Gas Chromatography–Mass Spectrometry Profiling of Volatile Metabolites Produced by Some Bacillus spp. and Evaluation of Their Antibacterial and Antibiotic Activities
Abstract
:1. Introduction
2. Results
2.1. Isolation and Identification
2.2. Microbial Morphology and Colony Characteristics
2.3. Antimicrobial Potency Evaluation
2.4. Antibiotic Susceptibility Profile of the Isolates
2.5. GC–MS Analysis
2.6. Molecular Characterization
3. Discussion
4. Materials and Methods
4.1. Isolation of Potential Strains of the Genus Bacillus spp.
4.2. Antagonistic Activity Study
4.3. Antibiotic Susceptibility of the Bacillus Isolates
4.4. Gas Chromatography–Mass Spectrum Analysis
4.5. Molecular Characterization of the Bacterial Isolates
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lerminiaux, N.A.; Cameron, A.D.S. Horizontal Transfer of Antibiotic Resistance Genes in Clinical Environments. Can. J. Microbiol. 2019, 65, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Nikaido, H. Multidrug resistance in bacteria. Annu. Rev. Biochem. 2009, 78, 119–146. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, E.Z. Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: Their potential in antifungal biocontrol. J. Microbiol. 2012, 50, 103–111. [Google Scholar] [CrossRef]
- Caulier, S.; Nannan, C.; Gillis, A.; Licciardi, F.; Bragard, C.; Mahillon, J. Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Front. Microbiol. 2019, 10, 302. [Google Scholar] [CrossRef] [PubMed]
- Lawton, E.M.; Ross, R.P.; Hill, C.; Cotter, P.D. Two-Peptide Lantibiotics: A Medical Perspective. Mini-Rev. Med. Chem. 2007, 7, 1236–1247. [Google Scholar] [CrossRef] [PubMed]
- Cotter, P.D.; Ross, R.P.; Hill, C. Bacteriocins—A Viable Alternative to Antibiotics? Nat. Rev. Microbiol. 2013, 11, 95–105. [Google Scholar] [CrossRef]
- Nishie, M.; Nagao, J.I.; Sonomoto, K. Antibacterial Peptides “Bacteriocins”: An Overview of Their Diverse Characteristics and Applications. Biocontrol Sci. 2012, 17, 1–16. [Google Scholar] [CrossRef]
- Yang, S.C.; Lin, C.H.; Sung, C.T.; Fang, J.Y. Antibacterial Activities of Bacteriocins: Application in Foods and Pharmaceuticals. Front. Microbiol. 2014, 5, 241. [Google Scholar] [CrossRef]
- Magashi, A.M.; Bukar, A.; Omola, E.M.; Halima, B.A.; Hadiza, M.S. Bacteriocin and its application—A review. Int. J. Adv. Acad. Res. Sci. Technol. Eng. 2019, 5, 242–256. [Google Scholar]
- Wiegers, C.; van de Burgwal, L.H.M.; Larsen, O.F.A. Probiotics for the Management of Infectious Diseases: Reviewing the State of the Art. Front. Microbiol. 2022, 13, 877142. [Google Scholar] [CrossRef]
- Ramirez-Olea, H.; Reyes-Ballesteros, B.; Chavez-Santoscoy, R.A. Potential Application of the Probiotic Bacillus licheniformis as an Adjuvant in the Treatment of Diseases in Humans and Animals: A Systematic Review. Front. Microbiol. 2022, 13, 993451. [Google Scholar] [CrossRef]
- Hallaj-Nezhadi, S.; Hamdipour, R.; Shahrvirani, M.; Zare Tin, R.; Chapeland-Leclerc, F.; Ruprich-Robert, G.; Esnaashari, S.; Elyasi Far, B.; Dilmaghani, A. Antimicrobial Activity of Bacillus sp. Isolated Strains of Wild Honey. BMC Complement. Med. Ther. 2022, 22, 78. [Google Scholar] [CrossRef]
- Joerger, R.D. Alternatives to Antibiotics: Bacteriocins, Antimicrobial Peptides and Bacteriophages. Poult. Sci. 2003, 82, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Jach, M.E.; Serefko, A.; Szopa, A.; Sajnaga, E.; Golczyk, H.; Santos, L.S.; Borowicz-Reutt, K.; Sieniawska, E. The Role of Probiotics and Their Metabolites in the Treatment of Depression. Molecules 2023, 28, 3213. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, X.; Shi, X.; Wang, B.; Li, M.; Wang, Q.; Zhang, S. Antifungal Effect of Volatile Organic Compounds from Bacillus velezensis CT32 against Verticillium dahlia and Fusarium oxysporum. Processes 2020, 8, 1674. [Google Scholar] [CrossRef]
- Reddy, K.V.R.; Yedery, R.D.; Aranha, C. Antimicrobial Peptides: Premises and Promises. Int. J. Antimicrob. Agents 2004, 24, 536–547. [Google Scholar] [CrossRef] [PubMed]
- Emmert, E.A.B.; Handelsman, J. Biocontrol of plant disease: A (Gram-) positive perspective. FEMS Microbiol. Lett. 1999, 171, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ongena, M.; Jacques, P. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol. 2008, 16, 115–125. [Google Scholar] [CrossRef]
- Fira, D.; DimkiC, I.; Beric, T.; Lozo, J.; Stankovic, S. Biological control of plant pathogens by Bacillus species. J. Biotechnol. 2018, 285, 44–55. [Google Scholar] [CrossRef]
- Effmert, U.; Kalderás, J.; Warnke, R.; Piechulla, B. Volatile Mediated Interactions Between Bacteria and Fungi in the Soil. J. Chem. Ecol. 2012, 38, 665–703. [Google Scholar] [CrossRef]
- Farag, M.A.; Zhang, H.; Ryu, C.-M. Dynamic Chemical Communication between Plants and Bacteria through Airborne Signals: Induced Resistance by Bacterial Volatiles. J. Chem. Ecol. 2013, 39, 1007–1018. [Google Scholar] [CrossRef] [PubMed]
- Fincheira, P.; Quiroz, A. Microbial volatiles as plant growth inducers. Microbiol. Res. 2018, 208, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Kanchiswamy, C.N.; Emalnoy, M.; Maffei, M.E. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front. Plant Sci. 2015, 6, 151. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Farag, M.A.; Park, H.B.; Kloepper, J.W.; Lee, S.H.; Ryu, C. Induced Resistance by a Long-Chain Bacterial Volatile: Elicitation of Plant Systemic Defense by a C13 Volatile Produced by Paenibacillus polymyxa. PLoS ONE 2012, 7, e48744. [Google Scholar] [CrossRef] [PubMed]
- Ryu, C.-M.; Farag, M.A.; Hu, C.-H.; Reddy, M.S.; Kloepper, J.W.; Pare, P.W. Bacterial Volatiles Induce Systemic Resistance in Arabidopsis. Plant Physiol. 2004, 134, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Ryu, C.-M.; Farag, M.A.; Hu, C.-H.; Reddy, M.S.; Wei, H.-X.; Paré, P.W.; Kloepper, J.W. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 2003, 100, 4927–4932. [Google Scholar] [CrossRef]
- Chen, H.; Xiao, X.; Wang, J.; Wu, L.; Zheng, Z.; Yu, Z. Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen Botrytis cinerea. Biotechnol. Lett. 2008, 30, 919–923. [Google Scholar] [CrossRef]
