Anti-Trypanosoma cruzi Activity, Mutagenicity, Hepatocytotoxicity and Nitroreductase Enzyme Evaluation of 3-Nitrotriazole, 2-Nitroimidazole and Triazole Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Organic Synthesis
2.2. Biological Evaluation
2.2.1. Anti-T. cruzi Activity
2.2.2. T. cruzi Nitroreductase Enzyme Evaluation
2.2.3. In Silico ADMET Studies
2.2.4. Hepatocytotoxicity Assessment in HepG2 Cells
2.2.5. In Vitro Mutagenicity Assessment by Ames Test
3. Molecular Docking on the TcCYP51 Enzyme
4. Experimental Section
4.1. Chemistry
4.1.1. Synthesis of the Intermediate 2-Chloro-1-(2,4-difluorophenyl)ethanone (4)
4.1.2. Synthesis of 1-(2,4-Difluorophenyl)-2-(3-nitro-1H-1,2,4-triazol-1-yl)ethanone (5)
4.1.3. Synthesis of 1-(2,4-Difluorophenyl)-2-(2-nitro-1H-imidazol-1-yl)ethanone (6)
4.1.4. Synthesis of 1-(2,4-Difluorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone (7)
4.1.5. Synthesis of 1-(2,4-Difluorophenyl)-2-(3-nitro-1H-1,2,4-triazol-1-yl)ethanol (8)
4.1.6. Synthesis of 1-(2,4-Difluorophenyl)-2-(2-nitro-1H-imidazol-1-yl)ethanol (9)
4.1.7. Synthesis of 1-(2,4-Difluorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanol (10)
4.2. Biological Evaluation
4.2.1. In Vitro Anti-T. cruzi Evaluation Protocol in an Intracellular Model against the Tulahuen Strain
4.2.2. Protocol Used to Evaluate the In Vitro Cytotoxicity of L929 Cells
4.2.3. Kinetic Assay with Trypanosoma cruzi Nitroreductase Enzyme (TcNTR)
4.2.4. In Vitro Cytotoxicity Evaluation Protocol in HepG2 Cells
4.2.5. Mutagenicity Evaluation Protocol by the Salmonella Reverse Mutation Assay
4.3. Molecular Modeling and Docking Simulation
4.3.1. Cytochrome P450 14α-demethylase (CYP51) and Derivatives 5–10 Structure Preparation
4.3.2. Docking Simulation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chagas, C. Nova Entidade Morbida Do Homem: Rezumo Geral de Estudos Etiolojicos e Clinicos. Mem. Inst. Oswaldo Cruz 1911, 3, 219–275. [Google Scholar] [CrossRef]
- Coura, J.R.; Viñas, P.A. Chagas Disease: A New Worldwide Challenge. Nature 2010, 465, S6–S7. [Google Scholar] [CrossRef] [PubMed]
- WHO. Chagas Disease (American Trypanosomiasis). Available online: https://www.who.int/health-topics/chagas-disease#tab=tab_1 (accessed on 6 July 2023).
