Application and Research Status of Long-Wavelength Fluorescent Carbon Dots
Abstract
:1. Introduction
2. Summary of Previously Reported Synthetic Routes to CDs
2.1. Non-Metallic Element Doping
2.2. Metallic Element Doping
2.3. Arc Discharge Method
2.4. Laser Erosion Method
2.5. Microwave Method
2.6. Hydrothermal Method
3. Fluorescence Properties of CDs
3.1. Synthesis of High-Efficiency N,S-Doped Blue CDs
3.2. Synthesis of N,S-Doped Blue CDs
3.3. Fluorescence Spectra
3.4. Analysis of CD Morphology
4. Carbon-Dot Applications
4.1. Electro-Optical Devices
4.2. Drug and Ion Detection
4.3. Biological Imaging
4.4. Information Anti-Counterfeiting and Encryption
4.5. Introduction to Danio rerio Model
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yin, P.; Niu, Q.; Yang, Q.; Lan, L.; Li, T. A new “naked-eye” colorimetric and ratiometric fluorescent sensor for imaging Hg2+ in living cells. Tetrahedron 2019, 75, 130687. [Google Scholar] [CrossRef]
- Gao, G.; Busko, D.; Kauffmann-Weiss, S.; Turshatov, A.; Howard, I.A.; Richards, B.S. Wide-range non-contact fluorescence intensity ratio thermometer based on Yb3+/Nd3+ co-doped La2O3 microcrystals operating from 290 to 1230 K. J. Mater. Chem. C 2018, 6, 4163–4170. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Venkatesan, S.; Herman, A.; Wang, C.-L.; Teng, H.; Lee, Y.-L. Carbon quantum dots with high quantum yield prepared by heterogeneous nucleation processes. J. Alloys Compd. 2023, 938, 168654. [Google Scholar] [CrossRef]
- Dang, Y.; Tian, J.; Wang, W.; Ma, B. Insight into the whole characteristics of (Pd/WP)/CdS for photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2023, 633, 649–656. [Google Scholar] [CrossRef]
- Yu, H.; Liang, H.; Bai, J.; Li, C. Sulfur vacancy and CdS phase transition synergistically boosting one-dimensional CdS/Cu2S/SiO2 hollow tube for photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2023, 48, 15908–15920. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y.; Shi, T.; Liang, Q.; Chen, Z. Hierarchical hollow-microsphere cadmium sulfide-carbon dots composites with enhancing charge transfer efficiency for hotocatalytic CO2 reduction. J. Alloys Compd. 2023, 936, 168286. [Google Scholar] [CrossRef]
- Zhong, J.; Li, Y.; Zhang, H.; Zhang, Z.; Qi, K.; Zhang, H.; Gao, C.; Li, Y.; Wang, L.; Sun, Z.; et al. Highly efficient charge transfer from small-sized cadmium sulfide nanosheets to large-scale nitrogen-doped carbon for visible-light dominated hydrogen evolution. J. Colloid Interface Sci. 2023, 630, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, X.; Xia, Y.; Dong, M.; Zhou, Z.; Zhang, G.; Li, L.; Hu, Q.; Zhu, X.; Yi, J. The role of facet engineered surface and interface in CdS nanostructures toward solar driven hydrogen evolution. Appl. Surf. Sci. 2023, 615, 156402. [Google Scholar] [CrossRef]
- Liu, B.; Guo, C.; Ke, C.; Chen, K.; Dang, Z. Colloidal stability and aggregation behavior of CdS colloids in aquatic systems: Effects of macromolecules, cations, and pH. Sci. Total Environ. 2023, 869, 161814. [Google Scholar] [CrossRef]