- Zheng, M.; Shi, J.Y.; Shi, J.; Wang, Q.G.; Li, Y.H. Antimicrobial effects of volatiles produced by two antagonistic Bacillus strains on the anthracnose pathogen in postharvest mangos. Biol. Control 2013, 65, 200–206. [Google Scholar] [CrossRef]
- Arrebola, E.; Sivakumar, D.; Korsten, L. Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus. Biol. Control 2010, 53, 122–128. [Google Scholar] [CrossRef]
- Koilybayeva, M.; Shynykul, Z.; Ustenova, G.; Abzaliyeva, S.; Alimzhanova, M.; Amirkhanova, A.; Turgumbayeva, A.; Mustafina, K.; Yeleken, G.; Raganina, K.; et al. Molecular Characterization of Some Bacillus Species from Vegetables and Evaluation of Their Antimicrobial and Antibiotic Potency. Molecules 2023, 28, 3210. [Google Scholar] [CrossRef]
- Haque, M.A.; Wang, F.; Chen, Y.; Hossen, F.; Islam, M.A.; Hossain, M.A.; Siddique, N.; He, C.; Ahmed, F. Bacillus spp. Contamination: A Novel Risk Originated from Animal Feed to Human Food Chains in South-Eastern Bangladesh. Front. Microbiol. 2022, 12, 783103. [Google Scholar] [CrossRef] [PubMed]
- Aruna, K.; Shah, J.; Birmole, R. Production and partial characterization of alkaline protease from Bacillus tequilensis strains CSGAB 0139 isolated from spoilt cottage cheese. Int. J. Appl. Biol. Pharm. 2014, 5, 201–221. [Google Scholar]
- Raveendran, S.; Parameswaran, B.; Ummalyma, S.B.; Abraham, A.; Mathew, A.K.; Madhavan, A.; Rebello, S.; Pandey, A. Applications of Microbial Enzymes in Food Industry. Food Technol. Biotechnol. 2018, 56, 16–30. [Google Scholar] [CrossRef] [PubMed]
- van der Maarel, M.J.; van der Veen, B.; Uitdehaag, J.C.; Leemhuis, H.; Dijkhuizen, L. Properties and applications of starch-converting enzymes of the alpha-amylase family. J. Biotechnol. 2002, 94, 137–155. [Google Scholar] [CrossRef] [PubMed]
- Soccol, C.R.; Rojan, P.J.; Patel, A.K.; Woiciechowski, A.L.; Vandenberghe, L.P.S.; Pandey, A. Glucoamylase. In Enzyme Technology; Pandey, A., Webb, C., Soccol, C.R., Larroche, C., Eds.; Asiatech Publishers Inc.: New Delhi, India, 2005; pp. 221–238. [Google Scholar]
- Gurung, N.; Ray, S.; Bose, S.; Rai, V. A broader view: Microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Res. Int. 2013, 2013, 329121. [Google Scholar] [CrossRef]
- Pandey, A.; Nigam, P.; Soccol, C.R.; Soccol, V.T.; Singh, D.; Mohan, R. Advances in microbial amylases. Biotechnol. Appl. Biochem. 2000, 31 Pt 2, 135–152. [Google Scholar] [CrossRef]
- de Souza, P.M.; de Oliveira Magalhães, P. Application of microbial α-amylase in industry—A review. Braz. J. Microbiol. [Publ. Braz. Soc. Microbiol.] 2010, 41, 850–861. [Google Scholar] [CrossRef]
- James, J.; Simpson, B.K.; Marshall, M.R. Application of enzymes in food processing. Crit. Rev. Food Sci. Nutr. 1996, 36, 437–463. [Google Scholar] [CrossRef]
- Pereira, I.; Severino, P.; Santos, A.C.; Silva, A.M.; Souto, E.B. Linalool bioactive properties and potential applicability in drug delivery systems. Colloids Surf. B Biointerfaces 2018, 171, 566–578. [Google Scholar] [CrossRef]
- Zhang, S.B.; Qin, Y.L.; Li, S.F.; Lv, Y.Y.; Zhai, H.C.; Hu, Y.S.; Cai, J.P. Antifungal mechanism of 1-nonanol against Aspergillus flavus growth revealed by metabolomic analyses. Appl. Microbiol. Biotechnol. 2021, 105, 7871–7888. [Google Scholar] [CrossRef]
- Togashi, N.; Shiraishi, A.; Nishizaka, M.; Matsuoka, K.; Endo, K.; Hamashima, H.; Inoue, Y. Antibacterial activity of long-chain fatty alcohols against Staphylococcus aureus. Molecules 2007, 12, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Eom, M.R.; Weon, J.B.; Jung, Y.S.; Ryu, G.H.; Yang, W.S.; Ma, C.J. Neuroprotective compounds from Reynoutria sachalinensis. Arch. Pharmacal Res. 2017, 40, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Izumo, T.; Ichiki, C.; Saitou, K.; Otsuka, M.; Ohmori, S.; Kamei, C. Effects of ethanol, acetoin and 2,3-butanediol on EEG power spectra in conscious rats. Biol. Pharm. Bull. 1998, 21, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Arellano, K.; Park, H.; Todorov, S.D.; Kim, B.; Kang, H.; Park, Y.J.; Suh, D.H.; Jung, E.S.; Ji, Y.; et al. Assessment of the safety and anti-inflammatory effects of three Bacillus strains in the respiratory tract. Environ. Microbiol. 2021, 23, 3077–3098. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, D.; Sundaresan, S.; Iyadurai, A.; Subramanian, K.S.; Janavi, G.J.; Paliyath, G.; Subramanian, J. Hexanal Vapor Induced Resistance against Major Postharvest Pathogens of Banana (Musa acuminata L.). Plant Pathol. J. 2020, 36, 133–147. [Google Scholar] [CrossRef]
- Zhang, J.H.; Sun, H.L.; Chen, S.Y.; Zeng, L.; Wang, T.T. Anti-fungal activity, mechanism studies on α-Phellandrene and Nonanal against Penicillium cyclopium. Bot. Stud. 2017, 58, 13. [Google Scholar] [CrossRef]
- Tao, N.; Jia, L.; Zhou, H. Anti-fungal activity of Citrus reticulata Blanco essential oil against Penicillium italicum and Penicillium digitatum. Food Chem. 2014, 153, 265–271. [Google Scholar] [CrossRef]
- Chan, P.C. NTP toxicity studies of toxicity studies of 2,4-decadienal (CAS No. 25152-84-5) administered by gavage to F344/N Rats and B6C3F1 mice. Toxic. Rep. Ser. 2011, 76, 1–94. Available online: https://pubmed.ncbi.nlm.nih.gov/21445102/ (accessed on 15 May 2023).
- Armand, J.; De Forni, M.; Recondo, G.; Cals, L.; Cvitkovic, E.; Munck, J. Flavonoids: A new class of anticancer agents? Preclinical and clinical data of flavone acetic acid. Prog. Clin. Biol. Res. 1988, 280, 235–241. [Google Scholar]
- Andersen, A. Final report on the safety assessment of benzaldehyde. Int. J. Toxicol. 2006, 25 (Suppl. S1), 11–27. [Google Scholar] [CrossRef]
- Tangavelou, A.C.; Viswanathan, M.B.; Balakrishna, K.; Patra, A. Phytochemical Analysis in the Leaves of Chamaecrista nigricans (Leguminosae). Pharm. Anal. Acta 2018, 9, 3. [Google Scholar] [CrossRef]
