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Abstract: A novel gas-pressurized (GP) torrefaction method at 250 ◦C has recently been developed
that realizes the deep decomposition of cellulose in lignocellulosic solid wastes (LSW) to as high as
90% through deoxygenation and aromatization reactions. However, the deoxygenation and aromati-
zation mechanisms are currently unclear. In this work, these mechanisms were studied through a
developed molecular structure calculation method and the GP torrefaction of pure cellulose. The
results demonstrate that GP torrefaction at 250 ◦C causes 47 wt.% of mass loss and 72 wt.% of O
removal for cellulose, while traditional torrefaction at atmospheric pressure has almost no impact on
cellulose decomposition. The GP-torrefied cellulose is determined to be composed of an aromatic
furans nucleus with branch aliphatic C through conventional characterization. A molecular structure
calculation method and its principles were developed for further investigation of molecular-level
mechanisms. It was found 2-ring furans aromatic compound intermediate is formed by intra- and
inter-molecular dehydroxylation reactions of amorphous cellulose, and the removal of O-containing
function groups is mainly through the production of H2O. The three-ring furans aromatic compound
intermediate and GP-torrefied cellulose are further formed through the polymerization reaction,
which enhances the removal of ketones and aldehydes function groups in intermediate torrefied
cellulose and form gaseous CO and O-containing organic molecules. A deoxygenation and arom-
atization mechanism model was developed based on the above investigation. This work provides
theoretical guidance for the optimization of the gas-pressurized torrefaction method and a study
method for the determination of molecular-level structure and the mechanism investigation of the
thermal conversion processes of LSW.

Keywords: lignocellulosic solid wastes; cellulose; gas-pressurized torrefaction; molecular structure;
deoxygenation mechanism; aromatization mechanism

1. Introduction

Lignocellulosic solid wastes (LSW) are considered a valuable recyclable energy re-
source that can satisfy the growing energy demand and mitigate environmental con-
cerns [1,2]. However, its intrinsic deficiencies, such as high water content, high oxygen
content, low energy density, and poor grindability, have limited its applications as fuel [3,4].
One of the main underlying reasons for these deficiencies is ascribed to the abundant
O-containing functional groups in LSW [5,6].

Torrefaction is one of the most widely used methods for deoxygenating LSW and
improving their fuel qualities [7,8]. Partial unstable O-containing functional groups from
LSW are effectively removed at 200–300 ◦C during torrefaction [3,4]. The main oxygenates
in LSW are hemicellulose and cellulose [9]. Consequently, the main target of torrefac-
tion is to deoxygenate hemicellulose and cellulose. Ma [10] reported that the O content
of hemicellulose was reduced from 54.92 wt.% of raw hemicellulose to 46.35 wt.% and
38.36 wt.% through traditional torrefaction at atmospheric pressure (AP) at 240 and 300 ◦C.
Contrastively, the O content of cellulose was slightly decreased from 52.11 wt.% of raw
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cellulose to 51.10 wt.% after AP torrefaction at 240 ◦C, which was still higher than 48 wt.%
after AP torrefaction even at 300 ◦C. Moreover, Larachi [11] reported that the O/C ratios
of torrefied hemicellulose and cellulose were decreased from 0.99 and 0.89 of raw hemi-
cellulose and cellulose, respectively, to 0.44 and 0.83 after AP torrefaction at 280 ◦C. These
indicate that hemicellulose is pyrolyzed easily, but cellulose is hard to be pyrolyzed by AP
torrefaction at 200–300 ◦C. The fuel property of AP-torrefied hemicellulose is proximate to
that of peat, whereas the fuel property of AP-torrefied cellulose is still proximate to that
of biomass-like fuels [10,12]. It is concluded that traditional AP torrefaction has efficiency
for hemicellulose deoxygenation but is limited for cellulose. However, the proportion of
cellulose in LSW is generally higher than the proportion of hemicellulose and lignin [13].
These cause AP torrefaction to have limited efficiency for LSW deoxygenation. Thus, the
enhancement of deoxygenation efficiency for cellulose is the key to LSW deoxygenation
via torrefaction.

The limited deoxygenation efficiency of AP torrefaction for cellulose is due to its
thermochemical principle. It was found that the organic functional group composition and
the skeleton of cellulose have almost no change after AP torrefaction at 200–300 ◦C [12].
The crystallinity index (CrI) of cellulose torrefied at 250 ◦C was still rather similar to that of the
raw cellulose and just decreased slightly after torrefaction at 300 ◦C [12]. Additionally, it was
found that the mass loss of cellulose after AP torrefaction at 250 ◦C and 60 min was less than
3% [14]. Agarwal [15] found that the depolymerization of cellulose to ‘intermediate cellulose’
is the critical reaction for cellulose decomposition. Meanwhile, the Broido–Shafizadeh (B–S)
model confirmed that the conversion of cellulose to ‘active cellulose’ is the main thermal de-
composition reaction during AP torrefaction at 200–300 ◦C [16]. Furthermore, Wang found
that the ‘active cellulose’ is composed of carbohydrates, such as oligosaccharides, glucose,
and levoglucosan [17], indicating that oxygen was not removed after AP torrefaction at
200–300 ◦C. Thus, AP torrefaction has a limited efficiency for the thermal decomposition
and deoxygenation of cellulose.