- Coura, J.R.; De Castro, S.L. A Critical Review on Chagas Disease Chemotherapy. Mem. Inst. Oswaldo Cruz 2002, 97, 3–24. [Google Scholar] [CrossRef] [PubMed]
- Cirqueira, M.L.; Bortot, L.O.; Bolean, M.; Aleixo, M.A.A.; Luccas, P.H.; Costa-Filho, A.J.; Ramos, A.P.; Ciancaglini, P.; Nonato, M.C. Trypanosoma Cruzi Nitroreductase: Structural Features and Interaction with Biological Membranes. Int. J. Biol. Macromol. 2022, 221, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, S.R.; Taylor, M.C.; Horn, D.; Kelly, J.M.; Cheeseman, I. A Mechanism for Cross-Resistance to Nifurtimox and Benznidazole in Trypanosomes. Proc. Natl. Acad. Sci. USA 2008, 105, 5022–5027. [Google Scholar] [CrossRef] [PubMed]
- Hall, B.S.; Bot, C.; Wilkinson, S.R. Nifurtimox Activation by Trypanosomal Type I Nitroreductases Generates Cytotoxic Nitrile Metabolites. J. Biol. Chem. 2011, 286, 13088–13095. [Google Scholar] [CrossRef]
- Lepesheva, G.I.; Villalta, F.; Waterman, M.R. Targeting Trypanosoma Cruzi Sterol 14α-Demethylase (CYP51). Adv. Parasitol. 2011, 75, 65–87. [Google Scholar] [CrossRef]
- Molina, J.; Martins-Filho, O.; Brener, Z.; Romanha, A.J.; Loebenberg, D.; Urbina, J.A. Activities of the Triazole Derivative SCH 56592 (Posaconazole) against Drug-Resistant Strains of the Protozoan Parasite Trypanosoma (Schizotrypanum) Cruzi in Immunocompetent and Immunosuppressed Murine Hosts. Antimicrob. Agents Chemother. 2000, 44, 150–155. [Google Scholar] [CrossRef]
- Molina, I.; Gómez i Prat, J.; Salvador, F.; Treviño, B.; Sulleiro, E.; Serre, N.; Pou, D.; Roure, S.; Cabezos, J.; Valerio, L.; et al. Randomized Trial of Posaconazole and Benznidazole for Chronic Chagas’ Disease. N. Engl. J. Med. 2014, 370, 1899–1908. [Google Scholar] [CrossRef]
- Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; O’Shea, I.P.; Wilkinson, S.R.; Kaiser, M.; Chatelain, E.; Ioset, J.R. Discovery of Potent Nitrotriazole-Based Antitrypanosomal Agents: In Vitro and In Vivo Evaluation. Bioorg. Med. Chem. 2015, 23, 6467–6476. [Google Scholar] [CrossRef]
- Papadopoulou, M.V.; Bloomer, W.D.; Lepesheva, G.I.; Rosenzweig, H.S.; Kaiser, M.; Aguilera-Venegas, B.; Wilkinson, S.R.; Chatelain, E.; Ioset, J.R. Novel 3-Nitrotriazole-Based Amides and Carbinols as Bifunctional Antichagasic Agents. J. Med. Chem. 2015, 58, 1307–1319. [Google Scholar] [CrossRef]
- Strauss, M.J. The Nitroaromatic Group in Drug Design. Pharmacology and Toxicology (for Nonpharmacologists). Ind. Eng. Chem. Prod. Res. Dev. 1979, 18, 158–166. [Google Scholar] [CrossRef]
- Walsh, J.S.; Miwa, G.T. Bioactivation of Drugs: Risk and Drug Design. Annu. Rev. Pharmacol. Toxicol. 2011, 51, 145–167. [Google Scholar] [CrossRef]
- Boechat, N.; Carvalho, A.S.; Salomão, K.; de Castro, S.L.; Araujo-Lima, C.F.; Mello, F.V.; Felzenszwalb, I.; Aiub, C.A.; Conde, T.R.; Zamith, H.P.; et al. Studies of Genotoxicity and Mutagenicity of Nitroimidazoles: Demystifying This Critical Relationship with the Nitro Group. Mem. Inst. Oswaldo Cruz 2015, 110, 492–499. [Google Scholar] [CrossRef]
- Silva, F.T.; Franco, C.H.; Favaro, D.C.; Freitas-Junior, L.H.; Moraes, C.B.; Ferreira, E.I. Design, Synthesis and Antitrypanosomal Activity of Some Nitrofurazone 1,2,4-Triazolic Bioisosteric Analogues. Eur. J. Med. Chem. 2016, 121, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.J.; Zhang, W.N.; Lu, J.G.; Li, K.; Zhu, J. [Synthesis and Antifungal Activities of 1-(2-[(Substituted-Phenyl) Methyl]Thio)-2-(2,4-Difluorophenyl)Ethyl-1H-1,2,4-Triazoles]. Yao Xue Xue Bao 1997, 32, 902–907. [Google Scholar] [PubMed]