- Altinoz, M.A.; Ozpinar, A.; Seyfried, T.N. Caprylic (Octanoic) Acid as a Potential Fatty Acid Chemotherapeutic for Glioblastoma. Prostaglandins Leukot. Essent. Fat. Acids 2020, 159, 102142. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.A.; Rhee, M.S. Antibacterial activity of caprylic acid for potential application as an active antiseptic ingredient in consumer antiseptics. Int. J. Antimicrob. Agents 2016, 48, 765–767. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Dolan, H.L.; Ding, Q.; Wang, S.; Tikekar, R.V. Antimicrobial action of octanoic acid against Escherichia coli O157:H7 during washing of baby spinach and grape tomatoes. Food Res. Int. 2019, 125, 108523. [Google Scholar] [CrossRef] [PubMed]
- Johnson, W., Jr.; Heldreth, B.; Bergfeld, W.F.; Belsito, D.V.; Klaassen, C.D.; Hill, R.; Liebler, D.; Marks, J.G., Jr.; Shank, R.C.; Slaga, T.J.; et al. Final report of the Cosmetic Ingredient Review Expert Panel on the safety assessment of pelargonic acid (nonanoic acid) and nonanoate esters. Int. J. Toxicol. 2011, 30 (Suppl. S6), 228S–269S. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.W.; Jung, J.Y.; Lee, I.K.; Kang, S.Y.; Yun, B.S. Nonanoic Acid, an Antifungal Compound from Hibiscus syriacus Ggoma. Mycobiology 2012, 40, 145–146. [Google Scholar] [CrossRef]
- Manrique Vergara, D.; González Sánchez, M.E. Ácidos grasos de cadena corta (ácido butírico) y patologías intestinales [Short chain fatty acids (butyric acid) and intestinal diseases]. Nutr. Hosp. 2017, 34 (Suppl. S4), 58–61. [Google Scholar] [CrossRef]
- To, N.B.; Nguyen, Y.T.; Moon, J.Y.; Ediriweera, M.K.; Cho, S.K. Pentadecanoic Acid, an Odd-Chain Fatty Acid, Suppresses the Stemness of MCF-7/SC Human Breast Cancer Stem-Like Cells through JAK2/STAT3 Signaling. Nutrients 2020, 12, 1663. [Google Scholar] [CrossRef]
- Galdiero, E.; Ricciardelli, A.; D’Angelo, C.; de Alteriis, E.; Maione, A.; Albarano, L.; Casillo, A.; Corsaro, M.M.; Tutino, M.L.; Parrilli, E. Pentadecanoic acid against Candida albicans-Klebsiella pneumoniae biofilm: Towards the development of an anti-biofilm coating to prevent polymicrobial infections. Res. Microbiol. 2021, 172, 103880. [Google Scholar] [CrossRef]
- Sales-Campos, H.; Souza, P.R.; Peghini, B.C.; da Silva, J.S.; Cardoso, C.R. An overview of the modulatory effects of oleic acid in health and disease. Mini Rev. Med. Chem. 2013, 13, 201–210. [Google Scholar]
- Aparna, V.; Dileep, K.V.; Mandal, P.K.; Karthe, P.; Sadasivan, C.; Haridas, M. Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chem. Biol. Drug Des. 2012, 80, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, T.; Subban, M.; Christopher Leslee, D.B.; Kuppannan, S.B.; Seedevi, P. Structural characterization of n-hexadecanoic acid from the leaves of Ipomoea eriocarpa and its antioxidant and antibacterial activities. Biomass Convers. Biorefin. 2022, 1, 1–12. [Google Scholar] [CrossRef]
- Habib, N.A.; Wood, C.B.; Apostolov, K.; Barker, W.; Hershman, M.J.; Aslam, M.; Heinemann, D.; Fermor, B.; Williamson, R.C.; Jenkins, W.E. Stearic acid and carcinogenesis. Br. J. Cancer 1987, 56, 455–458. [Google Scholar] [CrossRef] [PubMed]
- den Hartigh, L.J. Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: A Review of Pre-Clinical and Human Trials with Current Perspectives. Nutrients 2019, 11, 370. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Chen, L.; Liu, Y.; Shi, S.; Liu, Z.; Cai, K.; Liao, C.; Wang, C. Decanoic acid modification enhances the antibacterial activity of PMAP-23RI-Dec. Eur. J. Pharm. Sci. 2021, 157, 105609. [Google Scholar] [CrossRef]
- Huang, W.C.; Tsai, T.H.; Chuang, L.T.; Li, Y.Y.; Zouboulis, C.C.; Tsai, P.J. Anti-bacterial and anti-inflammatory properties of capric acid against Propionibacterium acnes: A comparative study with lauric acid. J. Dermatol. Sci. 2014, 73, 232–240. [Google Scholar] [CrossRef]
- Jayaraj, R.L.; Beiram, R.; Azimullah, S.; Mf, N.M.; Ojha, S.K.; Adem, A.; Jalal, F.Y. Valeric Acid Protects Dopaminergic Neurons by Suppressing Oxidative Stress, Neuroinflammation and Modulating Autophagy Pathways. Int. J. Mol. Sci. 2020, 21, 7670. [Google Scholar] [CrossRef]
- Felczykowska, A.; Pastuszak-Skrzypczak, A.; Pawlik, A.; Bogucka, K.; Herman-Antosiewicz, A.; Guzow-Krzemińska, B. Antibacterial and anticancer activities of acetone extracts from in vitro cultured lichen-forming fungi. BMC Complement. Altern. Med. 2017, 17, 300. [Google Scholar] [CrossRef]
- Shen, Y.J.; Shen, Y.C.; Lee, W.S.; Yang, K.T. Methyl palmitate protects heart against ischemia/reperfusion-induced injury through G-protein coupled receptor 40-mediated activation of the PI3K/AKT pathway. Eur. J. Pharmacol. 2021, 905, 174183. [Google Scholar] [CrossRef]
- Shaaban, M.T.; Ghaly, M.F.; Fahmi, S.M. Antibacterial activities of hexadecanoic acid methyl ester and green-synthesized silver nanoparticles against multidrug-resistant bacteria. J. Basic Microbiol. 2021, 61, 557–568. [Google Scholar] [CrossRef]
- El-Agamy, D.S.; Elkablawy, M.A.; Abo-Haded, H.M. Modulation of cyclophosphamide-induced cardiotoxicity by methyl palmitate. Cancer Chemother. Pharmacol. 2017, 79, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Yang, Q.; Chen, D.; Yu, B.; He, J. Benzoic Acid Used as Food and Feed Additives Can Regulate Gut Functions. BioMed Res. Int. 2019, 2019, 5721585. [Google Scholar] [CrossRef] [PubMed]
- Assadian, O. From antiseptics to antibiotics—And back? GMS Krankenhaushygiene Interdiszip. 2007, 2, Doc26. [Google Scholar]
- Ueda, K.; Beppu, T. Antibiotics in microbial coculture. J. Antibiot. 2017, 70, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Gui, Y.; Li, Z.; Jiang, C.; Guo, J.; Niu, D. Induced Systemic Resistance for Improving Plant Immunity by Beneficial Microbes. Plants 2022, 11, 386. [Google Scholar] [CrossRef]
- Jagannath, S.; Matthew, W.; Alan, M.; Batter, H.; Spears, I.R. Gait Retraining and Incidence of Medial Tibial Stress Syndrome in Army Recruits. Off. J. Am. Coll. Sports Med. 2014, 46, 1684–1692. [Google Scholar]
- Sharma, P.; Kumar, S.; Goswami, P.; Sangwan, V.; Singh, R. Antibiotic resistance among commercially available probiotics. Food Res. Int. J. 2014, 57, 176–195. [Google Scholar] [CrossRef]
- Citron, D.M.; Appleman, M.D. In Vitro activities of daptomycin, ciprofloxacin, and other antimicrobial agents against the cells and spores of clinical isolates of Bacillus species. J. Clin. Microbiol. 2006, 44, 3814–3818. [Google Scholar] [CrossRef]
