUT12-143 and (D) 1TCA WT and 1TCA 
mutant (A92E). Molecular dynamics simulation was performed on WebGro and data presented in 
GraphPad Prism 9. 

 
Figure 4. Flexibility analysis. The molecular dynamics of the WT and mutants was simulated using 
the computationally developed structures. Simulation data were generated for 1 ns for dynamics at 
temperature 300 K (in blue) and 325 K (in orange). RMSD data were compared between simulations 
in 300 K and 325 K. (A) WT, (B) MUT12, (C) MUT143, (D) MUT12-143. Molecular dynamics simu-
lation was performed locally on a PC and data presented with GraphPad Prism 9. 

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

Time (ns)

R
M

SD
 (n

m
)

WT
MUT12

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

Time (ns)

R
M

SD
 (n

m
)

WT
MUT143

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

Time (ns)

R
M

SD
 (n

m
)

WT
MUT12-143

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

Time (ns)

R
M

SD
 (n

m
)

1TCA
1TCA A92E

A B

C D

0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

Time (ns)

R
M

SD
 (n

m
)

300K
325K

0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

Time (ns)

R
M

SD
 (n

m
)

300K
325K

0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

Time (ns)

R
M

SD
 (n

m
)

300K
325K

0.0 0.5 1.0
0.0

0.1

0.2

0.3

Time (ns)

R
M

SD
 (n

m
)

300K
325K

A B

C D

Figure 4. Flexibility analysis. The molecular dynamics of the WT and mutants was simulated using
the computationally developed structures. Simulation data were generated for 1 ns for dynamics at
temperature 300 K (in blue) and 325 K (in orange). RMSD data were compared between simulations in
300 K and 325 K. (A) WT, (B) MUT12, (C) MUT143, (D) MUT12-143. Molecular dynamics simulation
was performed locally on a PC and data presented with GraphPad Prism 9.
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Figure 5. Flexibility per residue. The flexibility of each residue was simulated for WT and mutants.
(A) The RMSF profile of WT and mutant—BaAXE. (B) The RMSF profile of WT and mutant—1TCA.

2.2. Mutant Residues

The properties of the mutant residues and their influence on the protein structure
were computed in the WHAT IF server. The mutant and wild-type residues show similar
B-factor values except that the side chain atoms of the mutant residues returned higher
B-factor values compared to the wild-type. Contact analysis showed that the mutant A12D
had additional intermolecular contacts and formed more hydrogen bonds compared to
the wild type. A12D formed additional hydrogen bonding networks with SER10, PRO14,
PRO44, and ASP45 while the wild-type residue A12 formed hydrogen bonding networks
with PRO14 and PRO44. The number of interatomic contacts increased in the mutant
residue A12D, most notably interatomic contact with ASP45 and a salt bridge with LYS16,
which were not observed in the wild type (Table 2). The mutant Q143D showed no extra
bonding nor interatomic contact but lost some of the hydrogen bonding networks with
GLN140 observed in the wild-type residue GLU143 (Table 2). Furthermore, the mutant
residue-aspartate (D) has a larger side chain compared to alanine (A) and would likely
prevent the penetration of organic solvents into the protein core [30]. Increased stability of
lipase in organic solvents has been linked to the introduction of amino acid residues that
may be effective for preventing the organic solvent from entering the protein core [47]. The
introduction of bulky aromatic residues to occupy solvent channels has been explored with
success as a strategy to improve the stability of lipase in organic solvents [15]. The higher
structural rigidity in thermophilic enzymes is thought to be accompanied by more inter-
and intra-subunit interactions such as hydrophobic, hydrogen bonds, aromatic–aromatic,
cation–aromatic, and disulphide bridges [48]. Amino acids with negatively or positively
charged side chains can form salt bridges or hydrogen bonds and several other interactions
that are not yet fully understood [49]. These interactions have been implicated in enhancing
stability in the protein structure [35,50,51]. A study using high-resolution structures of
3150 polypeptide chains identified close pairs of carboxylates in acidic residues. These
pairs of negatively charged residues were found to be tightly packed with low-B-factors,
which supports the possible attractive interaction between D12 and D45 [52]. Furthermore,
a novel π-π interaction was reportedly induced by introducing aromatic residues in a
study to enhance the stability of lipase from Geobacillus stearothermophilus in methanol [15].
This emphasises the significance of intramolecular interactions in enhancing the stability
of enzymes in organic solvents. Although aspartic acid and glutamic acid show similar
hydrogen bonding attribute and are theoretically available to engage in carbonyl–carbonyl
interaction since they both possess carbonyls in their side chains, glutamic acid show very
little carbonyl stacking presumably owing to steric constraints [53]. Carbonyl–carbonyl
interaction is more abundant in asparagine and aspartic acid compared to glutamine and
glutamic acid. This might explain the absence of additional intermolecular interaction
in the MUT143. Furthermore, substitutions to charged amino acids attracted more water
to the enzyme surface and contributed to stronger attraction to the hydration shell [29].
Hence, an engineering surface charge can improve hydration and reduce flexibility.
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Table 2. Interatomic contacts. The interatomic contacts were computed in the What IF server with
the structure of the wild-type and mutant enzymes.

