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Abstract: Aromatic ketones are important pharmaceutical intermediates, especially the
pyridin-2-yl-methanone motifs. Thus, synthetic methods for these compounds have gained
extensive attention in the last few years. Transition metals catalyze the oxidation of Csp3-H for the
synthesis of aromatic ketones, which is arresting. Here, we describe an efficient copper-catalyzed
synthesis of pyridin-2-yl-methanones from pyridin-2-yl-methanes through a direct Csp3-H oxidation
approach with water under mild conditions. Pyridin-2-yl-methanes with aromatic rings, such as
substituted benzene, thiophene, thiazole, pyridine, and triazine, undergo the reaction well to obtain
the corresponding products in moderate to good yields. Several controlled experiments are operated
for the mechanism exploration, indicating that water participates in the oxidation process, and
it is the single oxygen source in this transformation. The current work provides new insights for
water-involving oxidation reactions.

Keywords: Csp3-H oxidation; pyridin-2-yl-methanones; copper catalysis; water; mechanism study

1. Introduction

The synthesis of aromatic ketones has attracted great consideration in recent
decades [1–8]. The strategy of direct oxidation of Csp3–H provided a powerful and
promising method for the transformation of diarylmethane to aromatic ketones. However,
an excess of hazardous and dangerous oxidants and a much higher temperature are
always introduced due to the low reactivity of C-H bonds [9–13]. As a result, unwanted
wastes and by-products are produced, which makes it difficult to obtain desired
products in good yields. With the development of organometallic chemistry, the use
of transition metals has been investigated in the synthesis of N-heterocyclic ketones
with molecule oxygen, iodine, and peroxides as oxidants under mild conditions [14–34]
(Scheme 1). Among all the oxidants, oxygen is more conveniently and readily available.
Nevertheless, extra additives, such as NHPI, ClCH2COOEt, and AcOH, are essential for
some of the examples [24,25,28,29]. According to these reports, peroxy acid intermediate
is formed with oxygen via a radical pathway for the transformation, providing an
impressive protocol for the synthesis of pyridin-2-yl-methanones. Despite all this,
innovative approaches with greener additives by means of metal catalysis are still
in great demand. In 2022, Liu has reported the selective oxidation of alkylarenes to
aromatic ketones or benzaldehydes with water [35]. In this transformation, water
participates in the reaction and offers the oxygen for the process with a palladium
catalyst, producing phenyl(pyridin-2-yl)methanone in 44% yield, which inspires us to
take water as an oxygen donor for an oxidation reaction in the presence of non-noble
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metals. More recently, our research group has reported a copper-catalyzed synthesis of aroyl
triazines and terminal olefin-substituted triazines [36,37]. Surprisingly, in our attempt to
obtain N2,N2-dimethyl-N4-phenyl-6-(1-(pyridin-2-yl)vinyl)-1,3,5-triazine-2,4-diamine, the
corresponding oxidation product was observed instead, so we proved that water can provide
oxygen for the curtain oxidation transformation. The unexpected findings encourage us to
probe the possibility of transforming pyridin-2-yl-methanes to pyridin-2-yl-methanones
catalyzed by a copper catalyst in the presence of water. Here, we report an efficient
copper-catalyzed synthesis of pyridin-2-yl-methanones via direct Csp3-H oxidation
with water. To the best of our knowledge, a water-involved oxidation approach for
pyridin-2-yl-methanones has never been reported.
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Scheme 1. The oxidation of benzylic C(sp3)-H bond to aromatic ketones with copper catalysts 
[20,24,25,28,31–33,37]. 