- Nelson, R.; Kesternich, V.; Peréz-Fehrmann, M.; Salazar, F.; Marcourt, L.; Christen, P.; Godoy, P. Synthesis and Antifungal Activity of Phenacyl Azoles. J. Chem. Res. 2014, 38, 549–552. [Google Scholar] [CrossRef]
- Upadhayaya, R.S.; Jain, S.; Sinha, N.; Kishore, N.; Chandra, R.; Arora, S.K. Synthesis of Novel Substituted Tetrazoles Having Antifungal Activity. Eur. J. Med. Chem. 2004, 39, 579–592. [Google Scholar] [CrossRef]
- Romanha, A.J.; de Castro, S.L.; Soeiro, M.d.N.C.; Lannes-Vieira, J.; Ribeiro, I.; Talvani, A.; Bourdin, B.; Blum, B.; Olivieri, B.; Zani, C.; et al. In Vitro and in Vivo Experimental Models for Drug Screening and Development for Chagas Disease. Mem. Inst. Oswaldo Cruz 2010, 105, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Zingales, B.; Andrade, S.G.; Briones, M.R.S.; Campbell, D.A.; Chiari, E.; Fernandes, O.; Guhl, F.; Lages-Silva, E.; Macedo, A.M.; Machado, C.R.; et al. A New Consensus for Trypanosoma Cruzi Intraspecific Nomenclature: Second Revision Meeting Recommends TcI to TcVI. Mem. Inst. Oswaldo Cruz 2009, 104, 1051–1054. [Google Scholar] [CrossRef]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. PkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef] [PubMed]
- Ambudkar, S.V.; Kimchi-Sarfaty, C.; Sauna, Z.E.; Gottesman, M.M. P-Glycoprotein: From Genomics to Mechanism. Oncogene 2003, 22, 7468–7485. [Google Scholar] [CrossRef] [PubMed]
- Sharom, F.J. The P-Glycoprotein Multidrug Transporter. Essays Biochem. 2011, 50, 161–178. [Google Scholar] [CrossRef] [PubMed]
- Valentin-Severin, I.; Le Hegarat, L.; Lhuguenot, J.-C.; Le Bon, A.-M.; Chagnon, M.-C. Use of HepG2 Cell Line for Direct or Indirect Mutagens Screening: Comparative Investigation between Comet and Micronucleus Assays. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2003, 536, 79–90. [Google Scholar] [CrossRef]
- O’Brien, P.J.; Irwin, W.; Diaz, D.; Howard-Cofield, E.; Krejsa, C.M.; Slaughter, M.R.; Gao, B.; Kaludercic, N.; Angeline, A.; Bernardi, P.; et al. High Concordance of Drug-Induced Human Hepatotoxicity with in Vitro Cytotoxicity Measured in a Novel Cell-Based Model Using High Content Screening. Arch. Toxicol. 2006, 80, 580–604. [Google Scholar] [CrossRef]
- Van Summeren, A.; Renes, J.; Bouwman, F.G.; Noben, J.-P.; van Delft, J.H.M.; Kleinjans, J.C.S.; Mariman, E.C.M. Proteomics Investigations of Drug-Induced Hepatotoxicity in HepG2 Cells. Toxicol. Sci. 2011, 120, 109–122. [Google Scholar] [CrossRef]
- Claxton, L.D.; Houk, V.S.; Monteith, L.G.; Myers, L.E.; Hughes, T.J. Assessing the Use of Known Mutagens to Calibrate the Salmonella Typhimurium Mutagenicity Assay: I. Without Exogenous Activation. Mutat. Res. Environ. Mutagen. Relat. Subj. 1991, 253, 137–147. [Google Scholar] [CrossRef]
- Claxton, L.D.; Houk, V.S.; Warner, J.R.; Myers, L.E.; Hughes, T.J. Assessing the Use of Known Mutagens to Calibrate the Salmonella Typhimurium Mutagenicity Assay: II. With Exogenous Activation. Mutat. Res. Environ. Mutagen. Relat. Subj. 1991, 253, 149–159. [Google Scholar] [CrossRef]
- OECD. Test No. 471: Bacterial Reverse Mutation Test; OECD Guidelines for the Testing of Chemicals, Section 4; OECD: Paris, France, 2020; ISBN 9789264071247. [Google Scholar]
