Polyphenolic Compounds in Extracts from Roasted Grapevine Canes: An Investigation for a Circular Approach to Increase Sustainability in the Viticulture Sectors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Proximate Analysis
2.2. Effect of Roasting on Sample Mass Loss
2.3. TPC–Total Phenolic Content
2.4. Stilbenoid Concentration in the Different Samples of Roasted Grapevine Chips
3. Materials and Methods
3.1. Reagents and Standards
3.2. Sample Preparation
3.3. Proximate Composition
3.4. Macerative Solvent Extraction
3.5. HPLC-DAD Analysis
3.6. UHPLC-MS/MS Analysis
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Droulia, F.; Charalampopoulos, I. Future Climate Change Impacts on European Viticulture: A Review on Recent Scientific Advances. Atmosphere 2021, 12, 495. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- OIV. International Organisation of Vine and Wine (OIV) World Wine Production Outlook; OIV: Paris, France, 2022. [Google Scholar]
- OIV. International Organisation of Vine and Wine State of the World Vine and Wine Sector in 2022; OIV: Paris, France, 2023. [Google Scholar]
- Dwyer, K.; Hosseinian, F.; Rod, M. The Market Potential of Grape Waste Alternatives. J. Food Res. 2014, 3, 91. [Google Scholar] [CrossRef]
- Devesa-Rey, R.; Vecino, X.; Varela-Alende, J.L.; Barral, M.T.; Cruz, J.M.; Moldes, A.B. Valorization of Winery Waste vs. the Costs of Not Recycling. Waste Manag. 2011, 31, 2327–2335. [Google Scholar] [CrossRef]
- Kalli, E.; Lappa, I.; Bouchagier, P.; Tarantilis, P.A.; Skotti, E. Novel Application and Industrial Exploitation of Winery By-Products. Bioresour. Bioprocess. 2018, 5, 46. [Google Scholar] [CrossRef]
- Abubakar, I.R.; Maniruzzaman, K.M.; Dano, U.L.; AlShihri, F.S.; AlShammari, M.S.; Ahmed, S.M.S.; Al-Gehlani, W.A.G.; Alrawaf, T.I. Environmental Sustainability Impacts of Solid Waste Management Practices in the Global South. Int. J. Environ. Res. Public Health 2022, 19, 12717. [Google Scholar] [CrossRef]
- UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; A/RES/70/1; UN General Assembly: New York, NY, USA, 2015. [Google Scholar]
- Khajuria, A.; Atienza, V.A.; Chavanich, S.; Henning, W.; Islam, I.; Kral, U.; Liu, M.; Liu, X.; Murthy, I.K.; Oyedotun, T.D.T.; et al. Accelerating Circular Economy Solutions to Achieve the 2030 Agenda for Sustainable Development Goals. Circ. Econ. 2022, 1, 100001. [Google Scholar] [CrossRef]
- Hamam, M.; Chinnici, G.; Di Vita, G.; Pappalardo, G.; Pecorino, B.; Maesano, G.; D’Amico, M. Circular Economy Models in Agro-Food Systems: A Review. Sustainability 2021, 13, 3453. [Google Scholar] [CrossRef]
- Cortés, A.; Oliveira, L.F.S.; Ferrari, V.; Taffarel, S.R.; Feijoo, G.; Moreira, M.T. Environmental Assessment of Viticulture Waste Valorisation through Composting as a Biofertilisation Strategy for Cereal and Fruit Crops. Environ. Pollut. 2020, 264, 114794. [Google Scholar] [CrossRef]
- El Achkar, J.H.; Lendormi, T.; Hobaika, Z.; Salameh, D.; Louka, N.; Maroun, R.G.; Lanoisellé, J.-L. Anaerobic Digestion of Grape Pomace: Biochemical Characterization of the Fractions and Methane Production in Batch and Continuous Digesters. Waste Manag. 2016, 50, 275–282. [Google Scholar] [CrossRef]
- Hungría, J.; Siles, J.A.; Chica, A.F.; Gil, A.; Martín, M.A. Anaerobic Co-Digestion of Winery Waste: Comparative Assessment of Grape Marc Waste and Lees Derived from Organic Crops. Environ. Technol. 2021, 42, 3618–3626. [Google Scholar] [CrossRef] [PubMed]
- Ncube, A.; Fiorentino, G.; Colella, M.; Ulgiati, S. Upgrading Wineries to Biorefineries within a Circular Economy Perspective: An Italian Case Study. Sci. Total Environ. 2021, 775, 145809. [Google Scholar] [CrossRef]
- Çetin, E.S.; Altinöz, D.; Tarçan, E.; Göktürk Baydar, N. Chemical Composition of Grape Canes. Ind. Crops Prod. 2011, 34, 994–998. [Google Scholar] [CrossRef]