2. Results and Discussion 
We initially conducted the reaction through choosing 1a as substrate for the optimi-

zation study. To our delight, the reaction was smoothly carried out in N,N-dimethyla-
cetamide (DMA) under a Cu(NO3)2 . 3H2O/H2O/N2 catalytic system after 20 h and gave the 
desired product in 69% yield (Table 1, entry 1). Lowering the amount of water to 2.5 equiv. 
gave a similar result, but a dramatically decreased yield of 2a was observed without the 
use of additional water or anhydrous Cu(NO3)2 (Table 1, entries 2–4). However, a slightly 
lower yield was observed in the presence of anhydrous Cu(NO3)2 and water (Table 1, entry 
5). These results suggested that water was essential for the oxidation process. It was worth 

Scheme 1. The oxidation of benzylic C(sp3)-H bond to aromatic ketones with copper
catalysts [20,24,25,28,31–33,37].

2. Results and Discussion

We initially conducted the reaction through choosing 1a as substrate for the optimiza-
tion study. To our delight, the reaction was smoothly carried out in N,N-dimethylacetamide
(DMA) under a Cu(NO3)2

. 3H2O/H2O/N2 catalytic system after 20 h and gave the desired
product in 69% yield (Table 1, entry 1). Lowering the amount of water to 2.5 equiv. gave
a similar result, but a dramatically decreased yield of 2a was observed without the use
of additional water or anhydrous Cu(NO3)2 (Table 1, entries 2–4). However, a slightly
lower yield was observed in the presence of anhydrous Cu(NO3)2 and water (Table 1,
entry 5). These results suggested that water was essential for the oxidation process. It
was worth noting that prolonging the reaction time or elevating the temperature could
not help increase the production; contrarily, a shorter reaction time or lower temperature
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resulted in a decreased yield of 2a (Table 1, entries 6–9). However, the lower loading of
the Cu(NO3)2 3H2O led to a slower reaction, and a 68% yield of 2a was obtained when
increasing the amount of the catalyst (Table 1, entries 10–11). Next, we paid attention
to the various copper (II) catalysts; Cu(NO3)2 3H2O was proved to be the best choice
for this transformation (Table 1, entries 12–16). Finally, the influence of the solvents was
investigated (Table 1, entries 17–22). The results showed that the replacement of DMA with
DMF, DMSO, or PhCl gave a much lower yield, while the reaction could hardly occur due
to the lower solubility in H2O or Et3N. It is clear that DMA was considered to be optimal
for this oxidation process.

Table 1. Optimization of the reaction a.
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With the optimized condition in hand, a variety of substituted 2-benzylpyridines
(1a-l) were performed to test the scope of our oxidation methodology. As shown in
Table 2, 2-benzylpyridines with electron-donating (-t-Bu, -Naphthyl, Ph) and electron-
withdrawing (-Cl, -Br, -COMe, -COOMe, -CN, -NO2) groups underwent the reaction
to afford desired oxidation products in moderate to good yields. Gratifyingly, when
2-(thiophen-2-ylmethyl)pyridine (1m), 2-(pyridin-2-ylmethyl)thiazole (1n), and 2-(pyridin-
3-ylmethyl)pyridine (1o) were subjected to the oxidation protocol, the corresponding oxida-
tion products were obtained in 65%, 51%, an 60% yield, respectively. Then, 4-benzylpyridine
was tested under the optimized conditions, giving the corresponding product (2q) in 62%
yield. Despite much effort, 3-benzylpyridine cannot undergo the reaction under the current
conditions to form the desired product. Instead, 3-pyridine with triazine substrate (1r)
could easily transfer into the corresponding product in 66% yield.
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Table 2. Scope of the Cu catalyzed oxidation of benzylpyridines.
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Reaction conditions: 1 (1 mmol), Cu(NO3)2
.3H2O (10 mol%), solvent (3 mL), H2O (2.5 equiv.),

100 ◦C, argon atmosphere.