- Jensen, L.B.; Baloda, S.; Boye, M.; Aarestrup, F.M. Antimicrobial resistance among Pseudomonas spp. and the Bacillus cereus group isolated from Danish agricultural soil. Environ. Int. 2001, 26, 581–587. [Google Scholar] [CrossRef]
- Fiedler, G.; Schneider, C.; Igbinosa, E.O.; Kabisch, J.; Brinks, E.; Becker, B.; Stoll, D.A.; Cho, G.-S.; Huch, M.; Franz, C.M.A.P. Antibiotics resistance and toxin profiles of Bacillus cereus-group isolates from fresh vegetables from German retail markets. BMC Microbiol. 2019, 19, 250. [Google Scholar] [CrossRef]
- Adimpong, D.B.; Sørensen, K.I.; Thorsen, L.; Stuer-Lauridsen, B.; Abdelgadir, W.S.; Nielsen, D.S.; Derkx, P.M.; Jespersen, L. Antimicrobial susceptibility of Bacillus strains isolated from primary starters for African traditional bread production and characterization of the bacitracin operon and bacitracin biosynthesis. Appl. Environ. Microbiol. 2012, 78, 7903–7914. [Google Scholar] [CrossRef] [PubMed]
- Compaore, C.S.; Jensen, L.B.; Diawara, B.; Ouedraogo, G.A.; Jakobsen, M.; Ouoba, L.I. Resistance to antimicrobials and acid and bile tolerance of Bacillus spp isolated from Bikalga, fermented seeds of Hibiscus sabdariffa. Afr. J. Food Sci. 2013, 7, 408–414. [Google Scholar] [CrossRef]
- Desbois, A.P.; Smith, V.J. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 2010, 85, 1629–1642. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y.; Yuan, Y.; Chu, D.; Cao, J.; Sun, G.; Ai, Y.; Cui, Z.; Zhang, Y.; Wang, F.; et al. Identification of non-volatile and volatile organic compounds produced by Bacillus siamensis LZ88 and their antifungal activity against Alternaria alternata. Biol. Control 2022, 169, 104901. [Google Scholar] [CrossRef]
- Raj, A.; Krishna Reddy, M.M.; Chandra, R. Identification of low molecular weight aromatic compounds by gas chromatography–mass spectrometry (GC–MS) from kraft lignin degradation by three Bacillus sp. Int. Biodeterior. Biodegrad. 2007, 59, 292–296. [Google Scholar] [CrossRef]
- Surya, M.; Thiruvudainambi, S.; Ebenezar, E.G.; Vanniarajan, C.; Kumutha, K.; Vellaikumar, S. GC-MS Analysis of antimicrobial compounds produced by Bacillus spp. against rice sheath rot pathogen Sarocladium oryzae. J. Entomol. Zool. Stud. 2020, 8, 1417–1423. [Google Scholar]
- Balcázar, J.L.; Rojas-Luna, T. Inhibitory activity of probiotic Bacillus subtilis UTM 126 against Vibrio species confers protection against vibriosis in juvenile shrimp (Litopenaeus vannamei). Curr. Microbiol. 2007, 55, 409–412. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Lee, I.J. Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce. Plant Physiol. Biochem. 2016, 109, 181–189. [Google Scholar] [CrossRef]
- Miljaković, D.; Marincovic, J.; Balešević-Tubić, S. The Significance of Bacillus spp. in Disease Suppression and Growth Promotion of Field and Vegetable Crops. Microorganisms 2020, 8, 1037. [Google Scholar] [CrossRef]
- Sabu, R.; Radhakrishnan, E.K. Bioprospecting of endophytic bacteria from zingiber officinale with antibacterial activities. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 462–467. [Google Scholar] [CrossRef]
- Yilmaz, M.; Soran, H.; Beyatli, Y. Antimicrobial Activities of Some Bacillus spp. Strains Isolated from the Soil. Microbiol. Res. 2006, 161, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Beiranvand, M.; Amin, M.; Hashemi-Shahraki, A.; Romani, B.; Yaghoubi, S.; Sadeghi, P. Antimicrobial activity of endophytic bacterial populations isolated from medical plants of Iran. Iran. J. Microbiol. 2017, 9, 11–18. [Google Scholar] [PubMed]
- Khan, Z.A.; Siddiqui, M.F.; Park, S. Current and Emerging Methods of Antibiotic Susceptibility Testing. Diagnostics 2019, 9, 49. [Google Scholar] [CrossRef] [PubMed]
Bacterial Species | Media | Colony Color and Texture | Microscopic Presentation |
---|---|---|---|
Bacillus thuringiensis F3 (BSS25) | Bacillus Medium. | White, irregular, flat. | Gram-strain-positive, spore-forming, rod. |
Bacillus toyonensis FORT 102 (BSS21) | Bacillus Medium. | White, irregular, flat. | Gram-strain-positive, spore-forming, rod. |
Bacillus acidiproducens NiuFun (BSS16) | Bacillus Medium. | White, irregular, flat. | Gram-strain-positive, spore-forming, rod. |
Bacillus cereus WAB2133 (BSS13) | Bacillus Medium. | White, irregular, flat. | Gram-strain-positive, spore-forming, rod. |
Bacillus safensis AS-08 (BSS12) | Bacillus Medium. | White, irregular, flat. | Gram-strain-positive, spore-forming, rod. |
Species of Microorganism | BSS25 | BSS21 | BSS16 | BSS13 | BSS12 | Control (Streptomycin) |
---|---|---|---|---|---|---|
Staphylococcus aureus ATCC 29213 | 35 ± 1.27 | 9 ± 1.53 * | 23 ± 0.50 * | 20 ± 2.50 * | 20 ± 1.54 | 24 ± 0.33 *** |
Staphylococcus epidermidis ATCC 12228 | 37 ± 1.47 | 36 ± 1.27 | 38 ± 1.27 | 37 ± 1.07 | 35 ± 1.47 | 22 ± 0.33 *** |
Streptococcus group B | 18 ± 1.56 * | 19 ± 1.31 * | 19 ± 1.23 * | 18 ± 1.56 * | 17 ± 1.39 * | 17 ± 0.33 *** |
Streptococcus mutans ATCC 25175 | 20 ± 1.47 * | 19 ± 1.27 * | 23 ± 1.33 | 20 ± 1.33 | 20 ± 1.37 * | 19 ± 0.33 *** |
Candida albicans ATCC 2091 | 36 ± 1.,43 | 38 ± 1.21 | 38 ± 1.27 | 35 ± 1.26 | 34 ± 1.22 | 31 ± 0.33 *** |
Candida krusei ATCC 14243 | 37 ± 1.41 | 36 ± 1.28 | 8 ± 1.38 * | 36 ± 1027 | 13 ± 1.27 * | 30 ± 0.33 *** |
Pseudomonas aeruginosa ATCC 9027 | 18 ± 0.53 * | 17 ± 1.27 * | 17 ± 0.33 * | 17 ± 1.10 * | 16 ± 1.33 * | 15 ± 0.33 *** |
Shigella sonnei ATCC 25931 | 20 ± 1.27 * | 33 ± 1.37 * | 21 ± 1.57 * | 21 ± 1.37 * | 21 ± 1.06 * | 19 ± 0.33 *** |
Klebsiella pneumonia ATCC 13883 | 9 ± 1.53 * | 9 ± 1.27 * | 8 ± 1.27 * | 8 ± 1.37 * | 8 ± 1.37 * | 12 ± 0.33 *** |
Salmonella enterica ATCC 35664 | 17 ± 1.36 * | 15 ± 1.25 * | 18 ± 1.27 * | 15 ± 1.27 * | 17 ± 1.27 * | 19 ± 0.33 *** |
Klebsiella aerogenes ATCC 13048 | 37 ± 1.27 | 36 ± 1.37 | 32 ± 1.33 * | 35 ± 0.63 * | 33 ± 1.33 * | 23 ± 0.33 *** |
Enterococcus hirae ATCC 10541 | 37 ± 1.25 | 38 ± 1.27 | 38 ± 1.27 | 39 ± 1.27 | 38 ± 1.27 | 22 ± 0.33 *** |
Escherichia coli ATCC 25922 | 17 ± 1.37 * | 16 ± 1.07 * | 19 ± 1.44 * | 18 ± 1.33 * | 20 ± 1.08 * | 16 ± 0.33 *** |