- Song, X.; Zhao, S.; Xu, Y.; Chen, X.; Wang, S.; Zhao, P.; Pu, Y.; Ragauskas, A.J. Preparation, Properties, and Application of Lignocellulosic-Based Fluorescent Carbon Dots. ChemSusChem 2022, 15, e202102486. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.; Zhou, H.; Yan, M.; Liu, C.; Guo, X.; Xie, J.; Li, S.; Yang, G. Ratiometric dual fluorescence tridurylboron thermometers with tunable measurement ranges and colors. Talanta 2020, 210, 120630. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Li, J.; Jiao, Y.; Zuo, G.; Pan, X.; Su, T.; Dong, W. One-step synthesis of orange luminescent carbon dots for Ag+ sensing and cell imaging. J. Lumin. 2017, 190, 188–193. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, Y.; Sun, K.; Reckmeier, C.; Zhang, T.; Zhang, X.; Zhao, J.; Wu, C.; Yu, W.W.; Rogach, A.L. Combination of carbon dot and polymer dot phosphors for white light-emitting diodes. Nanoscale 2015, 7, 12045–12050. [Google Scholar] [CrossRef] [PubMed]
- Macairan, J.R.; Jaunky, D.B.; Piekny, A.; Naccache, R. Intracellular ratiometric temperature sensing using fluorescent carbon dots. Nanoscale Adv. 2019, 1, 105–113. [Google Scholar] [CrossRef]
- Fang, W.-K.; Zhou, S.-H.; Liu, D.; Liu, L.; Zhang, L.-L.; Xu, D.-D.; Li, Y.-Y.; Liu, M.-H.; Tang, H.-W. Tunable emissive carbon polymer dots with solvatochromic behaviors for trace water detection and cell imaging. New J. Chem. 2023, 47, 1985–1992. [Google Scholar] [CrossRef]
- Ghosh, T.; Nandi, S.; Bhattacharyya, S.K.; Ghosh, S.K.; Mandal, M.; Banerji, P.; Das, N.C. Nitrogen and sulphur doped carbon dot: An excellent biocompatible candidate for in-vitro cancer cell imaging and beyond. Environ. Res. 2023, 217, 114922. [Google Scholar] [CrossRef]
- de Boëver, R.; Town, J.R.; Li, X.; Claverie, J.P. Carbon Dots for Carbon Dummies: The Quantum and The Molecular Questions Among Some Others. Chem. Eur. J. 2022, 28, e202200748. [Google Scholar] [CrossRef]
- Li, Y.; Yang, H.-P.; Chen, S.; Wu, X.-J.; Long, Y.-F. Simple Preparation of Carbon Dots and Application in Cephalosporin Detection. J. Nanosci. Nanotechnol. 2021, 21, 6024–6034. [Google Scholar] [CrossRef]
- Qian, Z.; Ma, J.; Shan, X.; Feng, H.; Shao, L.; Chen, J. Highly Luminescent N-Doped Carbon Quantum Dots as an Effective Multifunctional Fluorescence Sensing Platform. Chem. Eur. J. 2014, 20, 2254–2263. [Google Scholar] [CrossRef]
- Reckmeier, C.J.; Wang, Y.; Zboril, R.; Rogach, A.L. Influence of Doping and Temperature on Solvatochromic Shifts in Optical Spectra of Carbon Dots. J. Phys. Chem. C 2016, 120, 10591–10604. [Google Scholar] [CrossRef]
- Guo, Z.; Luo, J.; Zhu, Z.; Sun, Z.; Zhang, X.; Wu, Z.-C.; Mo, F.; Guan, A. A facile synthesis of high-efficient N,S co-doped carbon dots for temperature sensing application. Dye. Pigment. 2020, 173, 107952. [Google Scholar] [CrossRef]
- He, S.; Qi, S.; Sun, Z.; Zhu, G.; Zhang, K.; Chen, W. Si, N-codoped carbon dots: Preparation and application in iron overload diagnosis. J. Mater. Sci. 2018, 54, 4297–4305. [Google Scholar] [CrossRef]
- Wang, W.; Peng, J.; Li, F.; Su, B.; Chen, X.; Chen, X. Phosphorus and chlorine co-doped carbon dots with strong photoluminescence as a fluorescent probe for ferric ions. Microchim. Acta 2018, 186, 32. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Yan, F.; Shi, D.; Zheng, T.; Wang, Y.; Zhou, X.; Chen, L. N, B-doped carbon dots as a sensitive fluorescence probe for Hg2+ ions and 2,4,6-trinitrophenol detection for bioimaging. J. Photochem. Photobiol. B Biol. 2016, 162, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; He, X.; Wang, C.; Cao, Y.; Li, Y.; Yan, L.; Liu, M.; Lv, M.; Yang, Y.; Zhao, X.; et al. Controllable and eco-friendly synthesis of P-riched carbon quantum dots and its application for copper (II) ion sensing. Appl. Surf. Sci. 2018, 448, 589–598. [Google Scholar] [CrossRef]
- Guo, X.-L.; Ding, Z.-Y.; Deng, S.-M.; Wen, C.-C.; Shen, X.-C.; Jiang, B.-P.; Liang, H. A novel strategy of transition-metal doping to engineer absorption of carbon dots for near-infrared photothermal/photodynamic therapies. Carbon 2018, 134, 519–530. [Google Scholar] [CrossRef]