Subsequently, we turned our attention to probe the reaction mechanism of
this oxidic process. Firstly, we monitored the reaction mixture over time via liquid
chromatography–mass spectrometry (LCMS) for capturing the possible intermediates
and by-products, suggesting that IV (IV-1 or IV-2) should be a vital intermediate for
this transformation (Scheme 2, Equation (1)). A treatment of IV (IV-1 or IV-2) under the
standard conditions gave the desired product in 46% yield (Scheme 2, Equation (2)).
What puzzled us was where the source of oxygen came from. Moreover, several labeling
experiments were preformed to investigate the source of oxygen for our oxidation protocol.
The reaction was performed in the presence of deuterium oxide or 18O-labeled water
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instead of water (Scheme 2, Equations (3) and (4)); both intermediate IV (IV-1 or IV-2) and
18O-labeled products were confirmed via LCMS, further proving that water participated in
the reaction and acted as oxygen donor in the reaction [37].
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Based on the results above and previous work [25,37], a plausible mechanism of the
water-involved oxidation process was proposed (Scheme 3). Initially, 1a was activated by a
hydrogen proton to give 1a’ [24–26,28], which subsequently reacted with CuX2 to afford I
and II [33]. Then, the reaction between II and H2O generating III and IV (IV-1 or IV-2) was
formed through the reductive elimination process [14,36–38]. In the presence of a metal
catalyst, oxygen, or sodium nitrite [39–48], IV (IV-1 or IV-2) underwent dehydrogenation
to afford the desired product 2a [41,46–48] (Scheme 3). Notably, Cu(I) would be reoxidized
to Cu(II) in the H2/H2O/H+ system, closing the catalytic cycle [14,37,49].
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3. Materials and Methods
3.1. General Information

Unless otherwise noted, materials were obtained from commercial suppliers and
used without further purification. All reactions were performed in a heating mantle in
a sealed tube unless otherwise noted. Thin layer chromatography (TLC) was performed
using silica gel 60 F254 and was visualized using UV light. Column chromatography
was performed with silica gel (mesh 300–400). 1H NMR and 13C NMR spectra were
recorded on a Bruker Avance 400 MHz spectrometer in CDCl3 or DMSO-d6 with Me4Si as
an internal standard. Data were reported as follows: a chemical shift in ppm (δ), multiplicity
(s = singlet, d = doublet, t = triplet, q = quartet, br = broad, and m = multiplet), coupling
constant in Hertz (Hz), and integration. The HRMS and mass data were recorded via ESI
on a TOF mass spectrometer.

3.2. General Procedure for the Synthesis of 2

To a mixture of pyridyl-methanes (1.0 mmol), H2O (2.5 mmol), and DMA (3 mL), we
added Cu(NO3)2·3H2O (10 mol%). The resulting mixture was then sealed and stirred for
20–40 h at 100 ◦C under argon. After completion of the reaction, the reaction mixture was
cooled to room temperature and extracted with ethyl acetate. The organic phase was dried
over anhydrous Na2SO4. The crude residue was obtained after evaporation of the solvent
in a vacuum, and the residue was purified via flash chromatography with petroleum ether
and ethyl acetate (v/v 20/1~5/1) as the eluent to give the pure product.

Phenyl(pyridin-2-yl)methanone (2a) [34] 1H NMR (400 MHz, CDCl3) δ 8.77–8.64
(m, 1H), 8.05 (dd, J = 8.2, 1.0 Hz, 2H), 8.02 (dd, J = 7.9, 0.8 Hz, 1H), 7.88 (td, J = 7.7, 1.7 Hz,
1H), 7.61–7.54 (m, 1H), 7.50–7.43 (m, 3H); 13C NMR (100 MHz, CDCl3) δ 193.9, 155.1, 148.6,
137.0, 136.2, 132.9, 130.9, 128.1, 126.1, 124.6.

(4-(Tert-butyl)phenyl)(pyridin-2-yl)methanone (2b) [50] 1H NMR (400 MHz, CDCl3)
δ 8.77–8.71 (m, 1H), 8.06–8.01 (m, 3H), 7.91 (td, J = 7.7, 1.7 Hz, 1H), 7.57–7.46 (m, 3H), 1.37
(s, 9H); 13C NMR (100 MHz, CDCl3) δ 193.5, 156.6, 155.4, 148.5, 137.0, 133.5, 130.9, 126.0,
125.2, 124.5, 35.1, 31.1.