Serratia marcescens ATCC 13880 | 27 ± 0.56 * | 29 ± 1.36 * | 25 ± 1.32 * | 28 ± 0.53 * | 27 ± 1.53 * | 22 ± 0.33 *** |
Proteus vulgaris ATCC 6380 | 20 ± 0.31 * | 19 ± 1.31 * | 21 ± 1.33 * | 20 ± 1.23 * | 21 ± 0.33 * | 22 ± 0.33 *** |
Antibiotic (AB, Charge in μg) Used | Bacillus Strains | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
BSS25 | BSS21 | BSS16 | BSS13 | BSS12 | ||||||
Diameter (mm) | S/R | Diameter (mm) | S/R | Diameter (mm) | S/R | Diameter (mm) | S/R | Diameter (mm) | S/R | |
Penicillins: | ||||||||||
Penicillin G (PEN, 10) | 37± 0.19 a | S | 20 ± 0.35 ab | S | 34 ± 0.48 abc | S | 22 ± 1.43 a | S | 22 ± 1.43 a | S |
Ampicillin (AMP, 10) | 30 ± 0.21 ab | S | 20 ± 0.35 ab | S | 36 ± 0.36 ab | S | 32 ± 0.98 ab | S | 32 ± 0.98 ab | S |
Amoxycillin (AMOX, 30) | 40 ± 0.21 a | S | 20 ± 0.35 ab | S | 38 ± 0.41 abc | S | 35 ± 1.81 abc | S | 35 ± 1.81 abc | S |
Amoxycillin-clavulanic acid (AMC, 30) | 35 ± 0.98 c | S | 20 ± 0.35 abc | S | 36 ± 0.98 abc | S | 30 ± 1.45 ab | S | 30 ± 1.45 b | S |
Carbenicillin (CAR, 100) | 35 ± 0.32 abs | S | 20 ± 0.35 ab | S | 34 ± 0.56 abc | S | 35 ± 1.43 abc | S | 35 ± 1.43 abc | S |
Cloxacillin (CX, 5) | 14 ± 0.23 a | R | 14 ± 0.23 a | R | 14 ± 0.23 ab | R | 14 ± 0.23 abc | R | 14 ± 0.23 a | R |
Macrolides: | ||||||||||
Erythromycin (ERO, 15) | 30 ± 0.21 a | S | 20 ± 0.11 abc | S | 40 ± 0.39 ab | S | 40 ± 0.28 a | S | 30 ± 0.21 a | S |
Azithromycin (AZM, 15) | 30 ± 0.22 a | S | 20 ± 0.35 a | S | 35 ± 0.59 ab | S | 37 ± 1.52 a | S | 30 ± 0.22 a | S |
Cephalosporins: | ||||||||||
Cefepime (FEP, 30) | 30 ± 0.35 bcd | S | 30 ± 0.35 abc | S | 30 ± 0.36 ab | S | 20 ± 1.43 ab | S | 20 ± 1.43 ab | S |
Cefepime/clavulanic acid FEC-40 | 30 ± 0.35 a | S | 30 ± 0.35 ab | S | 33 ± 0.28 a | S | 26 ± 0.23 a | S | 26 ± 0.23 a | S |
Cephalatin (KF, 30) | 34 ± 0.21 ab | S | 30 ± 0.35 a | S | 30 ± 0.54 a | S | 25 ± 0.98 ab | S | 25 ± 0.98 abs | S |
Cefotaxime (CTX, 30) | 27 ± 0.35 a | S | 28 ± 0.11 a | S | 25 ± 0.28 a | S | 35 ± 1.29 ab | S | 35 ± 1.29 a | S |
Aminoglycosides: | ||||||||||
Gentamicin (CN, 120) | 39 ± 0.37 ab | S | 38 ± 0.43 ab | S | 40 ± 0.12 ab | S | 41 ± 0.23 ab | S | 39 ± 0.31 ab | S |
Streptomycin (STR, 10) | 23 ± 0.36 ab | S | 25 ± 0.31 ab | S | 28 ± 1.41 ab | S | 23 ± 1.41 ab | S | 25 ± 0.31 ab | S |
Tobramycin (TOB, 10) | 32 ± 0.32 a | S | 25 ± 0.31 a | S | 34 ± 1.18 a | S | 35 ± 0.98 ab | S | 35 ± 1.29 a | S |
Tetracyclines: | ||||||||||
Tetracycline (TET, 30) | 30 ± 0.52 a | S | 26 ± 0.15 a | S | 36 ± 1.43 a | S | 30 ± 0.23 a | S | 30 ± 0.52 ab | S |
Polypeptides: | ||||||||||
Polymyxin (PB, 300) | 7 ± 0.28 b | R | 0 ± 0.00 b | R | 8 ± 1.49 b | R | 10± 0.23 b | R | 0 ± 0.00 b | R |
Bacitromycin (B, 10) | 0 ± 0.00 b | R | 0 ± 0.00 b | R | 0 ± 0.00 b | R | 0 ± 0.00 b | R | 0 ± 0.00 b | R |
Bacillus thuringiensis (BSS25) | |||||||
---|---|---|---|---|---|---|---|
No. | Name | Molecular Formula | Molecular Mass, g/mol | Retention Time (min) | PubChem Compound CID | Similarities | Area, % |
1 | Acetone | C3H6O | 58.08 | 1.642 | 180 | 87 | 0.17 |
2 | 2,3-Butanedione | C4H6O | 86.09 | 2.64 | 650 | 93 | 15.85 |
3 | Hexanal | C6H12O | 100.16 | 3.617 | 6184 | 65 | 0.34 |
4 | Acetoin | C4H8O2 | 88.11l | 6.239 | 179 | 89 | 44.06 |
5 | 3-Pentanol, 2-methyl- | C6H14O | 102.17 | 7.012 | 11,264 | 80 | 1.37 |
6 | Oxirane, (methoxymethyl)- | C4H8O2 | 88.11 | 7.219 | 13,589 | 79 | 1.36 |
7 | Acetic acid | C2H4O2 | 60.05 | 8.368 | 176 | 86 | 0.89 |
8 | Decanal | C10H20O | 156.26 | 8.504 | 8175 | 73 | 0.39 |
9 | 1-Hexanol, 2-ethyl- | C8H18O | 130.229 | 8.896 | 7720 | 87 | 0.24 |
10 | Benzaldehyde | C7H6O | 106.12 | 9.411 | 240 | 94 | 2.22 |
11 | (R,R)-2,3-Butanediol | C4H10O | 90.12 | 9.491 | 439,888 | 82 | 4.08 |
12 | 1,6-Octadien-3-ol, 3,7-dimethyl- | C10H18O | 154.25 | 9.64 | 6549 | 85 | 0.78 |
13 | 1-Hepten-4-ol | C7H14O | 114.19 | 9.847 | 19,040 | 70 | 3.42 |
14 | 1-Nonanol | C9H20O | 144.25 | 10.47 | 8914 | 78 | 0.73 |
15 | (S)-(+)-6-Methyl-1-octanol | C9H20O | 144.25 | 10.639 | 13,548,104 | 85 | 1.25 |
16 | Butanoic acid, 2-methyl- | C5H10O2 | 102.13 | 11.091 | 8314 | 81 | 2.24 |
17 | Oxime-, methoxy-phenyl | C8H9NO2 | 151.16 | 12.063 | 9,602,988 | 73 | 1.136 |
18 | 1-Decanol | C10H22O | 158.28 | 12.21 | 8174 | 60 | 0.52 |
19 | Hexanoic acid | C6H12O2 | 116.16 | 13.085 | 8892 | 91 | 1.86 |
20 | 5,9-Undecadien-2-one, 6,10-dimethyl-, (E)- | C13H22O | 194.31 | 13.329 | 1,549,778 | 60 | 0.66 |
21 | Propanoic acid, 2-methyl-, 3-hydroxy-2,4,4-trimethylpentyl ester | C12H24O | 216.32 | 13.462 | 551,387 | 65 | 0.99 |
22 | 2,2,4-Trimethyl-1,3-pentanediol diisobutyrate | C16H30O4 | 286.41 | 13.63 | 23,284 | 81 | 0.91 |
23 | (R)-(−)-4-Methylhexanoic acid | C7H14O2 | 130.18 | 13.965 | 12,600,623 | 70 | 0.62 |
24 | Hexanoic acid, 2-ethyl- | C8H16O2 | 144.21 | 14.226 | 8697 | 89 | 2.90 |
25 | Cetene | C16H32 | 224.42 | 14.477 | 12,395 | 81 | 0.75 |
26 | Phenol | C6H6O | 94.11 | 14.825 | 996 | 89 | 0.82 |
27 | Neodecanoic acid | C10H20O2 | 172.26 | 15.305 | 62,838 | 61 | 0.43 |
28 | Octanoic acid | C8H16O2 | 144.21 | 15.386 | 379 | 91 | 2.47 |
29 | 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester | C16H22O4 | 278.34 | 16.151 | 6782 | 77 | 0.44 |
30 | Nonanoic acid | C9H18O2 | 158.24 | 16.478 | 8158 | 90 | 2.80 |
31 | Benzoic acid, 2-ethylhexyl ester | C15H22O2 | 234.33 | 17.083 | 94,310 | 61 | 0.17 |
32 | Hexadecanoic acid, methyl ester | C17H34O2 | 270.5 | 17.161 | 8181 | 91 | 1.22 |
33 | 2-Octyl benzoate | C15H22O2 | 234.33 | 17.531 | 243,800 | 69 | 0.90 |
Bacillus toyonensis (BSS21) | |||||||
---|---|---|---|---|---|---|---|
No. | Name | Molecular Formula | Molecular Mass, g/mol | Retention Time (min) | PubChem Compound CID | Similarities | Area, % |
1 | Acetone | C3H6O | 58.08 | 1.661 | 180 | 79 | 0.55 |
2 | 2,3-Butanedione | C4H6O2 | 86.09 | 2.652 | 650 | 92 | 16.97 |
3 | 2,3-Pentanedione | C5H8O2 | 100.12 | 3.404 | 11,747 | 68 | 2.035 |
4 | Acetoin | C4H8O2 | 88.11 | 6.246 | 179 | 89 | 38.25 |
5 | 3-Pentanol, 2-methyl- | C6H14O | 102.17 | 7.008 | 11,264 | 81 | 2.92 |
6 | Oxirane, (methoxymethyl)- | C4H8O2 | 88.11 | 7.216 | 13,589 | 80 | 2.41 |
7 | Nonanal | C9H18O | 142.24 | 7.73 | 31,289 | 85 | 0.75 |