To improve the O removal efficiency of cellulose from LSW, various methods have
been developed. The most widely used methods are wet torrefaction [18–20], superheated
steam (SHS) torrefaction [21,22], and torrefaction at higher temperatures. The O content
of cellulose was reduced from 49.4 wt.% to 23.1–24.8 wt.% via wet torrefaction at 250 ◦C,
3.97 MPa, and a holding time of 2–4 h [20]. Cellulose begins to thermally decompose
at 200 ◦C during wet torrefaction [19], and it undergoes two-step reactions [23]. SHS
torrefaction causes cellulose depolymerization and over 5 wt.% cellulose loss at 250 ◦C and
a holding time of 2 h [24]. The O content of wood shaving was significantly reduced via SHS
torrefaction from 48.6 wt.% to 46.9 wt.% at 250 ◦C with a holding time of 2 h [21]. Although
these methods have a higher O removal efficiency than traditional AP torrefaction, their
harsh conditions and high energy consumption prevent their industrialization.

In recent years, a novel gas-pressurized (GP) torrefaction method has been proposed,
which realizes the deeper deoxidation of LSW under milder conditions [25–27]. GP tor-
refaction is conducted in a closed reactor, and the secondary reactions between LSW and
volatiles occur. Furthermore, the volatiles raise the gas phase pressure in the reactor, which
further enhances the secondary reactions greatly [28]. The O content of GP-torrefied LSW
was as low as 21.0 wt.%, significantly lower than that obtained through AP torrefaction
under the same temperature of 250 ◦C [29,30]. The moisture adsorption and spontaneous
ignition characteristics of LSW are also significantly inhibited, and the calorific value and
grindability characteristics are considerably improved via GP torrefaction. The fuel proper-
ties of GP-torrefied LSW are proximate to those of coal [30]. Detailed analysis revealed that
over 90% of cellulose in LSW decomposed during GP torrefaction at 250 ◦C, and its CrI
decreased from 37.2% of raw LSW to 18.8% of GP-torrefied LSW [29].

As explained above, the main reason for the deoxygenation efficiency enhancement
of GP torrefaction is the promotion of the decomposition and deoxygenation of cellulose,
which is the fundamental difference from AP torrefaction. However, the mechanism of
decomposition and deoxygenation of cellulose during GP torrefaction, which is rather
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meaningful for the mechanistic understanding and process optimization of GP torrefaction,
is scant. Thus, the objective of this work is to investigate the decomposition and deoxy-
genation mechanism of cellulose during GP torrefaction. Molecular structure models of
intermediate and torrefied cellulose obtained by GP torrefaction were established through
a molecular structure calculation method, and the reaction mechanism model of cellulose
during the GP torrefaction was, thus, developed. This study provides guidance for a deeper
understanding of the reaction mechanism and method optimization for GP torrefaction.

2. Results
2.1. Yield Distribution

Figure 1 illustrates the solid yields of GP and AP torrefactions at different temperatures
and holding times. The cellulose had no obvious decomposition during AP torrefaction at
200 ◦C and 225 ◦C and GP torrefactions at 200 ◦C. But, the solid yields of GP-225-0 were
95.8 wt.%, implying the cellulose begins to thermally decompose during GP torrefaction at
temperatures as low as 225 ◦C. At the same time, it remains intact during AP torrefaction
under the same temperature. The solid yield decreased further with the temperature rise
from 95.8 wt.% at 225 ◦C to 81.0 wt.% at 250 ◦C during the GP torrefaction, which was
significantly lower than that of AP torrefaction of 99.7 wt.% at 250 ◦C. These clearly show
that the cellulose largely decomposed during GP torrefaction at 250 ◦C. The yield of AP-
torrefied cellulose slightly decreased with the holding time extension at 250 ◦C, reaching the
lowest yield of 98.1 wt.% at 60 min. For the GP torrefaction at 250 ◦C, the yield decreased
further with the holding time extension from 81.0 wt.% at 0 min to as low as 52.7 wt.% at
60 min. This significant difference in solid yields confirms that the thermal decomposition
process and reaction mechanism are different from the AP and GP torrefactions.
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Figure 1. Mass yields of cellulose torrefied by GP and AP torrefactions. 