Naphthalen-2-yl(pyridin-2-yl)methanone (2c) [10] 1H NMR (400 MHz, CDCl3)
δ 8.74–8.69 (m, 1H), 8.30–8.24 (m, 1H), 8.20 (d, J = 7.8 Hz, 1H), 8.05 (d, J = 8.2 Hz, 1H),
8.00–7.90 (m, 2H), 7.74 (dd, J = 7.1, 1.1 Hz, 1H), 7.60–7.49 (m, 4H); 13C NMR (100 MHz,
CDCl3) δ 196.5, 155.5, 149.1, 137.0, 134.7, 133.8, 132.2, 131.2, 129.9, 128.4, 127.4, 126.5, 126.3,
125.6, 124.6, 124.1.

[1,1′-Biphenyl]-4-yl(pyridin-2-yl)methanone (2d) [10] 1H NMR (400 MHz, CDCl3)
δ 8.81–8.75 (m, 1H), 8.21–8.16 (m, 2H), 8.11 (d, J = 7.8 Hz, 1H), 7.95 (td, J = 7.8, 1.7 Hz, 1H),
7.77–7.71 (m, 2H), 7.69–7.64 (m, 2H), 7.54 (dd, J = 4.7, 1.2 Hz, 1H), 7.53–7.47 (m, 2H), 7.43
(ddd, J = 7.3, 4.7, 1.2 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 193.3, 155.2, 148.5, 145.6, 140.1,
137.1, 134.9, 131.6, 128.9, 128.1, 127.3, 126.9, 126.2, 124.6.

Pyridin-2-yl(4-(trifluoromethoxy)phenyl)methanone (2e) [51] 1H NMR (400 MHz,
CDCl3) δ 8.73 (dd, J = 4.7, 0.6 Hz, 1H), 8.10 (d, J = 7.9 Hz, 1H), 8.06 (dt, J = 7.7, 1.2 Hz, 1H),
8.02 (br, 1H), 7.93 (td, J = 7.7, 1.7 Hz, 1H), 7.56–7.48 (m, 2H), 7.48–7.43 (m, 1H); 13C NMR
(101 MHz, CDCl3) δ 191.1, 148.9, 148.5, 138.1, 137.2, 129.6, 129.5, 126.6, 125.0, 124.7, 124.3,
120.5 (q, J = 257.8 Hz); 19F NMR (376 MHz, CDCl3) δ -57.8.

(4-Chlorophenyl)(pyridin-2-yl)methanone (2f) [28] 1H NMR (400 MHz, CDCl3) δ 8.75
(dd, J = 4.4, 0.7 Hz, 1H), 8.13–8.05 (m, 3H), 7.95 (td, J = 7.6, 0.7 Hz, 1H), 7.54 (ddd, J = 7.6,
4.4, 1.2 Hz, 1H), 7.51–7.46 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 192.3, 154.6, 148.5, 139.4,
137.2, 134.6, 132.5, 128.4, 126.4, 124.7.

(3-Chlorophenyl)(pyridin-2-yl)methanone (2g) [52] 1H NMR (400 MHz, CDCl3)
δ 8.79–8.74 (m, 1H), 8.12–8.07 (m, 2H), 8.00 (dt, J = 8.0, 1.1 Hz, 1H), 7.94 (td, J = 7.6, 1.7 Hz,
1H), 7.59 (ddd, J = 8.0, 2.1, 1.1 Hz, 1H), 7.54 (ddd, J = 7.6, 5.0, 1.2 Hz, 1H), 7.45 (t, J = 8.0 Hz,
1H); 13C NMR (101 MHz, CDCl3) δ 192.3, 154.4, 148.6, 137.9, 137.2, 134.3, 132.7, 130.9, 129.5,
129.1, 126.5, 124.7.
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(3-Bromophenyl)(pyridin-2-yl)methanone (2h) [53] 1H NMR (400 MHz, CDCl3) δ 8.70
(ddd, J = 4.7, 1.5, 0.8 Hz, 1H), 8.18 (dd, J = 7.8, 0.7 Hz, 1H), 7.92 (td, J = 7.7, 1.7 Hz, 1H), 7.65
(dd, J = 7.9, 0.7 Hz, 1H), 7.52–7.48 (m, 1H), 7.49–7.42 (m, 2H), 7.41–7.34 (m, 1H); 13C NMR
(100 MHz, CDCl3) δ 195.8, 153.5, 149.3, 140.3, 137.0, 133.0, 131.5, 129.8, 127.0, 126.9, 123.9, 120.0.