8 | Acetic acid | C2H4O2 | 60.05 | 8.343 | 176 | 97 | 2.46 |
9 | 1-Hexanol, 2-ethyl- | C8H18O | 130.229 | 8.889 | 7720 | 88 | 0.15 |
10 | E-3-Pentadecen-2-ol | C15H30O | 226.4 | 9.048 | 5,363,322 | 65 | 0.14 |
11 | (R,R)-2,3-Butanediol | C4H10O2 | 90.12 | 9.486 | 439,888 | 88 | 7.80 |
12 | Formic acid, octyl ester | C9H18O2 | 158.24 | 9.751 | 8176 | 69 | 0.37 |
13 | Propanoic acid, 2-methyl- | C4H8O2 | 88.11 | 9.832 | 6590 | 76 | 1.40 |
14 | 2-Octanol | C8H18O | 130.229 | 9.928 | 20,083 | 74 | 0.26 |
15 | (S)-(+)-6-Methyl-1-octanol | C9H20O | 144.25 | 10.631 | 13,548,104 | 82 | 0.28 |
16 | 1-Nonanol | C9H20O | 144.25 | 11.003 | 8914 | 78 | 0.13 |
17 | Butanoic acid, 2-methyl- | C5H10O2 | 102.13 | 11.073 | 8314 | 87 | 3.57 |
18 | Dodecanal | C12H24O | 184.32 | 11.714 | 8194 | 92 | 0.68 |
19 | Oxime-, methoxy-phenyl-_ | C8H9NO2 | 151.16 | 12.052 | 9,602,988 | 73 | 0.35 |
20 | 2,4-Decadienal, (E, E)- | C10H16O | 152.23 | 12.851 | 5,283,349 | 77 | 0.28 |
21 | Pentanoic acid | C5H10O2 | 102.13 | 13.071 | 7991 | 79 | 0.23 |
22 | 3-Buten-2-one, 4-(1-cyclopenten-1-yl)-, (E)- | C9H12O | 136.19 | 13.461 | 5,370,075 | 76 | 0.40 |
23 | Hexanoic acid, 2-ethyl- | C8H16O2 | 144.21 | 14.199 | 8697 | 80 | 0.31 |
24 | 1-Dodecanol | C12H26O | 186.33 | 14.446 | 8193 | 81 | 0.15 |
25 | Phenol | C6H6O | 94.11 | 14.774 | 996 | 90 | 0.19 |
26 | Octanoic acid | C8H16O2 | 144.21 | 15.314 | 379 | 79 | 0.40 |
27 | Nonanoic acid | C9H18O2 | 158.24 | 16.359 | 8158 | 88 | 0.73 |
28 | Hexadecanoic acid, methyl ester | C17H34O2 | 270.5 | 17.01 | 8181 | 88 | 0.32 |
29 | 1,4-Benzenediol, 2,6-bis(1,1-dimethylethyl)- | C14H22O2 | 222.32 | 17.298 | 75,550 | 63 | 0.18 |
30 | Decanoic acid | C10H20O2 | 172.26 | 17.356 | 2969 | 64 | 0.31 |
31 | Benzoic acid, heptyl ester | C14H20O2 | 220.31 | 18.369 | 81,591 | 73 | 0.16 |
32 | Benzoic acid | C7H6O2 | 122.12 | 18.739 | 243 | 85 | 0.22 |
33 | 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester | C16H22O4 | 278.34 | 19.85 | 6782 | 81 | 0.33 |
34 | Dibutyl phthalate | C16H22O4 | 278.34 | 21.099 | 3026 | 67 | 0.32 |
35 | Hexadecanoic acid | C16H32O2 | 256.42 | 22.611 | 985 | 76 | 4.00 |
36 | Oleic Acid | C18H34O2 | 282.5 | 24.54 | 445,639 | 86 | 5.85 |
37 | 9,12-Octadecadienoic acid (Z, Z)- | C18H32O2 | 280.4 | 25.063 | 5,280,450 | 87 | 3.80 |
Bacillus acidiproducens (BSS16) | |||||||
---|---|---|---|---|---|---|---|
No. | Name | Molecular Formula | Molecular Mass, g/mol | Retention Time (min) | PubChem Compound CID | Similarities | Area, % |
1 | Acetone | C3H6O | 58.08 | 1.67 | 180 | 93 | 0.75 |
2 | Acetoin | C4H8O2 | 88.11 | 6.49 | 179 | 89 | 8.44 |
3 | Acetic acid | C2H4O2 | 60.05 | 8.363 | 176 | 95 | 2.40 |
4 | Benzaldehyde | C7H6O | 106.12 | 9.411 | 240 | 94 | 4.75 |
5 | 3(2H)-Thiophenone, dihydro-2-methyl- | C5H8OS | 116.18 | 9.463 | 61,664 | 84 | 6.07 |
6 | Propanoic acid, 2-methyl- | C4H8O2 | 88.11 | 9.839 | 6590 | 92 | 13.97 |
7 | Butanoic acid | C4H8O2 | 88.11 | 10.581 | 264 | 83 | 0.61 |
8 | Butanoic acid, 2-methyl- | C5H10O2 | 102.13 | 11.084 | 8314 | 83 | 29.39 |
9 | Oxime-, methoxy-phenyl-_ | C8H9NO2 | 151.16 | 12.063 | 9,602,988 | 76 | 1.14 |
10 | Phenol | C6H6O | 94.11 | 14.788 | 996 | 90 | 0.32 |
11 | Nonanoic acid | C9H18O2 | 158.24 | 16.372 | 8158 | 85 | 0.54 |
12 | Hexadecanoic acid, methyl ester | C17H34O2 | 270.5 | 17.016 | 8181 | 91 | 0.72 |
13 | 2-Octyl benzoate | C15H22O2 | 234.33 | 17.363 | 243,800 | 68 | 0.68 |
14 | Benzoic acid 2-methylpentyl ester | C13H18O2 | 206.28 | 17.813 | 570,433 | 66 | 0.53 |
15 | Benzoic acid, heptyl ester | C14H20O2 | 220.31 | 18.084 | 81,591 | 80 | 0.50 |
16 | Benzoic acid, tridecyl ester | C20H32O2 | 304.5 | 18.375 | 9,814,973 | 75 | 0.56 |
17 | Benzoic acid | C7H6O2 | 122.12 | 18.752 | 243 | 79 | 0.65 |
18 | 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester | C16H22O4 | 278.34 | 19.859 | 6782 | 91 | 0.94 |
19 | Pentadecanoic acid | C15H30O2 | 242.4 | 21.427 | 13,849 | 63 | 0.41 |
20 | Hexadecanoic acid | C16H32O2 | 256.42 | 22.604 | 985 | 88 | 3.60 |
21 | Octadecanoic acid | C18H36O2 | 284.5 | 24.256 | 5281 | 72 | 1.64 |
22 | Oleic acid | C18H34O2 | 282.5 | 24.542 | 445,639 | 90 | 9.68 |
23 | 9,12-Octadecadienoic acid (Z, Z)- | C18H32O2 | 280.4 | 25.067 | 5,280,450 | 91 | 11.10 |
Bacillus cereus (BSS13) | |||||||
---|---|---|---|---|---|---|---|
No. | Name | Molecular Formula | Molecular Mass, g/mol | Retention Time (min) | PubChem Compound CID | Similarities | Area, % |
1 | Acetone | C3H6O | 58.08 | 1.644 | 180 | 94 | 3.66 |
2 | Acetoin | C4H8O2 | 88.11 | 6.49 | 179 | 89 | 0.74 |
3 | Acetic acid | C2H4O2 | 60.05 | 8.335 | 176 | 97 | 6.31 |
4 | Decanal | C10H20O | 156.26 | 9.114 | 8175 | 70 | 0.63 |
5 | Benzaldehyde | C7H6O | 106.12 | 9.402 | 240 | 95 | 6.24 |
6 | Propanoic acid, 2-methyl- | C4H8O2 | 88.11 | 9.828 | 6590 | 92 | 11.51 |
7 | Butanoic acid | C4H8O2 | 88.11 | 10.569 | 264 | 86 | 0.91 |
8 | Butanoic acid, 2-methyl- | C5H10O2 | 102.13 | 11.081 | 8314 | 83 | 31.69 |
9 | Oxime-, methoxy-phenyl-_ | C8H9NO2 | 151.16 | 12.054 | 9,602,988 | 67 | 1.28 |
10 | Tiglic acid | C5H8O2 | 100.12 | 13.078 | 125,468 | 81 | 1.68 |
11 | (R)-(−)-4-Methylhexanoic acid | C7H14O2 | 130.18 | 13.945 | 12,600,623 | 84 | 0.53 |
12 | Hexanoic acid, 2-ethyl- | C8H16O2 | 144.21 | 14.197 | 8697 | 88 | 1.03 |
13 | Phenol | C6H6O | 94.11 | 14.777 | 996 | 87 | 0.44 |
14 | Octanoic acid | C8H16O2 | 144.21 | 15.317 | 379 | 90 | 1.11 |
15 | Nonanoic acid | C9H18O2 | 158.24 | 16.362 | 8158 | 90 | 2.40 |
16 | Hexadecanoic acid, methyl ester | C17H34O2 | 270.5 | 17.016 | 8181 | 80 | 1.09 |
17 | Decanoic acid | C10H20O2 | 172.26 | 17.359 | 2969 | 66 | 0.94 |
18 | Benzoic acid 2-methylpentyl ester | C13H18O2 | 206.28 | 17.809 | 570,433 | 64 | 0.55 |
19 | Benzoic acid, heptyl ester | C14H20O2 | 220.31 | 18.079 | 81,591 | 78 | 0.42 |
20 | Benzoic acid | C7H6O2 | 122.12 | 18.742 | 243 | 87 | 0.57 |
21 | 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester | C16H22O4 | 278.34 | 19.852 | 6782 | 93 | 1.11 |
22 | Dibutyl phthalate | C16H22O4 | 278.34 | 21.116 | 3026 | 69 | 0.94 |
23 | Hexadecanoic acid | C16H32O2 | 256.42 | 22.596 | 985 | 84 | 4.45 |