- D’Eusanio, V.; Genua, F.; Marchetti, A.; Morelli, L.; Tassi, L. Exploring the Mineral Composition of Grapevine Canes for Wood Chip Applications in Alcoholic Beverage Production to Enhance Viticulture Sustainability. Beverages 2023, 9, 60. [Google Scholar] [CrossRef]
- Vergara, C.; von Baer, D.; Mardones, C.; Wilkens, A.; Wernekinck, K.; Damm, A.; Macke, S.; Gorena, T.; Winterhalter, P. Stilbene Levels in Grape Cane of Different Cultivars in Southern Chile: Determination by HPLC-DAD-MS/MS Method. J. Agric. Food Chem. 2012, 60, 929–933. [Google Scholar] [CrossRef]
- D’Eusanio, V.; Genua, F.; Marchetti, A.; Morelli, L.; Tassi, L. Characterization of Some Stilbenoids Extracted from Two Cultivars of Lambrusco—Vitis vinifera Species: An Opportunity to Valorize Pruning Canes for a More Sustainable Viticulture. Molecules 2023, 28, 4074. [Google Scholar] [CrossRef]
- Rivière, C.; Pawlus, A.D.; Mérillon, J.-M. Natural Stilbenoids: Distribution in the Plant Kingdom and Chemotaxonomic Interest in Vitaceae. Nat. Prod. Rep. 2012, 29, 1317. [Google Scholar] [CrossRef]
- Lambert, C.; Richard, T.; Renouf, E.; Bisson, J.; Waffo-Téguo, P.; Bordenave, L.; Ollat, N.; Mérillon, J.-M.; Cluzet, S. Comparative Analyses of Stilbenoids in Canes of Major Vitis Vinifera L. Cultivars. J. Agric. Food Chem. 2013, 61, 11392–11399. [Google Scholar] [CrossRef] [PubMed]
- Mattivi, F.; Vrhovsek, U.; Malacarne, G.; Masuero, D.; Zulini, L.; Stefanini, M.; Moser, C.; Velasco, R.; Guella, G. Profiling of Resveratrol Oligomers, Important Stress Metabolites, Accumulating in the Leaves of Hybrid Vitis vinifera (Merzling × Teroldego) Genotypes Infected with Plasmopara viticola. J. Agric. Food Chem. 2011, 59, 5364–5375. [Google Scholar] [CrossRef]
- Xue, Y.-Q.; Di, J.-M.; Luo, Y.; Cheng, K.-J.; Wei, X.; Shi, Z. Resveratrol Oligomers for the Prevention and Treatment of Cancers. Oxid. Med. Cell. Longev. 2014, 2014, e765832. [Google Scholar] [CrossRef]
- Fu, J.; Jin, J.; Cichewicz, R.H.; Hageman, S.A.; Ellis, T.K.; Xiang, L.; Peng, Q.; Jiang, M.; Arbez, N.; Hotaling, K.; et al. Trans-(-)-ε-Viniferin Increases Mitochondrial Sirtuin 3 (SIRT3), Activates AMP-Activated Protein Kinase (AMPK), and Protects Cells in Models of Huntington Disease. J. Biol. Chem. 2012, 287, 24460–24472. [Google Scholar] [CrossRef]
- Fuloria, S.; Sekar, M.; Khattulanuar, F.S.; Gan, S.H.; Rani, N.N.I.M.; Ravi, S.; Subramaniyan, V.; Jeyabalan, S.; Begum, M.Y.; Chidambaram, K.; et al. Chemistry, Biosynthesis and Pharmacology of Viniferin: Potential Resveratrol-Derived Molecules for New Drug Discovery, Development and Therapy. Molecules 2022, 27, 5072. [Google Scholar] [CrossRef]
- Gómez-Zorita, S.; Milton-Laskibar, I.; Eseberri, I.; Beaumont, P.; Courtois, A.; Krisa, S.; Portillo, M.P. Beneficial Effects of ε-Viniferin on Obesity and Related Health Alterations. Nutrients 2023, 15, 928. [Google Scholar] [CrossRef] [PubMed]
- Zghonda, N.; Yoshida, S.; Ezaki, S.; Otake, Y.; Murakami, C.; Mliki, A.; Ghorbel, A.; Miyazaki, H. ε-Viniferin Is More Effective than Its Monomer Resveratrol in Improving the Functions of Vascular Endothelial Cells and the Heart. Biosci. Biotechnol. Biochem. 2012, 76, 954–960. [Google Scholar] [CrossRef] [PubMed]
- Giorio, C.; Pizzini, S.; Marchiori, E.; Piazza, R.; Grigolato, S.; Zanetti, M.; Cavalli, R.; Simoncin, M.; Soldà, L.; Badocco, D.; et al. Sustainability of Using Vineyard Pruning Residues as an Energy Source: Combustion Performances and Environmental Impact. Fuel 2019, 243, 371–380. [Google Scholar] [CrossRef]
- Italian Legislative Decree, D.Lgs. 205/2010, Implementation of the EU Directive 2008/98/EU n.d. Available online: https://www.gazzettaufficiale.it/eli/id/2010/12/10/010G0235/sg (accessed on 15 May 2023).