1-(2-Picolinoylphenyl)ethan-1-one (2i) [54] 1H NMR (400 MHz, CDCl3) δ 8.79–8.73
(m, 1H), 8.67 (t, J = 1.5 Hz, 1H), 8.31 (dt, J = 7.7, 1.3 Hz, 1H), 8.24–8.18 (m, 1H), 8.13 (d,
J = 7.8 Hz, 1H), 7.96 (td, J = 7.7, 1.7 Hz, 1H), 7.62 (t, J = 7.8 Hz, 1H), 7.54 (ddd, J = 7.6, 4.8,
1.1 Hz, 1H), 2.67 (s, 3H). 13C NMR (100MHz, CDCl3) δ 197.4, 192.9, 154.4, 148.6, 137.2, 136.9,
136.7, 135.3, 132.1, 130.9, 128.6, 126.6, 124.7, 26.7.

Methyl 4-picolinoylbenzoate (2j) [24] 1H NMR (400 MHz, CDCl3) δ 8.75 (d, J = 4.7 Hz,
1H), 8.21–8.10 (m, 5H), 7.95 (td, J = 7.7, 1.7 Hz, 1H), 7.54 (ddd, J = 7.7, 4.7, 1.2 Hz, 1H), 3.98
(s, 3H); 13C NMR (100 MHz, CDCl3) δ 193.2, 166.4, 154.4, 148.6, 139.9, 137.2, 133.5, 130.8,
129.2, 126.6, 124.7, 52.4.

3-Picolinoylbenzonitrile (2k) [24] 1H NMR (400 MHz, CDCl3) δ 8.76 (d, J = 4.5 Hz,
1H), 8.50 (t, J = 1.4 Hz, 1H), 8.39 (dt, J = 7.8, 1.4 Hz, 1H), 8.17 (d, J = 7.6 Hz, 1H), 7.98 (td,
J = 7.6, 1.7 Hz, 1H), 7.88 (dt, J = 7.8, 1.4 Hz, 1H), 7.65 (t, J = 7.8 Hz, 1H), 7.58 (ddd, J = 7.6,
4.5, 1.1 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 191.2, 153.7, 148.6, 137.4, 137.2, 135.5, 135.0,
134.9, 129.1, 126.9, 124.8, 118.2, 112.5.

(3-Nitrophenyl)(pyridin-2-yl)methanone (2l) [24] 1H NMR (400 MHz, CDCl3)
δ 9.08–8.97 (m, 1H), 8.77 (dd, J = 2.7, 2.0 Hz, 1H), 8.57–8.42 (m, 2H), 8.20 (d, J = 8.0 Hz, 1H),
7.99 (td, J = 7.7, 1.7 Hz, 1H), 7.72 (t, J = 8.0 Hz, 1H), 7.59 (ddd, J = 7.7, 4.8, 1.1 Hz, 1H); 13C
NMR (100 MHz, CDCl3) δ 191.0, 153.6, 148.7, 147.9, 137.6, 137.4, 136.6, 129.2, 127.0, 126.9,
126.2, 124.8.