24 | Octadecanoic acid, 2-hydroxy-1,3-propanediyl ester | C39H76O5 | 625 | 24.244 | 101,269 | 67 | 3.79 |
25 | 9-Octadecenoic acid, (E)- | C18H34O2 | 282.5 | 24.53 | 637,517 | 86 | 9.95 |
26 | 9,12-Octadecadienoic acid (Z, Z)- | C18H32O2 | 280.4 | 25.052 | 5,280,450 | 83 | 5.87 |
Bacillus safensis (BSS12) | |||||||
---|---|---|---|---|---|---|---|
No. | Name | Molecular Formula | Molecular Mass, g/mol | Retention Time (min) | PubChem Compound CID | Similarities | Area, % |
1 | (2-Aziridinylethyl)amine | C4H10N2 | 86.14 | 1.162 | 97697 | 96 | 0.39 |
2 | 1-Propen-2-ol, acetate | C5H8O2 | 100.12 | 1.667 | 7916 | 65 | 0.78 |
3 | 2,3-Butanedione | C4H6O2 | 86.09 | 2.647 | 650 | 93 | 21.43 |
4 | 3-Penten-1-ol | C5H10O | 86.13 | 3.411 | 510,370 | 69 | 2.64 |
5 | Acetoin | C4H8O2 | 88.11 | 5.703 | 179 | 89 | 0.26 |
6 | 3-Pentanol, 2-methyl- | C6H14O | 102.17 | 6.259 | 11,264 | 72 | 36.53 |
7 | 2-Nonen-1-ol | C9H18O | 142.24 | 7.011 | 61,896 | 82 | 1.23 |
8 | 2-Hydroxy-3-pentanone | C5H10O2 | 102.13 | 7.109 | 521,790 | 73 | 0.42 |
9 | Ethane-1,1-diol dibutanoate | C10H18O4 | 202.25 | 7.215 | 551,339 | 83 | 1.18 |
10 | Acetic acid | C2H4O2 | 60.05 | 8.354 | 176 | 90 | 0.78 |
11 | 1-Hexanol, 2-ethyl- | C8H18O | 130.229 | 8.888 | 7720 | 93 | 0.44 |
12 | Benzaldehyde | C7H6O | 106.12 | 9.397 | 240 | 96 | 2.17 |
13 | 2,3-Butanediol | C4H10O2 | 90.12 | 9.484 | 262 | 89 | 4.67 |
14 | 1,6-Octadien-3-ol, 3,7-dimethyl- | C10H18O | 154.25 | 9.632 | 6549 | 87 | 0.78 |
15 | Propanoic acid, 2-methyl- | C4H8O2 | 88.11 | 9.832 | 6590 | 67 | 3.16 |
16 | (R,R)-2,3-Butanediol | C4H10O2 | 90.12 | 9.925 | 225,936 | 74 | 0.53 |
17 | 1-Nonanol | C9H20O | 144.25 | 10.366 | 8914 | 82 | 0.42 |
18 | (S)-(+)-6-Methyl-1-octanol | C9H20O | 144.25 | 10.635 | 13,548,104 | 89 | 0.98 |
19 | Butanoic acid, 2-methyl- | C5H10O2 | 102.13 | 11.082 | 8314 | 82 | 1.89 |
20 | Oxime-, methoxy-phenyl-_ | C8H9NO2 | 151.16 | 12.053 | 9,602,988 | 67 | 0.52 |
21 | 2,4-Decadienal | C10H16O | 152.23 | 12.853 | 5,283,349 | 79 | 0.32 |
22 | 2,2,4-Trimethyl-1,3-pentanediol diisobutyrate | C16H30O4 | 286.41 | 13.131 | 23,284 | 82 | 0.17 |
23 | (R)-(−)-4-Methylhexanoic acid | C7H14O2 | 130.18 | 13.315 | 12,600,623 | 62 | 0.13 |
24 | Phenol | C6H6O | 94.11 | 13.711 | 996 | 75 | 0.20 |
25 | Octanoic acid | C8H16O2 | 144.21 | 14.194 | 379 | 76 | 0.18 |
26 | Nonanoic acid | C9H18O2 | 158.24 | 14.587 | 8158 | 76 | 0.14 |
27 | Hexadecanoic acid, methyl ester | C17H34O2 | 270.5 | 14.766 | 8181 | 96 | 2.89 |
28 | 2-Octyl benzoate | C15H22O2 | 234.33 | 15.31 | 243,800 | 70 | 0.17 |
29 | Benzoic acid, heptyl ester | C14H20O2 | 220.31 | 15.742 | 81,591 | 75 | 0.10 |
30 | Benzoic acid, undecyl ester | C18H28O2 | 276.4 | 16.355 | 229,159 | 88 | 0.40 |
31 | Benzoic acid | C7H6O2 | 122.12 | 17.008 | 243 | 89 | 0.28 |
32 | 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester | C16H22O4 | 278.34 | 18.074 | 6782 | 69 | 0.09 |
33 | Oleic Acid | C18H34O2 | 282.5 | 18.364 | 445,639 | 76 | 0.14 |
34 | Dibutyl phthalate | C16H22O4 | 278.34 | 19.845 | 3026 | 89 | 0.32 |
35 | Hexadecanoic acid | C16H32O2 | 256.42 | 22.582 | 985 | 82 | 2.38 |
36 | Octadecanoic acid | C18H36O2 | 284.5 | 24.235 | 5281 | 69 | 2.67 |
37 | Oleic Acid | C18H34O2 | 282.5 | 24.517 | 445,639 | 87 | 4.58 |
38 | 9,12-Octadecadienoic acid (Z, Z)- | C18H32O2 | 280.4 | 25.039 | 5,280,450 | 83 | 3.57 |
Bacillus spp. | |||||
---|---|---|---|---|---|
Bacillus thuringiensis | Bacillus toyonensis | Bacillus acidiproducens | Bacillus cereus | Bacillus safensis | |
The specific compounds found in high concentrations in bacterial extracts |
acetoin (44.06%); 2,3-butanedione (15.85%); (R,R)- 2,3-butanediol(4.08%); 1-Hepten-4-ol (3.42%); hexanoic acid, 2-ethyl- (2.90%); nonanoic acid (2.80%) octanoic acid (2.47%); butanoic acid, 2-methyl- (2.24%); benzaldehyde (2.22%) |
acetoin (38.25%); 2,3-butanedione (16.97%); (R,R)- 2,3-butanediol (7.80%); oleic acid (5.85%); hexadecanoic acid (4.00%); 9,12-octadecadienoic acid (Z, Z)- (3.80%); butanoic acid, 2-methyl- (3.57%); 3-pentanol, 2-methyl- (2.92%); acetic acid (2.46%); oxirane, (methoxymethyl)- (2.41%); 2,3-pentanedione (2.40%) |
butanoic acid, 2-methyl- (29.39%); propanoic acid, 2-methyl- (13.97%); 9,12-octadecadienoic acid (Z, Z)- (11.10%); oleic acid (9.68%); acetoin (8.44%); 3(2H)-Thiophenone, dihydro-2-methyl- (6.07%); benzaldehyde (4.75%); hexadecanoic acid (3.60%) |
butanoic acid, 2-methyl- (31.69%); propanoic acid, 2-methyl- (11.51%); 9-octadecenoic acid, (E)- (9.95%); acetic acid (6.31%); benzaldehyde (6.21%); 9,12-octadecadienoic acid (Z, Z)- (5.87%); hexadecanoic acid (4.45%); octadecanoic acid, 2-hydroxy-1,3-propanediyl ester (3.79%); acetone (3.66%); nonanoic acid (2.40%); acetic acid (2.40%) |
3-pentanol, 2-methyl- (36.53%); 2,3-butanedione (21.43%); 2,3-butanediol (4.67%); oleic acid (4.58%); 9,12-octadecadienoic acid (Z, Z)- (3.57%); propanoic acid, 2-methyl- (3.16%); hexadecanoic acid, methyl ester (2.89%); 3-penten-1-ol (2.64%); octadecanoic acid (2.67%); hexadecanoic acid (2.38%); benzaldehyde (2.17%) |
No. | Name | Chemical Classes | Known Pharmacological Activities |
---|---|---|---|
1 | 3-Pentanol, 2-methyl- | Alcohols | – |
2 | (R,R)-2,3-Butanediol | Alcohols | – |
3 | 1,6-Octadien-3-ol, 3,7-dimethyl- | monoterpene alcohols | Anti-inflammatory, anticancer, anti-hyperlipidemic, antimicrobial, antinociceptive, analgesic, anxiolytic, anti-depressive and neuroprotective [40] |
4 | 1-Hepten-4-ol | Alcohols | – |
5 | 1-Nonanol | Alcohols | Antifungal [41] and antibacterial [42] |
6 | (S)-(+)-6-Methyl-1-octanol | Alcohols | – |
7 | 1-Decanol | Alcohols | Antibacterial [42], antioxidant and neuroprotective [43] |
8 | E-3-Pentadecen-2-ol | Alcohols | – |
9 | 2-Octanol | Alcohols | – |
10 | 3-Penten-1-ol | Alcohols | – |
11 | 2-Nonen-1-ol | Alcohols | – |
12 | 2,3-Butanediol | Alcohols | CNS depressant [44], antimicrobial and antagonistic [45] |
13 | 1-Hexanol, 2-ethyl- | Alcohols | – |
14 | 1-Dodecanol | Alcohols | Antibacterial [42] |
15 | Hexanal | aldehydes | Antimicrobial [46] |
16 | Nonanal | aldehydes | Anti-fungal [47] |
17 | Decanal | aldehydes | Anti-fungal [48] |
18 | Dodecanal | aldehydes | – |