- Pakkath, S.A.R.; Chetty, S.S.; Selvarasu, P.; Murugan, A.V.; Kumar, Y.; Periyasamy, L.; Santhakumar, M.; Sadras, S.R.; Santhakumar, K. Transition Metal Ion (Mn(2+), Fe(2+), Co(2+), and Ni(2+))-Doped Carbon Dots Synthesized via Microwave-Assisted Pyrolysis: A Potential Nanoprobe for Magneto-fluorescent Dual-Modality Bioimaging. ACS Biomater. Sci. Eng. 2018, 4, 2582–2596. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Luo, Q.; Zhang, J.; Chen, P.; Wang, H.-J.; Luo, K.; Yu, X.-Q. Gadolinium-doped carbon dots as nano-theranostic agents for MR/FL diagnosis and gene delivery. Nanoscale 2019, 11, 12973–12982. [Google Scholar] [CrossRef]
- Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. [Google Scholar] [CrossRef]
- Sun, Y.P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.S.; Pathak, P.; Meziani, M.J.; Harruff, B.A.; Wang, X.; Wang, H.; et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757. [Google Scholar] [CrossRef]
- Hu, B. Laser synthesis and size tailor of carbon quantum dots. J. Nanoparticle Res. 2011, 13, 7247–7252. [Google Scholar] [CrossRef]
- Qu, S.; Wang, X.; Lu, Q.; Liu, X.; Wang, L. A Biocompatible Fluorescent Ink Based on Water-Soluble Luminescent Carbon Nanodots. Angew. Chem. Int. Ed. 2012, 51, 12215–12218. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, X.; Xian, M.; Dong, C.; Shuang, S. Folic acid-conjugated green luminescent carbon dots as a nanoprobe for identifying folate receptor-positive cancer cells. Talanta 2018, 183, 39–47. [Google Scholar] [CrossRef]
- Liu, C.; Wang, R.; Wang, B.; Deng, Z.; Jin, Y.; Kang, Y.; Chen, J. Orange, yellow and blue luminescent carbon dots controlled by surface state for multicolor cellular imaging, light emission and illumination. Microchim. Acta 2018, 185, 539. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Laha, D.; Pramanik, A.; Chowdhuri, A.R.; Karmakar, P.; Sahu, S.K. Synthesis of highly fluorescent nitrogen and phosphorus doped carbon dots for the detection of Fe3+ ions in cancer cells. Luminescence 2016, 31, 81–87. [Google Scholar] [CrossRef]
- Yuan, F.; Wang, Z.; Li, X.; Li, Y.; Tan, Z.A.; Fan, L.; Yang, S. Bright Multicolor Bandgap Fluorescent Carbon Quantum Dots for Electroluminescent Light-Emitting Diodes. Adv. Mater. 2017, 29, 1604436. [Google Scholar] [CrossRef]
- Tian, Z.; Zhang, X.; Li, D.; Zhou, D.; Jing, P.; Shen, D.; Qu, S.; Zboril, R.; Rogach, A.L. Full-Color Inorganic Carbon Dot Phosphors for White-Light-Emitting Diodes. Adv. Opt. Mater. 2017, 5, 1700416. [Google Scholar] [CrossRef]
- Zhai, Y.; Wang, Y.; Li, D.; Zhou, D.; Jing, P.; Shen, D.; Qu, S. Red carbon dots-based phosphors for white light-emitting diodes with color rendering index of 92. J. Colloid Interface Sci. 2018, 528, 281–288. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, F.; Li, X.; Li, Y.; Zhong, H.; Fan, L.; Yang, S. 53% Efficient Red Emissive Carbon Quantum Dots for High Color Rendering and Stable Warm White-Light-Emitting Diodes. Adv. Mater. 2017, 29, 1702910. [Google Scholar] [CrossRef]
- Guo, F.; Zhu, Z.; Zheng, Z.; Jin, Y.; Di, X.; Xu, Z.; Guan, H. Facile synthesis of highly efficient fluorescent carbon dots for tetracycline detection. Environ. Sci. Pollut. Res. 2020, 27, 4520–4527. [Google Scholar] [CrossRef]
- Ehtesabi, H.; Roshani, S.; Bagheri, Z.; Yaghoubi-Avini, M. Carbon dots—Sodium alginate hydrogel: A novel tetracycline fluorescent sensor and adsorber. J. Environ. Chem. Eng. 2019, 7, 103419. [Google Scholar] [CrossRef]