- Dumitriu, G.-D.; De Lerma, N.L.; Cotea, V.V.; Zamfir, C.-I.; Peinado, R.A. Effect of Aging Time, Dosage and Toasting Level of Oak Chips on the Color Parameters, Phenolic Compounds and Antioxidant Activity of Red Wines (Var. Fetească neagră). Eur. Food Res. Technol. 2016, 242, 2171–2180. [Google Scholar] [CrossRef]
- Guchu, E.; Díaz-Maroto, M.C.; Pérez-Coello, M.S.; González-Viñas, M.A.; Ibáñez, M.D.C. Volatile Composition and Sensory Characteristics of Chardonnay Wines Treated with American and Hungarian Oak Chips. Food Chem. 2006, 99, 350–359. [Google Scholar] [CrossRef]
- Kayaoğlu, M.; Bayram, M.; Topuz, S. Effect of Oak Chips Addition on the Phenolic Composition of Grape Vinegar in Fermentation Process. J. Food Meas. Charact. 2022, 16, 3106–3116. [Google Scholar] [CrossRef]
- Vichi, S.; Santini, C.; Natali, N.; Riponi, C.; López-Tamames, E.; Buxaderas, S. Volatile and Semi-Volatile Components of Oak Wood Chips Analysed by Accelerated Solvent Extraction (ASE) Coupled to Gas Chromatography–Mass Spectrometry (GC–MS). Food Chem. 2007, 102, 1260–1269. [Google Scholar] [CrossRef]
- Poisson, L.; Blank, I.; Dunkel, A.; Hofmann, T. The Chemistry of Roasting-Decoding Flavor Formation. In The Craft and Science of Coffee; Elsevier: Amsterdam, The Netherlands, 2017; pp. 273–309. ISBN 978-0-12-803558-0. [Google Scholar]
- D’Eusanio, V.; Morelli, L.; Marchetti, A.; Tassi, L. Aroma Profile of Grapevine Chips after Roasting: A Comparative Study of Sorbara and Spergola Cultivars for More Sustainable Oenological Production. Separations 2023, 10, 532. [Google Scholar] [CrossRef]
- González Martínez, M.; Anca Couce, A.; Dupont, C.; da Silva Perez, D.; Thiéry, S.; Meyer, X.; Gourdon, C. Torrefaction of Cellulose, Hemicelluloses and Lignin Extracted from Woody and Agricultural Biomass in TGA-GC/MS: Linking Production Profiles of Volatile Species to Biomass Type and Macromolecular Composition. Ind. Crops Prod. 2022, 176, 114350. [Google Scholar] [CrossRef]
- Prins, M.J.; Ptasinski, K.J.; Janssen, F.J.J.G. Torrefaction of Wood. J. Anal. Appl. Pyrolysis 2006, 77, 35–40. [Google Scholar] [CrossRef]
- D’Eusanio, V.; Malferrari, D.; Marchetti, A.; Roncaglia, F.; Tassi, L. Waste By-Product of Grape Seed Oil Production: Chemical Characterization for Use as a Food and Feed Supplement. Life 2023, 13, 326. [Google Scholar] [CrossRef] [PubMed]
- D’Eusanio, V.; Bertacchini, L.; Marchetti, A.; Mariani, M.; Pastorelli, S.; Silvestri, M.; Tassi, L. Rosaceae Nut-Shells as Sustainable Aggregate for Potential Use in Non-Structural Lightweight Concrete. Waste 2023, 1, 549–568. [Google Scholar] [CrossRef]
- Official Journal of the European Union. Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 Concerning the Placing of Plant Protection Products on the Market and Repealing Council Directives 79/117/EEC and 91/414/EEC. 2009. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:309:0001:0050:en:PDF (accessed on 12 May 2023).