  

Figure 1. Mass yields of cellulose torrefied by GP and AP torrefactions.

2.2. Ultimate Composition of Torrefied Cellulose
2.2.1. Elemental Composition

Table 1 illustrates the elemental composition of raw, GP- and AP-torrefied cellulose.
The O contents of AP-torrefied cellulose had almost no change, from 51.1 wt.% of raw
cellulose to 50.4 wt.% of AP-250-60 cellulose. It is confirmed that the AP torrefaction has
no obvious efficiency in deoxygenating cellulose. Additionally, the O content of GP-225-0
cellulose was 49.7 wt.%, which was slightly lower than the raw and AP-225-0 cellulose.
This implies that GP torrefaction realizes slight deoxidation of cellulose at a temperature as
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low as 225 ◦C. It is worth noting that the O content of GP-250-0 cellulose was 44.5 wt.%,
which was even lower than that of AP-torrefied cellulose at 300 ◦C (48.8 wt.%) [10]. During
the GP torrefaction at 250 ◦C, the O content of cellulose decreased continuously as the
holding time extended, from 44.5 wt.% at 0 min to 27.2 wt.% at 60 min.

Table 1. The ultimate composition, O removal rate, C recovery rate, and higher heating value (HHV)
of raw AP- and GP-torrefied cellulose; C/H/O molar ratio of volatile and torrefied cellulose.

Samples
Ultimate Composition
(wt.%, d.a.f.) HHV

(MJ/kg)

O Removal
Rate
(wt.%)

C Recovery
Rate
(wt.%)

C/H/O Molar
Ratio of Volatile

C/H/O Molar
Ratio of Torrefied
CelluloseC H O a

Cellulose 42.5 6.4 51.1 14.4 / / / C6H10.8O5.4
AP-200-0 42.9 6.4 50.8 14.6 0.0 100.0 / C6H10.8O5.3
GP-200-0 42.9 6.3 50.8 14.5 0.8 100.0 / C6H10.7O5.3
AP-225-0 42.5 6.4 51.1 14.4 0.0 100.0 CO2.0·57.8H2O C6H10.8O5.4
GP-225-0 43.8 6.5 49.7 15.2 6.6 98.8 CO1.9·3.2H2O C6H10.6O5.1
AP-250-0 42.6 6.4 51.0 14.4 0.5 100.0 CO2.0·40.0H2O C6H10.8O5.4
GP-250-0 49.8 5.7 44.5 17.0 29.4 95.0 CO0.3·5.0H2O C6H8.2O4.0
AP-250-15 42.9 6.4 50.7 14.5 1.8 99.9 CO2.0·21.7H2O C6H10.7O5.3
GP-250-15 52.7 5.6 41.7 18.4 38.0 93.4 CO0.6·4.5H2O C6H7.6O3.6
AP-250-60 42.9 6.3 50.4 14.5 3.2 99.0 CO2.0·17.9H2O C6H10.6O5.3
GP-250-60 68.0 4.8 27.2 25.0 71.9 83.6 CO0.7·3.3H2O C6H5.1O1.8

a: Calculated by difference.

On the other hand, the C content of GP-torrefied cellulose increased with the holding
time extension at 250 ◦C, reaching the highest content of 68.0 wt.% at 60 min. Moreover,
the HHV of AP-torrefied cellulose was lower than 14.5 MJ/kg at 250 ◦C and 60 min,
which was proximate to raw cellulose. Contrarily, the HHV of GP-torrefied cellulose
sufficiently increased to as high as 25.0 MJ/kg at 250 ◦C and 60 min. The HHV of GP-250-60
torrefied cellulose was significantly higher than that of torrefied cellulose (16.8 MJ/kg)
and hemicellulose (22.4 MJ/kg) by AP torrefaction at 300 ◦C and proximate to torrefied
lignin (25.2 MJ/kg) by AP torrefaction at 300 ◦C [10]. Moreover, the HHV of GP-250-60
torrefied cellulose was higher than that of lignite (24.3 MJ/kg) and proximate to that of
subbituminous coal (25.5 MJ/kg) [31]. The ultimate composition and calorific value confirm
that the fuel properties of GP-250-60 cellulose are proximate to the subbituminous coal [31].