- Tu, Y.; Chen, X.; Xiang, Y.; Yuan, X.; Qin, K.; Wei, Y.; Xu, Z.; Zhang, Q.; Ji, X. Hydrothermal Synthesis of a Novel Mesoporous Silica Fluorescence Carbon Dots and Application in Cr(VI) and Folic Acid Detection. Nano 2020, 15, 2050090. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, B.; Li, Z.; Wang, Y.; Zhou, J.; Li, Y. Carbon quantum dots as fluorescence sensors for label-free detection of folic acid in biological samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 229, 117931. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Lu, W.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Microwave-assisted rapid green synthesis of photoluminescent carbon nanodots from flour and their applications for sensitive and selective detection of mercury(II) ions. Sens. Actuators B Chem. 2013, 184, 156–162. [Google Scholar] [CrossRef]
- Murugesan, P.; Moses, J.A.; Anandharamakrishnan, C. One step synthesis of fluorescent carbon dots from neera for the detection of silver ions. Spectrosc. Lett. 2020, 53, 407–415. [Google Scholar] [CrossRef]
- Chaudhary, N.; Gupta, P.K.; Eremin, S.; Solanki, P.R. One-step green approach to synthesize highly fluorescent carbon quantum dots from banana juice for selective detection of copper ions. J. Environ. Chem. Eng. 2020, 8, 103720. [Google Scholar] [CrossRef]
- Mate, N.; Pranav; Nabeela, K.; Kaur, N.; Mobin, S.M. Insight into the Modulation of Carbon-Dot Optical Sensing Attributes through a Reduction Pathway. ACS Omega 2022, 7, 43759–43769. [Google Scholar] [CrossRef]
- Arul, V.; Chandrasekaran, P.; Sivaraman, G.; Sethuraman, M.G. Biogenic preparation of undoped and heteroatoms doped carbon dots: Effect of heteroatoms doping in fluorescence, catalytic ability and multicolour in-vitro bio-imaging applications—A comparative study. Mater. Res. Bull. 2022, 162, 112204. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, Q.; Gao, Y.; Shuang, S.; Choi, M.M.F.; Dong, C. Phosphorus and Nitrogen Dual-Doped Hollow Carbon Dot as a Nanocarrier for Doxorubicin Delivery and Biological Imaging. ACS Appl. Mater. Interfaces 2016, 8, 11288–11297. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, J.; He, X.; Liu, Y.-H.; Yu, X.-Q. Hydrophobically modified carbon dots as a multifunctional platform for serum-resistant gene delivery and cell imaging. Biomater. Sci. 2020, 8, 3730–3740. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, H.; Lai, J.; Peng, X.; Hu, Y.; Gu, W.; Ye, L. Carbon dots with red-shifted photoluminescence by fluorine doping for optical bio-imaging. Carbon 2017, 128, 78–85. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, Y.; Cao, F.; Wang, L.; Wang, Z.; Leng, Y. Hydrothermal synthesis of nitrogen and boron doped carbon quantum dots with yellow-green emission for sensing Cr(vi), anti-counterfeiting and cell imaging. RSC Adv. 2017, 7, 48386–48393. [Google Scholar] [CrossRef]
- Yuan, K.; Zhang, X.; Li, X.; Qin, R.; Cheng, Y.; Li, L.; Yang, X.; Yu, X.; Lu, Z.; Liu, H. Great enhancement of red emitting carbon dots with B/Al/Ga doping for dual mode anti-counterfeiting. Chem. Eng. J. 2020, 397, 125487. [Google Scholar] [CrossRef]
- Zhao, J.; Zheng, Y.; Pang, Y.; Chen, J.; Zhang, Z.; Xi, F.; Chen, P. Graphene quantum dots as full-color and stimulus responsive fluorescence ink for information encryption. J. Colloid Interface Sci. 2020, 579, 307–314. [Google Scholar] [CrossRef]
- Lieschke, G.J.; Currie, P.D. Animal models of human disease: Zebrafish swim into view. Nat. Rev. Genet. 2007, 8, 353–367. [Google Scholar] [CrossRef]