Residue Atom (s) Contact Residue Contact Atom (s) Ave. Distance

ASP12 Various ASP45 Various 3.307 ± 0.270
ASP12 Various SER10 Various 3.021 ± 0.503
ASP12 Various LYS16 NZ 5.44 ± 0.07
ASP12 Various PRO14 Various 3.26 ± 0.26
ASP12 Various PRO44 Various 3.10 ± 0.33
ALA12 C PRO14 CD 3.31
ALA12 N & CB PRO44 O 3.02 ± 0.07
ALA12 N SER10 C & OG 3.192 ± 0.20
GLU143 CB GLN140 NE2 3.421
GLU143 C ALA145 N 3.614
GLN143 Various GLN140 Various 3.344 ± 0.43
GLN143 Various ALA145 Various 3.614

The side chains of aspartic acid/glutamic acid residues can interact with the backbone
amine groups/carbonyl groups forming the carbonyl–carbonyl interactions [54]. Carbonyl–
carbonyl interactions (C=O· · · · · ·C=O) is initiated when one of the lone pairs on the oxygen
atom of one carbonyl group is delocalised over the antibonding orbital of a nearby carbonyl
C=O bond [50]. Self-contacting residues are found in the N- or C-terminal ends of helices
or loop regions and the majority if not all the self-contacting aspartate residue interact
with at least one water molecule and/or with residues from other parts of the protein. The
formation of carbonyl–carbonyl interaction results in optimum favourable interactions with
low B-factor. Hence, the presence of such interactions could positively impact the protein
stability [55]. Their presence in helix ends and loops indicates that these interactions can
help fix the orientations of the helix ends or reduce the flexibility of the loop regions [56].
The structure of an endoglucanase (PDB: 1KS8) contains seven self-contacting residues,
of which five of them are aspartic acid, one glutamine, and one glutamic acid [54]. All
the self-contacting residues in this protein were interacting with water molecules and
residues from other regions of the protein. The self-contacting residues formed at least
one hydrogen bond with a water molecule and at least one with residues that are distant
at the primary sequence level [54]. The proximity of two carbonyl oxygens with partial
negative charges results in a repulsive effect between the like charges. However, this
repulsive effect is offset by multiple favourable interactions occurring between the C=O
groups and water molecule(s) and residues from other parts of the protein. The distance
between the atom groups in the residues D12 and D45 averaged 3.307 ± 0.270, which are
within distances for potential electrostatic contacts (Table 2). The crystallography data for
9049 carbon-substituted C=O groups show that 15% interact with other C=O groups where
d(C-O) is less than 3.6 Å [57]. Mutation of self-contacting residues resulted in a loss of
protein stability due to the disruption of stronger polar interactions in a relatively higher
hydrophobic environment. Furthermore, proteins engineered to introduce these residues at
appropriate positions resulted in stronger polar interaction networks leading to enhanced
stability of the protein [57].