2.2.2. Elemental Distribution

To understand the torrefaction process and mechanism, the investigation of O and
C migration and transformation is crucial. The O removal rate is defined as the O trans-
formation rate from raw cellulose to volatile, and the C recovery rate is defined as the C
transformation rate from raw cellulose to torrefied cellulose in this work. The results are
shown in Table 1. The O removal rates were as low as 3.2 wt.% by AP torrefaction at 250 ◦C
and 60 min. Simultaneously, the C was almost completely retained in the AP-torrefied
cellulose. These indicate that there was no obvious O and C migration and transformation
during AP torrefaction. In other words, it is difficult for cellulose to thermally decompose
during AP torrefaction at 200–250 ◦C. Nevertheless, the O and C migration and transfor-
mation phenomena were much more significant during GP torrefaction. The O removal
rate increased with the temperature rise and holding time extension, reaching the highest
O removal rate of 71.8 wt.% at 250 ◦C and 60 min. Meanwhile, the C recovery rate of
GP-250-60 was still as high as 83.6 wt.%. This indicates that GP torrefaction realizes deeper
deoxidation and C enrichment of cellulose under mild conditions.

The C/H/O molar ratios of torrefied cellulose were calculated through elemental
composition and shown in Table 1. For the purpose of direct comparison with raw cellulose,
the C molar ratio was expressed in the form of 6. The molar ratio of AP-torrefied cellulose
had no obvious change compared to the raw cellulose with tiny amounts of H2O produced.
This implies that the chemical structure of AP-torrefied cellulose had no significant change.
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During the GP torrefaction, much more volatile were produced, causing the C/H/O molar
ratio of GP-torrefied cellulose to change significantly. The O molar ratio of GP-torrefied
cellulose initially decreased during the GP torrefaction at 225 ◦C. Additionally, the molar
ratios of O and H further decreased with the temperature rise and holding time extension,
reaching the lowest molar ratio of 5.1 and 1.8 under 250 ◦C and 60 min, respectively.
The molar ratios of H and O were much smaller than that of C, causing the GP-torrefied
cellulose to be composed of aromatic C, which is completely different from raw cellulose
and AP-torrefied cellulose.

The C/H/O molar ratio of volatile was obtained according to the ultimate composition
difference between raw and torrefied cellulose. The C/H/O molar ratio of volatile is
expressed in the form of COx·yH2O. All the volatile components from AP torrefaction
can be represented in the form of CO2 and H2O, and the ratios indicate they were mainly
composed of H2O and a bit of CO2. The O molar ratios of volatile from GP torrefaction
decreased significantly when the temperature reached 250 ◦C, indicating the CO- and
O-containing organic molecules were generated during the GP torrefaction at 250 ◦C.
Meanwhile, the H2O molar ratios continuously decreased with the holding time extension.
This indicates that the O removal of cellulose is firstly in the form of CO2 and H2O and
subsequently in the form of CO- and O-containing organic molecules during the GP
torrefaction. This phenomenon and reactions were also observed during the GP torrefaction
of LSW at 250 ◦C [29] and the pyrolysis of cellulose at 400–650 ◦C [32].

2.2.3. Van Krevelen Diagram

Figure 2 shows the O/C to H/C values of raw and AP- and GP-torrefied cellulose
in the Van Krevelen diagram. It shows the fuel properties of AP-torrefied cellulose are
close to the raw cellulose. The GP-200-0- and GP-225-0-torrefied cellulose are close to the
raw cellulose, and the GP-250-0- and GP-250-15-torrefied cellulose are near the peat area.
The GP-250-60-torrefited cellulose is located in the subbituminous coal area. Moreover,
it also exhibits the deoxygenation pathway during torrefaction macroscopically. For the
GP torrefactions from 200 ◦C to 250 ◦C, the main deoxygenation pathway is in the form
of H2O removal. At the same time, there exists a clear CO2/CO removal trend for the GP
torrefaction at 250 ◦C from 15 min to 60 min, which is consistent with the results shown in
Table 1.
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Furthermore, the chemical structures of raw and torrefied cellulose are highly related
to their O/C and H/C ratios. The O/C and H/C ratios of raw, GP-200-0, and GP-225-0
cellulose were in the small range of 0.85–0.90 and 1.74–1.78, respectively. This indicates that
their main chemical structures are similar to each other and composed of cyclic aliphatic
compounds of glucose monomer [33]. The H/C ratio of GP-250-0 cellulose was as low
as 1.38, indicating the aromatic nuclei structure had been generated [33]. The H/C ratio
further decreased with the holding time extension, reaching the lowest value of 0.84 at
60 min. This implies that much more aromatic nuclei with branch aliphatic C structures
were formed in torrefied cellulose. Thus, it can be concluded that the GP-torrefied cellulose
is composed of an aromatic nucleus with branch aliphatic C through aromatization reaction
during the GP torrefaction.