Pyridin-2-yl(thiophen-2-yl)methanone (2m) [55] 1H NMR (400 MHz, CDCl3) δ 8.76
(ddd, J = 4.7, 1.6, 0.8 Hz, 1H), 8.41 (dd, J = 3.9, 1.2 Hz, 1H), 8.19 (dt, J = 7.7, 1.2 Hz, 1H), 7.90
(td, J = 7.7, 1.6 Hz, 1H), 7.76 (dd, J = 5.0, 1.2 Hz, 1H), 7.51 (ddd, J = 7.7, 4.7, 1.2 Hz, 1H),
7.20 (dd, J = 5.0, 3.9 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 183.5, 154.0, 148.2, 140.0, 137.1,
136.7, 136.3, 127.6, 126.6, 123.8.

Pyridin-2-yl(thiazol-2-yl)methanone (2n) [56] 1H NMR (400 MHz, CDCl3) δ 8.85 (d,
J = 4.5 Hz, 1H), 8.37 (d, J = 7.6 Hz, 1H), 8.22 (d, J = 3.0 Hz, 1H), 7.96 (td, J = 7.6, 1.7 Hz, 1H),
7.80 (d, J = 3.0 Hz, 1H), 7.59 (ddd, J = 7.6, 4.5, 1.1 Hz, 1H); 13C NMR (101 MHz, CDCl3)
δ 181.5, 161.7, 152.4, 148.8, 144.9, 137.2, 127.5, 127.3, 124.9.

Pyridin-2-yl(pyridin-3-yl)methanone (2o) [10] 1H NMR (400 MHz, CDCl3) δ 9.34 (s,
1H), 8.79 (d, J = 3.9 Hz, 1H), 8.73 (d, J = 4.3 Hz, 1H), 8.43 (dt, J = 7.9, 1.9 Hz, 1H), 8.14 (d,
J = 7.9 Hz, 1H), 7.93 (td, J = 7.7, 1.7 Hz, 1H), 7.53 (ddd, J = 7.6, 4.8, 1.1 Hz, 1H), 7.44 (dd,
J = 7.9, 4.9 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 192.0, 153.9, 152.8, 152.1, 148.6, 138.2,
137.2, 132.0, 126.8, 124.5, 123.0.

Phenyl(pyridin-4-yl)methanone (2p)[14] 1H NMR (400 MHz, CDCl3) δ 8.84 (d, J = 4.7
Hz, 2H), 7.84 (d, J = 7.5 Hz, 2H), 7.67 (t, J = 7.5 Hz, 1H), 7.61 (d, J = 4.7 Hz, 2H), 7.54 (t,
J = 7.5 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 195.1, 150.3, 144.4, 135.92, 133.5, 130.1, 128.8,
128.6, 122.8.

(4-(Dimethylamino)-6-(phenylamino)-1,3,5-triazin-2-yl)(pyridin-3-yl)methanone (2r)
1H NMR (400 MHz, DMSO-d6) δ 10.02 (s, 1H), 9.17 (d, J = 1.4 Hz, 1H), 8.86 (dd, J = 4.7,
1.4 Hz, 1H), 8.46–8.27 (m, 1H), 7.77 (d, J = 7.2 Hz, 2H), 7.61 (dd, J = 7.8, 4.7 Hz, 1H), 7.31
(t, J = 7.2 Hz, 2H), 7.02 (t, J = 7.2 Hz, 1H), 3.20 (s, 3H), 3.12 (s, 3H); 13C NMR (100 MHz,
DMSO) δ 190.6, 168.5, 164.9, 163.7, 154.5, 151.5, 139.7, 138.1, 130.4, 129.0, 124.3, 123.0, 120.4,
36.6, HRMS (ESI) [M + H]+, calcd for C17H17N6O: 321.1464, found: 321.1468.