2.3. Enzyme Characterisics and Activity

The activity of the mutant enzymes was assayed in an assay with 4-nitrophenyl
acetate. The mutants showed hydrolytic activity on 4-nitrophenyl acetate and showed
deacetylation activity by the release of acetic acid when reacted with acetylated xylan
and β-D-glucosepentaacetate as with the wild-type BaAXE [43]. When reacted with the
substrate 4-nitrophenyl acetate, the mutants MUT12 and MUT12-143 reported Km values
of 0.29 mM and 0.27 mM, respectively, while the wild type reported a Km value of 0.41 mM.

The performances of wild type and mutant variants were accessed in the presence of
20% and 40% organic solvents. The mutant enzymes showed higher relative and residual
compared to the wild type in 20% ethanol and methanol (Figure 6). MUT12 and MUT143
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showed over 700% higher activity in the presence of 20% hydrophilic organic solvent com-
pared to the wild type (Figure 6). MUT12 and MUT12-143 showed 78% and 70% residual
activity, respectively, and MUT12 retained less than 20% residual activity in 40% methanol
(Figure 7). The mutants were more stable in hydrophilic organic solvents compared to the
wild type. Interestingly, the mutants showed improved activity in hydrophilic solvents
and MUT12 and MUT12-143 retained over 70% residual activity in 40% methanol. The
loss of activity in MUT143 in 40% methanol could be explained by the lack of additional
inter-molecular interactions and agree with the MDS profile where a steep change in RMSF
was observed in MUT143 (Figure 4).
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Figure 7. Stability in 40% methanol. The purified enzymes were incubated in 40% methanol for 19 h
at 20 ◦C. Residual activity was measured in an assay with 4-nitrophenyl acetate. Each bar represents
average data from replicate experiments. Error bar represents SEM where n = 4.

Amino acid mutation to charged residues had a positive effect on the activity and
stability of BaAXE in hydrophilic organic solvents. This is interesting and remarkable as
a previous attempt to enhance the activity and stability of a lipase in hydrophilic organic
solvents was achieved by the simultaneous introduction of double mutants at the substrate-
binding and hydrophilic solvent-affecting region [2]. Mutagenesis of residues located at
the flexible regions away from the active sites has been reported capable of significantly
improving enzyme catalysis. Enzyme catalysis is not only mediated by the catalytic pocket,
but also the dynamic network associated with the active pocket and changes in structural
conformation [14]. This explains the higher relative activity observed in the mutants
compared to the wild type in 20% organic solvent (Figure 6). This work agrees to the
postulation of improved hydration and reduced flexibility in enhancing the stability of
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enzymes in polar organic solvents [58]. In 20% organic solvent, the charged residues
provided improved hydration resulting in enhanced activity and stability. However, in
40% organic solvent, the hydration shell is threatened by the increased strength of the
organic solvent and would require the formation of intermolecular interactions to maintain
stability (Figure 7). Hydrated shells formed by charged residues are stripped by hydrophilic
organic solvents, hence the proposal for the removal of charged residues as a strategy for
enhancing the stability of enzymes in organic solvents [59]. However, the surface charges
in thermostable proteins are linked to the formation of salt bridges, and electrostatic
interactions with charged amino acids have been implicated in maintaining the enzyme
structure [60].

Based on the strong link between organic solvent resistance and thermostability [46],
the improved stability observed in MUT12 and MUT12-143 in 40% methanol is likely
to have been conferred by the introduction of a new interaction in the protein structure.
Although it is not definite as to which interaction is responsible for the enhanced stability,
the possible options would be the formation of hydrogen bonds, inter-residue interaction
between the side-chain atoms and their main chain nitrogen or oxygen, and interaction
with neighbouring residues.

3. Materials and Methods
3.1. Flexibility and Mutagenesis Analysis

The computationally developed structure of BaAXE as previously described was used
for mutagenesis investigations [43]. B-factor value characterises the flexibility of a residue in
a protein structure. The B-factor and local quality were estimated with ResQ server [61]. A
high B-factor corresponds to greater flexibility and vice versa [36]. The modelled structure
of BaAXE was divided into two regions—the substrate-binding region and the hydrophilic
solvent affecting region [2]. Two residues—alanine (A12) and glutamine (Q143)—in the
hydrophilic solvent-affecting region were selected for mutagenesis. The solvent-accessible
surface area was calculated using the GetArea server (http://curie.utmb.edu/getarea.html,
accessed on 11 April 2022) and the features of the mutated residues were computed with
Protein Predict (https://predictprotein.org/, accessed on 11 April 2022).