2.3. Chemical Structure

The product yields and elemental compositions of AP and GP torrefactions differ from
each other greatly, indicating the thermal decomposition process and reaction mechanism
are different for both torrefactions. AP torrefaction at 250 ◦C has almost no impact on
cellulose decomposition and chemical structural evolution. Moreover, the thermal decom-
position process and reaction mechanism of AP torrefaction have been widely studied.
Therefore, the subsequent analyses only focus on the structural evolution of GP-torrefied
cellulose in order to deeply understand its thermochemical process and mechanism.

2.3.1. Crystal Structure

Figure 3 shows the XRD patterns and CrI values of raw and GP-torrefied cellulose. The
CrI of GP-225-0 cellulose was 73.8%, which was slightly lower than that of raw cellulose at
74.7%. This indicates that a part of crystalline cellulose is depolymerized and converted
into amorphous cellulose, causing a slight decrease in CrI value. During the GP torrefaction
at 250 ◦C, the CrI value decreased with the holding time extension significantly, from 55.3%
at 0 min to 50.8% at 15 min, reaching a value as low as 14.2% at 60 min, which is much lower
than that of AP-torrefied cellulose at 200–300 ◦C [12]. This result implies that crystalline
cellulose is largely thermally decomposed during GP torrefaction at temperatures as low
as 250 ◦C.
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2.3.2. Organic Functional Group

The FTIR spectrum was divided into six regions according to different types of func-
tional groups, which are 3230–3500 cm−1 of -OH, 2877–3018 cm−1 of -CHn, 1705–1714 cm−1

of C=O in aldehydes, 1603–1620 cm−1 of C=O in ketones, 1000–1600 cm−1 of C-O, and
730–840 of =C-H in the aromatic ring [34], as shown in Figure 4. The functional groups in
the raw cellulose were mainly composed of -OH, -CHn, and C-O. The functional group
peak intensities of GP-225-0-torrefied cellulose showed no obvious change compared to the
raw cellulose. The crystalline H2O (1560 cm−1), cellulose skeleton -CH2, -CHn-OH, and
1,4-glycosidic bond functional group intensities of GP-250-0-torrefied cellulose decreased.
This indicates that the cellulose is depolymerized and the crystal structure is destroyed,
which was also confirmed in the above discussion Section 2.3.1. Additionally, the con-
tinuous decrease in -OH peak intensity and enhancement in C=O peak intensity with
torrefaction time extension at 250 ◦C imply that the inter- and intramolecular dehydration
reactions occurred [35,36]. More importantly, the aromatic =C-H functional groups were
generated through the aromatization reaction of cellulose during GP torrefaction at 250 ◦C.
The GP-250-60-torrefied cellulose was mainly composed of aromatic =C-H in the aromatic
ring, C=O in aldehydes and ketones, and -CHn.

Figure 4. The FTIR spectrum of raw and GP-torrefied cellulose.

2.3.3. C Structure

The structural evolution of torrefied cellulose was further investigated by 13C NMR,
and the results are shown in Figure 5. The 13C NMR spectrum was divided into four
regions according to different types of C functional groups, which are 0–50 of aliphatic C,
50–110 of O-alkyl C, 110–160 of aromatic C, and 160–230 ppm of carbonyl C functional
groups. To accurately describe the C structure evolution of cellulose during torrefaction,
the 13C NMR curves were divided into their corresponding C functional group by Gaussian
peak-splitting [37–39].

The aliphatic C was divided into four peaks of 13, 25, 36, and 48 ppm vs. 109, 127, 141,
and 151 ppm for aromatic C. Their relative contents (%) and absolute contents (contentraw,
%; raw cellulose basis) of C structures are illustrated in Table 2. The relative content was
used to explore the composition and percentage of the C functional group in the torrefied
cellulose. The contentraw was used to explore the transformation of the C structure during
the torrefaction.
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Table 2. The relative content and contentraw (%) of C in raw and torrefied cellulose.

Chemical
Shift C Structure Symbol

Relative Content (%) Contentraw (%)

Cellulose GP-225-0 GP-250-0 GP-250-15 GP-250-60 Cellulose GP-225-0 GP-250-0 GP-250-15 GP-250-60

0–60 Aliphatic C fal 0 0 6.9 7.8 29.5 2.8 3.1 10.5
13 -CH3 f 1

al
1.3 1.40 3.9 0.5 0.6 1.4

25–36 -CH2 f 2
al

4.0 4.00 20.7 1.6 1.6 7.4

48 -CH f 3
al

1.6 2.40 4.9 0.6 1.0 1.7
60–110 O-alkyl C fao 100 100 82.2 76.9 4.2 42.9 41.9 33.2 30.8 1.5