- Williams, R.V.; DeMarini, D.M.; Stankowski, L.F.; Escobar, P.A.; Zeiger, E.; Howe, J.; Elespuru, R.; Cross, K.P. Are All Bacterial Strains Required by OECD Mutagenicity Test Guideline TG471 Needed? Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019, 848, 503081. [Google Scholar] [CrossRef]
- Gatehouse, D.; Haworth, S.; Cebula, T.; Gocke, E.; Kier, L.; Matsushima, T.; Melcion, C.; Nohmi, T.; Ohta, T.; Venitt, S.; et al. Recommendations for the Performance of Bacterial Mutation Assays. Mutat. Res. Environ. Mutagen. Relat. Subj. 1994, 312, 217–233. [Google Scholar] [CrossRef]
- Mortelmans, K.; Zeiger, E. The Ames Salmonella/Microsome Mutagenicity Assay. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2000, 455, 29–60. [Google Scholar] [CrossRef]
- de Carvalho, A.S.; Salomão, K.; de Castro, S.L.; Conde, T.R.; Zamith, H.P.d.S.; Caffarena, E.R.; Hall, B.S.; Wilkinson, S.R.; Boechat, N. Megazol and Its Bioisostere 4H-1,2,4-Triazole: Comparing the Trypanocidal, Cytotoxic and Genotoxic Activities and Their In Vitro and In Silico Interactions with the Trypanosoma Brucei Nitroreductase Enzyme. Mem. Inst. Oswaldo Cruz 2014, 109, 315–323. [Google Scholar] [CrossRef]
- Whitmore, G.F.; Varghese, A.J. The Biological Properties of Reduced Nitroheterocyclics and Possible Underlying Biochemical Mechanisms. Biochem. Pharmacol. 1986, 35, 97–103. [Google Scholar] [CrossRef]
- Nagel, R. Genotoxicity Studies with Two Antichagasic Drugs. Mutat. Res. Lett. 1987, 191, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, M.; Lavaggi, M.L.; Hernández, P.; Merlino, A.; Gerpe, A.; Porcal, W.; Boiani, M.; Ferreira, A.; Monge, A.; de Cerain, A.L.; et al. Cytotoxic, Mutagenic and Genotoxic Effects of New Anti-T. Cruzi 5-Phenylethenylbenzofuroxans. Contribution of Phase I Metabolites on the Mutagenicity Induction. Toxicol. Lett. 2009, 190, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.C.; de Melo, M.E.; Moraes Júnior, M.A.; Ferreira, L.C. Evaluation of Genotoxic Activity in the Blood and Urine of Guinea Pigs Treated with Nifurtimox and Benznidazole. Braz. J. Med. Biol. Res. 1988, 21, 1069–1077. [Google Scholar] [PubMed]
- Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; Ashworth, R.; Wilkinson, S.R.; Kaiser, M.; Andriani, G.; Rodriguez, A. Novel 3-Nitro-1H-1,2,4-Triazole-Based Compounds as Potential Anti-Chagasic Drugs: In Vivo Studies. Future Med. Chem. 2013, 5, 1763–1776. [Google Scholar] [CrossRef]
- Gee, P.; Maron, D.M.; Ames, B.N. Detection and Classification of Mutagens: A Set of Base-Specific Salmonella Tester Strains. Proc. Natl. Acad. Sci. USA 1994, 91, 11606–11610. [Google Scholar] [CrossRef]
- Chen, C.K.; Leung, S.S.F.; Guilbert, C.; Jacobson, M.P.; Mckerrow, J.H.; Podust, L.M. Structural Characterization of CYP51 from Trypanosoma Cruzi and Trypanosoma Brucei Bound to the Antifungal Drugs Posaconazole and Fluconazole. PLoS Negl. Trop. Dis. 2010, 4, e651. [Google Scholar] [CrossRef]
- Lee, C.; Yang, J.; Kwon, S.; Seok, C. GalaxyDock2-HEME: Protein–Ligand Docking for Heme Proteins. J. Comput. Chem. 2023, 44, 1369–1380. [Google Scholar] [CrossRef]
- Delano, W.L. The PyMOL Molecular Graphics System. In CCP4 Newsletter on Protein Crystallography; Daresbury Laboratory: Daresbury, UK, 2002; No. 40. [Google Scholar]
- Schrödinger Maestro|Schrödinger. Schrödinger Release 2018-1. 2018. Available online: https://www.schrodinger.com/releases/release-2018-1 (accessed on 29 October 2023).