3.2. Interatomic Contacts

The mutant residues were simulated into the computationally developed structure of
BaAXE using the mutation prediction tool hosted in the WHAT IF server (https://swift.
cmbi.umcn.nl/servers/html/index.html, accessed on 20 July 2022). The computationally
developed mutant and wild-type structure was used to analyse the properties of mutant and
wild-type residues, respectively. The interatomic contacts and salt bridges were analysed
using the atomic contact tool while the hydrogen bonding network was analysed using the
hydrogen (bonds) tool hosted in the WHAT IF server.

3.3. Molecular Dynamic Simulation

The structure of the mutant structure was developed using the computationally devel-
oped structure of BaAXE. The wild-type structure was mutated with the mutant residue
using the mutation prediction tool hosted in the WHAT IF server. Molecular dynamic
simulation was performed using Gromacs and the OPLS-AA/L all-atom force field. Due
to the demand of the simulation on the remote system, remote runs were limited to 1 ns
and simulations were performed at 300 K and 325 K. MDS was performed on the web-
GRO simulation (https://simlab.uams.edu/index.php, accessed on 30 August 2022) and
simulations were extended to 20 ns at 325 K using this platform.

3.4. Generating Mutants

Site-directed mutagenesis was performed on the recombinant plasmid pDEST42:BaAXE
through the substitution of oligonucleotides to achieve the desired mutants plasmids. Muta-
genesis was performed with Q5® Site-Directed Mutagenesis Kit following the manufacturer’s

http://curie.utmb.edu/getarea.html
https://predictprotein.org/
https://swift.cmbi.umcn.nl/servers/html/index.html
https://swift.cmbi.umcn.nl/servers/html/index.html
https://simlab.uams.edu/index.php
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protocol (NEB, Hitchin, UK). Two mutant plasmids were constructed: (1) pDEST42:MUT12
having one mutant site—Ala12Asp, and (2) MUT12-143 having two mutant sites—Ala12Asp
and Gln143Glu. The primers for mutagenesis are shown in (Table 3). The mutant genes were
confirmed by restriction enzyme digest and sequencing (SourceBioscience, Cambridge, UK).

Table 3. Primer sequences.

Mutant ID Primer Sequence (5′–3′)

MUT12 FP: CAGAGTCCTGatACACCCGCAA
RP: GACAACAAAGTGGTCATGTTTC

MUT143 FP: GCAGCTTCCAgAAAAAGCATC
RP: GCGTAGCGACCATTAAAAG

The substituted oligonucleotides are written in lower case.

3.5. Transformation, Expression, and Purification of Recombinant Proteins

The recombinant plasmids confirmed through sequencing to harbour the mutant and
wild-type genes were used to transform Escherichia coli BL21 (DE3) competent cells using
chemical transformation with heat shock at 42 ◦C for 30 s. The transformed cells were
grown for 16 h at 37 ◦C in LB media supplemented with 50 µg/mL carbenicillin. Cells at
OD > 2 were diluted to achieve an OD of approximately 0.5. Diluted cells were grown to
mid-log phase—OD 0.4–0.5 before protein expression was induced by adding 0.6 mM IPTG
to the culture. The recombinant proteins were expressed at 30 ◦C for 4 h. Induced cells were
harvested by centrifugation at 10,000× g for 10 min. Cell pellets were resuspended and
incubated in a lysis buffer (50 mM Sodium phosphate, 150 mM NaCl, 0.01% triton X-100,
10 mM imidazole) for 30 min. The lysate was recovered by centrifugation at 4600 rpm
for 15 min at 4 ◦C. Clarified lysate was passed through 0.22 µm filters and the filtrate
was equilibrated 1:1 with an equilibration buffer (50 mM sodium phosphate, 150 mM
NaCl, 10 mM imidazole pH 7.4). The equilibrated lysate was loaded onto gravity columns
prefilled with cobalt resins (Cytiva, Sheffield, UK). His-tagged recombinant proteins were
eluted with a gradient concentration of imidazole from 30 mM to 100 mM imidazole. The
efficiency of the purification process was analysed with SDS-PAGE and Western blot. The
eluents containing the purified proteins were dialysed using SnakeSkin dialysis tubing 10 K
MWCO (Thermofischer, Leicester, UK) into a storage buffer (50 mM sodium phosphate,
100 mM NaCl) following the manufacturer’s protocol. After dialysis, the protein was
concentrated using Amicon filters (Thermofischer, Leicester, UK) and quantified with
Bradford assay.