63 Amorphous
C6 5.1 6.6 3 3.00 0.1 2.2 2.8 1.2 1.2 0.0

66 Crystalline
C6 8.8 8.7 8.1 8.60 0.3 3.8 3.6 3.3 3.4 0.1

74 C2,3,5 54.4 53.6 47 42.00 2.6 23.3 22.5 19.0 16.8 0.9
84 Amorphous

C4 5.7 5.8 2.5 2.70 0.2 2.4 2.4 1.0 1.1 0.1

89 Crystalline
C4 9.7 9.1 9 8.50 0.2 4.2 3.8 3.6 3.4 0.1

105 C1 16.3 16.3 12.6 12.1 0.8 7.0 6.8 5.1 4.8 0.3
110–165 Aromatic C fa 0 0 7.8 10.5 56.9 3.2 4.2 20.4
109 C-H f 1

a 0.8 2.90 14.2 0.3 1.2 5.1
127 C-C f 2

a 2.1 1.80 18.6 0.8 0.7 6.7
141 O-C=C f 3

a 1.9 2.00 13.8 0.8 0.8 4.9
151 C-CHxR f 4

a 3 3.80 10.3 1.2 1.5 3.7
165–235 Carbonyl C fc 0 0 3.1 4.80 9.5 1.3 1.9 3.4
204 C=O fc 3.1 4.80 9.5 1.3 1.9 3.4
Total ftotal 100 100 100.0 100 100 42.9 42.0 40.4 40.0 35.8

The C-containing functional groups in the raw cellulose mainly located in O-alkyl C
region, which is the typical C structure distribution of crystallized and amorphous cellulose.
The C structure of GP-225-0-torrefied cellulose had no obvious change compared to the raw
cellulose. After the GP torrefaction at 250 ◦C, the C structure of torrefied cellulose changed
significantly. The contentraw of O-alkyl C decreased with the holding time extension,
from 42.9% of raw cellulose to as low as 1.5% of GP-250-60 cellulose. Contrarily, the
contentraw of aliphatic C, aromatic C, and carbonyl C increased. These results show that
most of O-alkyl C is converted to aromatic C, followed by aliphatic C and carbonyl C, and
their highest contentsraw were 20.4%, 10.5%, and 3.4% after GP torrefaction at 250 ◦C and
60 min, respectively. This clearly indicates that the torrefied cellulose is composed of the
aromatic nucleus with branch C, which is also confirmed by the Van Kvellen diagram and
FTIR spectrum.
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The chemical shift of 63 to 105 ppm peaks belongs to the C1-6 of crystallized and
amorphous cellulose. It is worth noting that the contentraw of amorphous C6 increased after
GP torrefaction at 225 ◦C, while the contentraw of other C structures decreased. This implies
that the conversion of crystallized cellulose to amorphous cellulose is the initial stage of GP
torrefaction, which is consistent with the XRD results. The chemical shift of 109–151 ppm
peaks belongs to the aromatic C structure. It was found the aromatic structure of cellulose
decomposed at 180–650 ◦C was a furans structure, which was discovered through detailed
characterization [38] and reaction pathway study [32]. The abundant aromatic C structure
in GP-torrefied cellulose indicates that the cellulose undergoes significant aromatization
reaction during the GP torrefaction at 250 ◦C. Furthermore, the contentraw of aliphatic
C increased with the temperature rise and holding time extension, reaching the highest
contentraw of as high as 10.5% at 250 ◦C and 60 min. It is due to the removed O-containing
functional groups, resulting in the conversion from -CHn-OH to -CH2 and -CH3.

2.4. Molecular Structure Determination

A structural parameter equation for the structure determination of intermediate and
torrefied cellulose was established and shown in Table 3. In detail, the molecular structure
determination and molecular structure establishment start with the confirmation of the
C skeleton and branch structures. To facilitate, aromatic furans skeleton structures are
listed in Figure 6. The furans skeleton of GP-torrefied cellulose contains two kinds of
aromatic bridging C ( f 2

a and f 3
a ), which are used to calculate the molar fraction of aromatic

bridgehead carbon (x f 2
a

and x f 3
a
), respectively. The number of aromatic rings (nring) and

aromatic C (nring−C) are then obtained. The numbers of f 2
a (n f 2

a
) and (n f 3

a
) are further

obtained according to their percentages in aromatic C through Equation (3). The C skeleton
of torrefied cellulose is, thus, determined through the above numbers and the following
two rules:

(1) The xa and xb values correspond to a skeleton;
(2) The n f 2

a
and n f 3

a
values are consistent with the skeleton as further inspection criteria.
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For example, the xa and xb of GP-250-0 cellulose were 0.28 and 0.25. So, its C skeleton
structure was ring2b and the values of nring and nring−C were 2 and 8. Its n f 2

a
and n f 3

a
values

were 2 and 2, which confirmed the rationality of the C skeleton. Additionally, the branch
structure contains terminal and intermediate C functional groups, such as -CH3, -CH2,
-CH, and -CO-. The number of substituted branches of the skeleton (nsub−C) is calculated
by Equation (4) through the f 4

a percentages in aromatic C. As we all know, the value of
nsub−C equals ntml−C due to each branch having a corresponding terminal C functional
group. Moreover, it is worth noting that a partial C=O structure forms a terminal aldehydes
structure (-CHO) with a -CH structure. Other C=O structure forms ketones (-CO-) structure
in the branch due to the limitation of the triple-coordination of C in the skeleton structures,
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resulting in the C in the skeleton structures not being able to directly bond with C=O
to form a furan=C=O structure. So, the contents of f 3

al and ( fc − f 3
al) also represent the

aldehydes and ketones contents. So, the number of intermediate C in a branch is calculated
by Equation (6) through the intermediate C percentages in f 4

a . The numbers of each terminal
and intermediate C functional group are calculated by Equations (7)–(10) through their
percentages. Thus, the molecular structure of torrefied cellulose can be confirmed based on
the above division and calculation.

Table 3. Carbon structural parameters in GP-torrefied cellulose.

Structural Parameters Symbol/Equations
Value

GP-250-0 GP-250-15 GP-250-60

Molar fraction of aromatic bridgehead
carbon x f 2

a
= f 2

a / fa; x f 3
a
= f 3

a / fa (1) 0.28; 0.25 0.17; 0.19 0.34; 0.20

Number of aromatic rings nring 2 3 3
Number of aromatic C in aromatic ring nring−C = 4 × nring (2) 8 12 12
Number of aromatic C in aromatic ring n f 2

a
= x f 2

a
× nring−C ; n f 3

a
= x f 3

a
× nring−C (3) 2; 2 2; 2 4; 2

Number of substituted branchs of
aromatic ring nsub−C = nring−C × ( f 4

a

)
/ fa (4) 3 4 2

Number of terminal C in branch ntml−C = nsub−C (5) 3 4 2
Number of intermediate C in branch nint−C = nsub−C × ( f 2

al + fc − f 3
al

)
/ f 4

a (6) 6 7 5

Number of terminal -CH3 in branch ntml−CH3 = nsub−C × f 1
al/ f 4

a (7) 1 1 1

Number of terminal -CHO in branch ntml−CHO = nsub−C × f 3
al/ f 4

a (8) 2 3 1

Number of -CH2- in branch nint−CH2 = nsub−C × f 2
al/ f 4

a (9) 4 5 4

Number of -CO- in branch nint−CO = nsub−C ×
(

fc − f 3
al
)
/ f 4

a (10) 2 3 1
Structural equation C17H14O6 C23H18O9 C19H16O5
C/H/O molar ratio C6H4.9O2.1 C6H4.7O2.4 C6H5.1O1.6

Molecular structure schematic
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The C structure parameters of intermediate and GP-torrefied cellulose are illustrated
in Table 3. It shows that the aromatic ring grew with the holding time extension from a two-
ring at 0 min to a three-ring in 15 min during the GP torrefaction at 250 ◦C. This implies that
the two-ring aromatic furans nucleus in GP-torrefied cellulose is formed rapidly during GP
torrefied at 250 ◦C, followed by the formation of a three-ring through the polymerization
reaction of furans. Additionally, the nsub−C first increased from 3 in GP-250-0 cellulose
to 4 in GP-250-15 cellulose and then decreased to 2 in GP-250-60 cellulose. This indicates
that the polymerization reaction of furans is accompanied by the removal of an unstable
substituent, especially the conversion of branched ketone and aldehyde to CO. Additionally,
the C/H/O molar ratios of intermediate and GP-torrefied cellulose were proximate to the
C/H/O molar ratios obtained from elemental analysis, as shown in Table 1.

2.5. GP Torrefaction Mechanism of Cellulose

The comprehensive GP torrefaction mechanism of cellulose is illustrated based on
the results presented in this study, and it is shown in Figure 7. At the GP torrefaction
temperature of 200 ◦C, crystalline H2O was desorbed to produce the initial gaseous H2O.
Due to the GP torrefaction in a closed system, the generated volatile molecules are retained
in the reactor. The secondary reactions, such as hydrolysis, between volatile molecules and
cellulose in the closed system then occur [40]. Meanwhile, the volatiles raise the gas phase
pressure in the reactor, and the raised pressure and increased chemical potential of volatile
molecules further enhanced the secondary reactions greatly. So, the sufficiently enhanced
secondary reactions cause the breakdown of the 1,4-glycosidic bond in cellulose and the
formation of amorphous and active cellulose at temperatures as low as 200–225 ◦C.
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At the temperature of 225–250 ◦C, the amorphous and active cellulose undergo signif-
icant aromatization reactions to form the two-ring furans aromatic compounds, and the
removal of O-containing function groups is mainly through the production of H2O. As the
holding time extension at 250 ◦C, the aromatic furans nucleus grows from a two-ring struc-
ture to a three-ring structure through the polymerization reaction of the furans polymer,
which enhances the removal of the ketone and aldehyde function groups in intermediate
torrefied cellulose and forms gaseous CO- and O-containing organic molecules. Thus, the
formation mechanism of low O content-torrefied cellulose has been clearly understood.