- Buckner, F.S.; Verlinde, C.L.M.J.; La Flamme, A.C.; Van Voorhis, W.C. Efficient Technique for Screening Drugs for Activity against Trypanosoma Cruzi Using Parasites Expressing β-Galactosidase. Antimicrob. Agents Chemother. 1996, 40, 2592–2597. [Google Scholar] [CrossRef] [PubMed]
- Hall, B.S.; Meredith, E.L.; Wilkinson, S.R. Targeting the Substrate Preference of a Type I Nitroreductase to Develop Antitrypanosomal Quinone-Based Prodrugs. Antimicrob. Agents Chemother. 2012, 56, 5821–5830. [Google Scholar] [CrossRef] [PubMed]
- Roche Diagnostics GmbH Cytotoxicity Detection Kit (LDH). Available online: https://diagnostics.roche.com/global/en/products/params/enzymes.html (accessed on 29 October 2023).
- Roche Diagnostics GmbH Cell Proliferation Reagent WST-1. Available online: https://elabdoc-prod.roche.com/LifeScience/Document/311676b4-96ed-e311-98a1-00215a9b0ba8 (accessed on 29 October 2023).
- Maron, D.M.; Ames, B.N. Revised Methods for the Salmonella Mutagenicity Test. Mutat. Res. Environ. Mutagen. Relat. Subj. 1983, 113, 173–215. [Google Scholar] [CrossRef] [PubMed]
- Chu, K.C.; Patel, K.M.; Lin, A.H.; Tarone, R.E.; Linhart, M.S.; Dunkel, V.C. Evaluating Statistical Analyses and Reproducibility of Microbial Mutagenicity Assays. Mutat. Res. Mutagen. Relat. Subj. 1981, 85, 119–132. [Google Scholar] [CrossRef]
- Dolinsky, T.J.; Nielsen, J.E.; McCammon, J.A.; Baker, N.A. PDB2PQR: An Automated Pipeline for the Setup of Poisson–Boltzmann Electrostatics Calculations. Nucleic Acids Res. 2004, 32, W665–W667. [Google Scholar] [CrossRef]
- Olsson, M.H.M.; SØndergaard, C.R.; Rostkowski, M.; Jensen, J.H. PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical p K a Predictions. J. Chem. Theory Comput. 2011, 7, 525–537. [Google Scholar] [CrossRef]
- Brown, T. ChemDraw. Sci. Teach. 2014, 81, 67. [Google Scholar]
- Vanquelef, E.; Simon, S.; Marquant, G.; Garcia, E.; Klimerak, G.; Delepine, J.C.; Cieplak, P.; Dupradeau, F.Y. R.E.D. Server: A Web Service for Deriving RESP and ESP Charges and Building Force Field Libraries for New Molecules and Molecular Fragments. Nucleic Acids Res. 2011, 39, W511–W517. [Google Scholar] [CrossRef]
Compound | IC50 T. cruzi (µM) | CC50 L929 (µM) | SI |
---|---|---|---|
5 | 1.80 ± 0.07 | 1200.00 ± 0.01 | 667 |
6 | 91 ± 4 | 629 ± 61 | 7 |
7 | >200 | NT | NC |
8 | 0.39 ± 0.01 | 1200.00 ± 0.01 | 3077 |
9 | 3.05 ± 0.07 | >400 | >131 |
10 | 120 ± 90 | >3200 | >27 |