- Guo, T.; Wang, X.; Hong, X.; Xu, W.; Shu, Y.; Wang, J. Modulation of the binding ability to biomacromolecule, cytotoxicity and cellular imaging property for ionic liquid mediated carbon dots. Colloids Surfaces B Biointerfaces 2022, 216, 112552. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Fang, N.; Wu, S.; Shu, S.; Chu, Y.; Guo, J.; Cen, W. Uniform H-CdS@Nicop core-shell nanosphere for highly efficient visible-driven photocatalytic H2 evolution. J. Colloid Interface Sci. 2022, 608, 2730–2739. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, X.; Wang, B.; Ai, L.; Li, G.; Yang, B.; Lu, S. Advances, opportunities, and challenge for full-color emissive carbon dots. Chin. Chem. Lett. 2022, 33, 613–625. [Google Scholar] [CrossRef]
- Wei, X.; Li, L.; Liu, J.; Yu, L.; Li, H.; Cheng, F.; Yi, X.; He, J.; Li, B. Green Synthesis of Fluorescent Carbon Dots from Gynostemma for Bioimaging and Antioxidant in Zebrafish. ACS Appl. Mater. Interfaces 2019, 11, 9832–9840. [Google Scholar] [CrossRef]
- Wang, H.; Wei, J.; Zhang, C.; Zhang, Y.; Zhang, Y.; Li, L.; Yu, C.; Zhang, P.; Chen, J. Red carbon dots as label-free two-photon fluorescent nanoprobes for imaging of formaldehyde in living cells and zebrafishes. Chin. Chem. Lett. 2020, 31, 759–763. [Google Scholar] [CrossRef]
Reagent | Purity | Manufacturer |
---|---|---|
Citrate sodium | Analytical pure | Aladdin Reagent Co., Ltd., Shanghai, China |
L-Cysteine | Analytical pure | GHTECH Co., Ltd., Guangzhou, China |
EDA | Analytical pure | Aladdin Reagent Co., Ltd., Shanghai, China |
Citric acid | Analytical pure | DaMao chemical reagent factory, Tianjin, China |
Citrate sodium | Analytical pure | Aladdin Reagent Co., Ltd., Shanghai, China |
Instruments | Model | Manufacturer |
---|---|---|
Steady/transient state X-ray fluorescence (XRF) spectrometer | FLS980 | Edinburgh Instruments company, Edinburgh, Britain |
Fourier-transform infrared (FT-IR) spectroscope | Spectrum Two FT-IR | Thermo Fisher Scientific technology company, Waltham, MA, USA |
UV-visible-near infrared light spectrophotometer | UV-5500PC | Shimadzu corporation, Kyoto, Japan |
Transmission electron microscope | Tecnai G2 F20 | Oxford instrument technology Co., Ltd., Shanghai, China |
Constant magnetic stirring | 85-2 | Thermo Fisher Scientific technology company, Waltham, MA, USA |
Table-top high-speed centrifuge | TG16-WS | Xiangyi laboratory Instrument Development Co., Ltd., Xiangtan, China |
Collector type constant-temperature heating magnetic stirrer | DF-101S | Yuhua instrument Co., Ltd., Gongyi, China |
Electronic analytical balance | AX124 ZH/E | OHAUS instrument Co., Ltd., Newark, NI, USA |
Camera obscura UV analyser | ZF-20D | Yuhua instrument Co., Ltd., Gongyi, China |
Electric blast drying oven | DHG-9145A | Yiheng scientific instrument Co., Ltd., Shanghai, China |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Yu, G. Application and Research Status of Long-Wavelength Fluorescent Carbon Dots. Molecules 2023, 28, 7473. https://doi.org/10.3390/molecules28227473
Cheng Y, Yu G. Application and Research Status of Long-Wavelength Fluorescent Carbon Dots. Molecules. 2023; 28(22):7473. https://doi.org/10.3390/molecules28227473
Chicago/Turabian StyleCheng, Yujia, and Guang Yu. 2023. "Application and Research Status of Long-Wavelength Fluorescent Carbon Dots" Molecules 28, no. 22: 7473. https://doi.org/10.3390/molecules28227473
APA StyleCheng, Y., & Yu, G. (2023). Application and Research Status of Long-Wavelength Fluorescent Carbon Dots. Molecules, 28(22), 7473. https://doi.org/10.3390/molecules28227473