4. Conclusions

In conclusion, we have demonstrated an efficient copper-catalyzed oxygen-free syn-
thesis of pyridin-2-yl-methanones via the direct oxidation of Csp3-H with water. Further
mechanism studies proved that the oxygen of the products came from water. This work
provided a powerful approach for certain oxidation reactions. Detailed mechanistic studies
and substrate expansion are in progress.
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Figure S1, 1H NMR spectrum of phenyl(pyridin-2-yl)methanone (2a); Figure S2, 13C
NMR spectrum of phenyl(pyridin-2-yl)methanone (2a); Figure S3, 1H NMR spectrum
(4-(tert-butyl)phenyl)(pyridin-2-yl)methanone (2b); Figure S4, 13C NMR spectrum of
(4-(tert-butyl)phenyl)(pyridin-2-yl)methanone (2b); Figure S5, 1H NMR spectrum
of naphthalen-2-yl(pyridin-2-yl)methanone (2c); Figure S6, 13C NMR spectrum
of naphthalen-2-yl(pyridin-2-yl)methanone (2c); Figure S7, 1H NMR spectrum of
[1,1′-biphenyl]-4-yl(pyridin-2-yl)methanone (2d); Figure S8, 13C NMR spectrum of
[1,1′-biphenyl]-4-yl(pyridin-2-yl)methanone (2d); Figure S9, 1H NMR spectrum of
pyridin-2-yl(4-(trifluoromethoxy)phenyl)methanone (2e); Figure S10, 13C NMR spectrum
of pyridin-2-yl(4-(trifluoromethoxy)phenyl)methanone (2e); Figure S11, 19F NMR
spectrum of pyridin-2-yl(4-(trifluoromethoxy)phenyl)methanone (2e); Figure S12, 1H NMR
spectrum of (4-chlorophenyl)(pyridin-2-yl)methanone (2f); Figure S13, 13C NMR
spectrum of (4-chlorophenyl)(pyridin-2-yl)methanone (2f); Figure S14, 1H NMR
spectrum of (3-chlorophenyl)(pyridin-2-yl)methanone (2g); Figure S15, 13C NMR
spectrum of (3-chlorophenyl)(pyridin-2-yl)methanone (2g); Figure S16, 1H NMR
spectrum of (2-bromophenyl)(pyridin-2-yl)methanone (2h); Figure S17, 13C NMR
spectrum of (2-bromophenyl)(pyridin-2-yl)methanone (2h); Figure S18, 1H NMR
spectrum of 1-(2-picolinoylphenyl)ethan-1-one (2i); Figure S19, 13C NMR spectrum
of 1-(2-picolinoylphenyl)ethan-1-one (2i); Figure S20, 1H NMR spectrum of methyl
4-picolinoylbenzoate (2j); Figure S21, 13C NMR spectrum of methyl 4-picolinoylbenzoate (2j);
Figure S22, 1H NMR spectrum of 3-picolinoylbenzonitrile (2k); Figure S23, 13C NMR spectrum
of 3-picolinoylbenzonitrile (2k); Figure S24, 1H NMR spectrum of (3-nitrophenyl)(pyridin-2-
yl)methanone (2l); Figure S25, 13C NMR spectrum of (3-nitrophenyl)(pyridin-2-yl)methanone
(2l); Figure S26, 1H NMR spectrum of pyridin-2-yl(thiophen-2-yl)methanone (2m);
Figure S27, 13C NMR spectrum of pyridin-2-yl(thiophen-2-yl)methanone (2m); Figure S28, 1H
NMR spectrum of pyridin-2-yl(thiazol-2-yl)methanone (2n); Figure S29, 13C NMR spectrum of
pyridin-2-yl(thiazol-2-yl)methanone (2n); Figure S30, 1H NMR spectrum of pyridin-2-yl(pyridin-
3-yl)methanone (2o); Figure S31, 13C NMR spectrum of pyridin-2-yl(pyridin-3-yl)methanone
(2o); Figure S32, 1H NMR spectrum of phenyl(pyridin-4-yl)methanone (2q); Figure S33, 13C
NMR spectrum of phenyl(pyridin-4-yl)methanone (2q); Figure S34, 1H NMR spectrum of
(4-(dimethylamino)-6-(phenylamino)-1,3,5-triazin-2-yl)(pyridin-3-yl)methanone (2r); Figure S35, 13C
NMR spectrum of (4-(dimethylamino)-6-(phenylamino)-1,3,5-triazin-2-yl)(pyridin-3-yl)methanone (2r).
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