BZN | 1.5 ± 0.4 | 2113 ± 270 | 1409 |
Derivative | 25 µM Derivative + 50 µM NADH | Kobs Deriv./Kobs BZN 25 µM | 50 µM Derivative + 50 µM NADH | Kobs Deriv./Kobs BZN 50 µM | ||
---|---|---|---|---|---|---|
Kobs | Error | Kobs | Error | |||
5 | 0.81 | 0.02 | 2.3 | 0.59 | 0.06 | 1.6 |
6 | ND | ND | ND | 0.09 | 0.01 | 0.3 |
8 | 0.93 | 0.01 | 2.6 | 1.08 | 0.08 | 3.0 |
9 | 0.27 | 0.04 | 0.8 | 0.44 | 0.08 | 1.2 |
BZN | 0.36 | 0.02 | NA | 0.36 | 0.03 | NA |
LC50 (µM) | ||||||
---|---|---|---|---|---|---|
24 h | 48 h | 72 h | ||||
WST-1 | LDH | WST-1 | LDH | WST-1 | LDH | |
8 | >500 | >500 | 426 ± 66 | >500 | 377 ± 30 | 449 ± 72 |
9 | >500 | >500 | >500 | >500 | >500 | >500 |
BZN | >500 | >500 | >500 | >500 | >500 | >500 |
Entry | µM | −S9 | +S9 | ||||
---|---|---|---|---|---|---|---|
TA1535 | TA98 | TA100 | TA1535 | TA98 | TA100 | ||
8 | 0 | 18 ± 4 (1.0) | 27 ± 3 (1.0) | 71 ± 3 (1.0) | 11 ± 2 (1.0) | 24 ± 4 (1.0) | 106 ± 3 (1.0) |
0.5 | 21 ± 2 (1.0) | 23 ± 4 (0.9) | 77 ± 5 (1.1) | 11 ± 1 (1.0) | 24 ± 2 (1.0) | 129 ± 21 (1.2) | |
5 | 26 ± 3 (1.0) | 23 ± 1 (0.9) | 77 ± 15 (1.1) | 12 ± 4 (1.1) | 24 ± 7 (1.0) | 128 ± 6 (1.2) | |
50 | 23 ± 6 (1.0) | 30 ± 3 (1.1) | 77 ± 13 (1.1) | 14 ± 4 (1.3) | 23 ± 3 (1.0) | 150 ± 14 (1.4) | |
500 | Cytotoxic | Cytotoxic | 91 ± 8 (1.3) | 15 ± 5 (1.4) | 24 ± 5 (1.0) | 145 ± 8 (1.4) | |
5000 | – | – | 108 ± 10 (1.5) | 15 ± 3 (1.4) | 26 ± 1 (1.1) | 183 ± 9 (1.7) | |
9 | 0 | 8 ± 1 (1.0) | 27 ± 3 (1.0) | 71 ± 3 (1.0) | 11 ± 2 (1.0) | 24 ± 4 (1.0) | 106 ± 3 (1.0) |
0.5 | 14 ± 1 (1.8) | 18 ± 6 (0.7) | 73 ± 5 (1.0) | 14 ± 2 (1.3) | 18 ± 2 (0.8) | 159 ± 7 (1.5) | |
5 | 14 ± 4 (1.8) | 18 ± 2 (0.7) | 88 ± 7 (1.2) | 23 ± 1 (2.1) | 18 ± 2 (0.8) | 218 ± 14 (2.1) | |
50 | 22 ± 1 (2.8) | 29 ± 3 (1.1) | 164 ± 16 (2.3) | 24 ± 1 (2.2) | 22 ± 8 (0.9) | 233 ± 48 (2.2) | |
500 | 16 ± 3 (2.0) | 49 ± 5 (1.8) | 347 ± 24 (4.9) | Cytotoxic | 24 ± 5 (1.0) | 1025 ± 16 (9.7) | |
5000 | Cytotoxic | 173 ± 21 (6.5) | 1195 ± 160 (16.7) | – | 28 ± 2 (1.2) | 1216 ± 113 (11.5) | |
BZN | 0 | 7 ± 1 (1.0) | 27 ± 3 (1.0) | 137 ± 10 (1.0) | 11 ± 2 (1.0) | 24 ± 4 (1.0) | 106 ± 3 (1.0) |
0.5 | 11 ± 2 (1.5) | 28 ± 6 (1.1) | 130 ± 6 (1.0) | 13 ± 1 (1.3) | 21 ± 2 (0.9) | 95 ± 3 (0.9) | |
5 | 11 ± 5 (1.5) | 28 ± 4 (1.1) | 217 ± 13 (1.6) | 17 ± 3 (1.6) | 17 ± 2 (0.9) | 110 ± 8 (1.0) | |
50 | 11 ± 1 (1.5) | 28 ± 2 (1.1) | 852 ± 40 (6.2) | 22 ± 3 (2.1) | 18 ± 1 (0.7) | 269 ± 13 (2.5) | |