3. Materials and Methods
3.1. Materials

The raw cellulose was commercial α-cellulose (Aladdin, Shanghai, China; CAS, 9004-34-6).
The average molecular mass of cellulose was 162 g/mol, and its particle size was 250 µm.
The C, H, and O mass percentages of raw cellulose on dry basis (d.b.) were 42.5, 6.4, and
51.1 wt.%, respectively.

The HHV of raw and torrefied cellulose was calculated through Dulong’s equation [41].
This was in order to directly compare with reported HHV of lignocellulose and its compo-
nents. The HHV of raw cellulose was 14.4 MJ/kg.

3.2. Torrefaction Experiment

As shown in Figure 8, the GP torrefaction system consists of reaction kettle, heating
system, and temperature and pressure detectors. A total of 10 g cellulose was placed in
the reaction kettle. The air was then removed from the torrefaction system by using N2
as carrier gas. During the GP torrefaction, the carrier gas was kept off throughout the
experiment. The gas pressure rise was caused by the temperature increase and generated
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volatiles in the closed reaction kettle. The reaction was still heated from room temperature
to 200, 225, and 250 ◦C at a heating rate of 5 ◦C/min and was maintained for 15 and 60 min
at 250 ◦C. The final pressures for these five experiments were 0.2, 03, 0.5, 0.9, and 1.4 MPa,
respectively.
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Figure 8. The schematic diagram of the GP torrefaction system.

After GP torrefaction, the solid product (torrefied cellulose) was collected in the re-
action. The mass of solid product was measured by weighing. Additionally, for direct
comparison purposes, the AP torrefaction was conducted through thermo gravimetric anal-
ysis (TGA, Woden, Australia, Germany-resistant, STA449F3) under the same condition. The
experiments were named “method-temperature-time” according to GP/AP, temperatures,
and holding time. To illustrate, the “GP-200-0” represents the GP torrefaction at 200 ◦C
with a holding time of 0 min.

3.3. Characterization

Elemental analyzer (Elementar, Langenselbold, Germany, Vario CHNEL-2) was used to
detect the mass percentages of C, H, and N in raw and torrefied cellulose. X-ray diffraction
(XRD, Netherlands Pana Branch X’Pert PRO) was used to analyze the crystal morphology
of raw and torrefied cellulose. The scanning rate was 4◦/min in the 2θ range of 10–80◦.
The CrI was calculated by Equation (11) [42], where the I002 and Iam are the peaks of 22.5◦

and 18◦, respectively.
CrI = (I002 − Iam) × 100%/I002 (11)

The Fourier transform infrared spectroscopy (FTIR, Bruker Vertex 70) was used to
analyze the composition of organic functional groups in raw and torrefied cellulose. The
spectral scan range and resolution were 400–4000 cm−1 and 4 cm−1, respectively.

The cross-polarization/magic angle spinning (CP/MAS) 13C Nuclear Magnetic Res-
onance (NMR) was used to quantify the C structure in raw and torrefied cellulose. The
resonance frequency and spin rates were 150.9 and 14 kHz, respectively. The contact time
and cycle delay time were 3 ms and 5 s, respectively. The chemical shifts of 13C were
externally referenced with (CH3)4Si (TMS).

4. Conclusions

Cellulose begins to thermally decompose during GP torrefaction at temperatures as
low as 225 ◦C, and its fuel properties are enhanced with the temperature rise and holding
time extension, reaching the highest HHV of as high as 25.0 MJ/kg at 250 ◦C and 60 min.
At the same time, AP torrefaction at 200–250 ◦C has almost no impact on cellulose decom-
position and its fuel property enhancement. A molecular structure calculation method
was developed for the structure determination and reaction mechanism investigation of
intermediate and torrefied cellulose. The intermediates are formed by intra/inter-molecular
dehydroxylation reactions vs. polymerization reactions for GP-torrefied cellulose. A deoxy-
genation and aromatization mechanism model was then developed. This work provides
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theoretical guidance for the optimization of the gas-pressurized torrefaction method and a
study method for the molecular-level structure determination and mechanism investigation
of the thermal conversion processes of LSW.
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