19 | 2,4-Decadienal, (E,E)- | aldehydes | Flavoring agent, fragrance agent, toxic [49] |
20 | Acetic acid | aromatic aldehydes | Antibacterial and antifungal, anticancer [50] |
21 | Benzaldehyde | carboxylic acids (simple acids) | Denaturant and a flavoring agent [51] |
22 | Butanoic acid, 2-methyl- | carboxylic acids (simple acids) | Laxative [52] |
23 | Hexanoic acid | carboxylic acids (fatty acids) | – |
24 | (R)-(−)-4-Methylhexanoic acid | carboxylic acids (fatty acids) | – |
25 | Hexanoic acid, 2-ethyl- | carboxylic acids (fatty acids) | – |
26 | Neodecanoic acid | carboxylic acids (fatty acids) | – |
27 | Octanoic acid | carboxylic acids (fatty acids) | Anticancer [53], antibacterial [54], antimicrobial [55] |
28 | Nonanoic acid | carboxylic acids (fatty acids) | Skin-conditioning agent [56], anti-fungal [57] |
29 | Propanoic acid, 2-methyl- | carboxylic acids (fatty acids) | – |
30 | Butanoic acid | carboxylic acids (fatty acids) | The main energetic substrate of the colonocyte [58] |
31 | Pentadecanoic acid | carboxylic acids (fatty acids) | A JAK2/STAT3 signaling inhibitor in breast cancer cells [59], anti-biofilm agent [60] |
32 | Oleic Acid | carboxylic acids (fatty acids) | Anticancer, anti-inflammatory, wound healing [61] |
33 | Hexadecanoic acid | carboxylic acids (fatty acids) | Anti-inflammatory [62], antibacterial [63], |
34 | Octadecanoic acid | carboxylic acids (fatty acids) | Anticancer [64] |
35 | 9,12-Octadecadienoic acid (Z, Z)- | carboxylic acids (fatty acids) | Used for the treatment or prevention of cardiac arrhythmias [65] |
36 | Tiglic acid | carboxylic acids (fatty acids) | – |
37 | Decanoic acid | carboxylic acids (fatty acids) | Enhances antibacterial effect [66], anti-inflammatory [67] |
38 | 9-Octadecenoic acid, (E)- | carboxylic acids (fatty acids) | – |
39 | Pentanoic acid | carboxylic acids (fatty acids) | Neuroprotective agent and suppresses oxidative stress [68] |
40 | Acetone | ketones | Antibacterial [69] |
41 | 2,3-Butanedione | ketones | – |
42 | Acetoin | ketones | CNS depressant [44] |
43 | 5,9-Undecadien-2-one, 6,10-dimethyl-, (E)- | ketones (sesquiterpenoid) | – |
44 | 2,3-Pentanedione | ketones | – |
45 | 3-Buten-2-one, 4-(1-cyclopenten-1-yl)-, (E)- | ketones (cyclic) | – |
46 | 2-Hydroxy-3-pentanone | ketones (acyloins) | – |
47 | Oxime-, methoxy-phenyl | Esters | – |
48 | 2,2,4-Trimethyl-1,3-pentanediol diisobutyrate | Esters | – |
49 | Propanoic acid, 2-methyl-, 3-hydroxy-2,4,4-trimethylpentyl ester | fatty acid esters | – |
50 | Hexadecanoic acid, methyl ester | fatty acid esters | Shows cardioprotective effect against the ischemia/reperfusion (I/R) injury [70], antibacterial [71], counteracts cyclophosphamide cardiotoxicity [72] |
51 | Octadecanoic acid, 2-hydroxy-1,3-propanediyl ester | fatty acid esters | – |
52 | Ethane-1,1-diol dibutanoate | fatty acid esters | – |
53 | Benzoic acid, 2-ethylhexyl ester | benzoic acid esters | – |
54 | 2-Octyl benzoate | benzoic acid esters | – |
55 | Benzoic acid 2-methylpentyl ester | benzoic acid esters | – |
56 | Benzoic acid, heptyl ester | benzoic acid esters | – |
57 | Benzoic acid, tridecyl ester | benzoic acid esters | – |
58 | Benzoic acid, undecyl ester | benzoic acid esters | – |
59 | 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester | phthalate esters | – |
60 | Diibutyl phthalate | phthalate esters | – |
61 | Formic acid, octyl ester | fatty alcohol esters | – |
62 | 1-Propen-2-ol, acetate | fatty alcohol esters | – |
63 | Oxirane, (methoxymethyl)- | heterocyclic ethers | – |
64 | (2-Aziridinylethyl)amine | amines | – |
65 | Cetene | alkenes | – |
66 | Benzoic acid | benzenoids | Antibacterial and antifungal [73] |
67 | Phenol | phenols | Disinfectant [74] |
68 | 3(2H)-Thiophenone, dihydro-2-methyl- | tetrahydrothiophenes | – |
69 | 1,4-Benzenediol, 2,6-bis(1,1-dimethylethyl)- | quinones | – |
No. | Isolates | 16S rRNA Amplified Region Length | Bacterial Species | NCBI Accession No. |
---|---|---|---|---|
1 | BSS25 | 1420 bp | 99% with Bacillus thuringiensis F3 | MF135173 |
2 | BSS21 | 1492 bp | 99% with Bacillus toyonensis FORT 102 | MG561363 |
3 | BSS16 | 1452 bp | 99% with Bacillus acidiproducens NiuFun | MF446886 |
4 | BSS13 | 1474 bp | 98% with Bacillus cereus WAB2133 | MH169322 |
5 | BSS12 | 1449 bp | 99% with Bacillus safensis AS-08 | JX849661 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koilybayeva, M.; Shynykul, Z.; Ustenova, G.; Waleron, K.; Jońca, J.; Mustafina, K.; Amirkhanova, A.; Koloskova, Y.; Bayaliyeva, R.; Akhayeva, T.; et al. Gas Chromatography–Mass Spectrometry Profiling of Volatile Metabolites Produced by Some Bacillus spp. and Evaluation of Their Antibacterial and Antibiotic Activities. Molecules 2023, 28, 7556. https://doi.org/10.3390/molecules28227556
Koilybayeva M, Shynykul Z, Ustenova G, Waleron K, Jońca J, Mustafina K, Amirkhanova A, Koloskova Y, Bayaliyeva R, Akhayeva T, et al. Gas Chromatography–Mass Spectrometry Profiling of Volatile Metabolites Produced by Some Bacillus spp. and Evaluation of Their Antibacterial and Antibiotic Activities. Molecules. 2023; 28(22):7556. https://doi.org/10.3390/molecules28227556
Chicago/Turabian StyleKoilybayeva, Moldir, Zhanserik Shynykul, Gulbaram Ustenova, Krzysztof Waleron, Joanna Jońca, Kamilya Mustafina, Akerke Amirkhanova, Yekaterina Koloskova, Raushan Bayaliyeva, Tamila Akhayeva, and et al. 2023. "Gas Chromatography–Mass Spectrometry Profiling of Volatile Metabolites Produced by Some Bacillus spp. and Evaluation of Their Antibacterial and Antibiotic Activities" Molecules 28, no. 22: 7556. https://doi.org/10.3390/molecules28227556
APA StyleKoilybayeva, M., Shynykul, Z., Ustenova, G., Waleron, K., Jońca, J., Mustafina, K., Amirkhanova, A., Koloskova, Y., Bayaliyeva, R., Akhayeva, T., Alimzhanova, M., Turgumbayeva, A., Kurmangaliyeva, G., Kantureyeva, A., Batyrbayeva, D., & Alibayeva, Z. (2023). Gas Chromatography–Mass Spectrometry Profiling of Volatile Metabolites Produced by Some Bacillus spp. and Evaluation of Their Antibacterial and Antibiotic Activities. Molecules, 28(22), 7556. https://doi.org/10.3390/molecules28227556