500 | 18 ± 4 (2.5) | 37 ± 5 (1.4) | 3848 ± 11 (28.2) | 31 ± 2 (2.9) | 31 ± 6 (1.3) | 907 ± 10 (8.6) | |
5000 | 36 ± 5 (4.9) | 67 ± 4 (2.5) | 7264 ± 62 (53.0) | 32 ± 4 (3.0) | 33 ± 4 (1.4) | 6608 ± (113) |
Compounds | Distance (Å) | Energy (Galaxydock2-Heme Score) |
---|---|---|
TPF (PDB Coordinates) | 2.2 | |
TPF (Redocking Coordinates) | 2.2 | −17.38 |
5 | 2.4 | −15.54 |
6 | 2.3 | −17.09 |
7 | 2.1 | −17.42 |
8 | 2.6 | −16.40 |
9 | 2.5 | −16.99 |
10 | 2.4 | −16.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menozzi, C.A.C.; França, R.R.F.; Luccas, P.H.; Baptista, M.d.S.; Fernandes, T.V.A.; Hoelz, L.V.B.; Sales Junior, P.A.; Murta, S.M.F.; Romanha, A.; Galvão, B.V.D.; et al. Anti-Trypanosoma cruzi Activity, Mutagenicity, Hepatocytotoxicity and Nitroreductase Enzyme Evaluation of 3-Nitrotriazole, 2-Nitroimidazole and Triazole Derivatives. Molecules 2023, 28, 7461. https://doi.org/10.3390/molecules28227461
Menozzi CAC, França RRF, Luccas PH, Baptista MdS, Fernandes TVA, Hoelz LVB, Sales Junior PA, Murta SMF, Romanha A, Galvão BVD, et al. Anti-Trypanosoma cruzi Activity, Mutagenicity, Hepatocytotoxicity and Nitroreductase Enzyme Evaluation of 3-Nitrotriazole, 2-Nitroimidazole and Triazole Derivatives. Molecules. 2023; 28(22):7461. https://doi.org/10.3390/molecules28227461
Chicago/Turabian StyleMenozzi, Cheyene Almeida Celestino, Rodolfo Rodrigo Florido França, Pedro Henrique Luccas, Mayara dos Santos Baptista, Tácio Vinício Amorim Fernandes, Lucas Villas Bôas Hoelz, Policarpo Ademar Sales Junior, Silvane Maria Fonseca Murta, Alvaro Romanha, Bárbara Verena Dias Galvão, and et al. 2023. "Anti-Trypanosoma cruzi Activity, Mutagenicity, Hepatocytotoxicity and Nitroreductase Enzyme Evaluation of 3-Nitrotriazole, 2-Nitroimidazole and Triazole Derivatives" Molecules 28, no. 22: 7461. https://doi.org/10.3390/molecules28227461
APA StyleMenozzi, C. A. C., França, R. R. F., Luccas, P. H., Baptista, M. d. S., Fernandes, T. V. A., Hoelz, L. V. B., Sales Junior, P. A., Murta, S. M. F., Romanha, A., Galvão, B. V. D., Macedo, M. d. O., Goldstein, A. d. C., Araujo-Lima, C. F., Felzenszwalb, I., Nonato, M. C., Castelo-Branco, F. S., & Boechat, N. (2023). Anti-Trypanosoma cruzi Activity, Mutagenicity, Hepatocytotoxicity and Nitroreductase Enzyme Evaluation of 3-Nitrotriazole, 2-Nitroimidazole and Triazole Derivatives. Molecules, 28(22), 7461. https://doi.org/10.3390/molecules28227461