3.6. Activity Assay

The activity of the recombinant enzymes was assayed on the synthetic substrate
4-nitrophenol acetate (4-NPA). The substrate was prepared to a concentration of 10 mM in
DMSO. The assay reaction mixture contained 50 mM sodium phosphate pH 8 and 1 mM
of the substrate. Enzyme reaction was initiated by adding 3.5–5 µg/mL of the purified
enzyme, and an assay without the enzyme was used as a blank. The reaction mixture was
incubated at 40 ◦C for 20 min with absorbance readings at 410 nm taken every 1 min using
the BMG microplate reader (BMG Labtech, Aylesbury, UK). One unit of enzyme activity is
defined as the amount of enzyme liberating 1 µmol of substrate per min under the reaction
condition specified. Deacetylation activity of the mutant enzymes was accessed in an assay
with acetylated xylan and β-D-glucosepentacetate as previously described [43]. Kinetic
parameters Km and Kcat were determined as previously described [43].

3.7. Stability Assay in Organic Solvents

The organic solvent stability was determined by incubating the enzyme in 20% (v/v)
ethanol and methanol, and 40% (v/v) methanol for 19 h at 20 ◦C. The residual activity
of the enzymes after incubation was measured according to the method described above
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Section 3.4. The stability assay in 40% (v/v) hydrophilic organic solvent proceeded with just
methanol because we observed from the 20% (v/v) assay that both methanol and ethanol
had similar impact on the enzyme structure. The residual activity was expressed relative to
the enzyme assay without alcohol incubation, and relative activity was expressed relative
to the activity of the wild-type enzyme after alcohol incubation. Assay without an enzyme
is used as a blank.

3.8. Stability in Acidic pH

To access the activity of the mutant enzymes in an acidic environment, an attribute
lacking in the wild-type enzyme, the mutant enzymes were assayed according to Section 3.4
with sodium acetate buffer at pH 3 and 5. Assay without enzyme was used as a reaction
blank. The activity of the mutant proteins was assessed relative to the wild-type enzyme.

4. Conclusions

Although the impact of substitutions to charged amino acids in enhancing enzyme
stability is not fully understood, consistent hydration and reduced flexibility have been
linked to the enhanced stability in hydrophilic organic solvents. Substitution to charged
residues had a positive effect on residual activity in mild percentages of hydrophilic organic
solvents while higher percentages of hydrophilic organic solvent would strip water from the
protein surface leading to the loss of enzyme stability. It is likely that the introduced charged
residue in position 12 (A12D) prevented the interaction of the cosolvent molecules with the
enzyme by forming intermolecular interactions with residues on the enzyme surface and/or
with water molecules. Hence, the enhanced stability in higher percentages of hydrophilic
organic solvent. It would be informative to investigate the proposed interactions formed
by the substitution A12D using experimentally determined structures with high resolution
such as x-ray crystallography. Residues showing intra-residue interactions were found to
be oriented with a consistent dihedral angle to engage interactions of significant energy [57].
Hence, the crystal structure of MUT12 would better explain the structural basis for the
enhanced activity and stability in organic solvents. Furthermore, this rational approach
can be explored in other residues (other regions/sites of the enzyme structure) to develop
enhanced protein stability targeting different environments. For example, the mutants
reported here showed no activity in the acidic pH range. However, the amide bridge
interaction between the side-chain amide groups of asparagine and glutamine is reported
to be three times stronger than hydrogen bonds and less influenced by the pH of the
solution [49]. This strategy can aid in the rational design of stable and active acetyl xylan
esterase in acidic pHs as most acetyl xylan esterases operate optimally in alkaline pH.
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