- Dorosh, O.; Fernandes, V.C.; Moreira, M.M.; Delerue-Matos, C. Occurrence of Pesticides and Environmental Contaminants in Vineyards: Case Study of Portuguese Grapevine Canes. Sci. Total Environ. 2021, 791, 148395. [Google Scholar] [CrossRef] [PubMed]
- Gorena, T.; Saez, V.; Mardones, C.; Vergara, C.; Winterhalter, P.; von Baer, D. Influence of Post-Pruning Storage on Stilbenoid Levels in Vitis vinifera L. Canes. Food Chem. 2014, 155, 256–263. [Google Scholar] [CrossRef]
- Maletti, L.; D’Eusanio, V.; Durante, C.; Marchetti, A.; Tassi, L. VOCs Analysis of Three Different Cultivars of Watermelon (Citrullus lanatus L.) Whole Dietary Fiber. Molecules 2022, 27, 8747. [Google Scholar] [CrossRef]
- Blackford, M.; Comby, M.; Zeng, L.; Dienes-Nagy, Á.; Bourdin, G.; Lorenzini, F.; Bach, B. A Review on Stems Composition and Their Impact on Wine Quality. Molecules 2021, 26, 1240. [Google Scholar] [CrossRef]
- McKendry, P. Energy Production from Biomass (Part 1): Overview of Biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Dávila, I.; Gordobil, O.; Labidi, J.; Gullón, P. Assessment of Suitability of Vine Shoots for Hemicellulosic Oligosaccharides Production through Aqueous Processing. Bioresour. Technol. 2016, 211, 636–644. [Google Scholar] [CrossRef]
- Jesus, M.S.; Romaní, A.; Genisheva, Z.; Teixeira, J.A.; Domingues, L. Integral Valorization of Vine Pruning Residue by Sequential Autohydrolysis Stages. J. Clean. Prod. 2017, 168, 74–86. [Google Scholar] [CrossRef]
- Rayne, S.; Karacabey, E.; Mazza, G. Grape Cane Waste as a Source of Trans-Resveratrol and Trans-Viniferin: High-Value Phytochemicals with Medicinal and Anti-Phytopathogenic Applications. Ind. Crops Prod. 2008, 27, 335–340. [Google Scholar] [CrossRef]
- Chaher, N.; Arraki, K.; Dillinseger, E.; Temsamani, H.; Bernillon, S.; Pedrot, E.; Delaunay, J.-C.; Mérillon, J.-M.; Monti, J.-P.; Izard, J.-C.; et al. Bioactive Stilbenes from Vitis vinifera Grapevine Shoots Extracts. J. Sci. Food Agric. 2014, 94, 951–954. [Google Scholar] [CrossRef] [PubMed]
- Püssa, T.; Floren, J.; Kuldkepp, P.; Raal, A. Survey of Grapevine Vitis vinifera Stem Polyphenols by Liquid Chromatography-Diode Array Detection-Tandem Mass Spectrometry. J. Agric. Food Chem. 2006, 54, 7488–7494. [Google Scholar] [CrossRef] [PubMed]
- Karacabey, E.; Mazza, G. Optimization of Solid−Liquid Extraction of Resveratrol and Other Phenolic Compounds from Milled Grape Canes (Vitis vinifera). J. Agric. Food Chem. 2008, 56, 6318–6325. [Google Scholar] [CrossRef]
- Ojeda-Galván, H.J.; Hernández-Arteaga, A.C.; Rodríguez-Aranda, M.C.; Toro-Vazquez, J.F.; Cruz-González, N.; Ortíz-Chávez, S.; Comas-García, M.; Rodríguez, A.G.; Navarro-Contreras, H.R. Application of Raman Spectroscopy for the Determination of Proteins Denaturation and Amino Acids Decomposition Temperature. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 285, 121941. [Google Scholar] [CrossRef]
- Johnson, C.M. Differential Scanning Calorimetry as a Tool for Protein Folding and Stability. Arch. Biochem. Biophys. 2013, 531, 100–109. [Google Scholar] [CrossRef]
- Brebu, M.; Tamminen, T.; Spiridon, I. Thermal Degradation of Various Lignins by TG-MS/FTIR and Py-GC-MS. J. Anal. Appl. Pyrolysis 2013, 104, 531–539. [Google Scholar] [CrossRef]
- Xiao, J. Recent Advances on the Stability of Dietary Polyphenols. eFood 2022, 3. [Google Scholar] [CrossRef]
- Cao, H.; Saroglu, O.; Karadag, A.; Diaconeasa, Z.; Zoccatelli, G.; Conte-Junior, C.A.; Gonzalez-Aguilar, G.A.; Ou, J.; Bai, W.; Zamarioli, C.M.; et al. Available Technologies on Improving the Stability of Polyphenols in Food Processing. Food Front. 2021, 2, 109–139. [Google Scholar] [CrossRef]
- Stecher, G.; Huck, C.W.; Popp, M.; Bonn, G.K. Determination of Flavonoids and Stilbenes in Red Wine and Related Biological Products by HPLC and HPLC–ESI–MS–MS. Fresenius J. Anal. Chem. 2001, 371, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Goufo, P.; Singh, R.K.; Cortez, I. A Reference List of Phenolic Compounds (Including Stilbenes) in Grapevine (Vitis vinifera L.) Roots, Woods, Canes, Stems, and Leaves. Antioxidants 2020, 9, 398. [Google Scholar] [CrossRef] [PubMed]
- Associataion of Official Analytical Chemist. AOAC Official Methods of Analysis of the Association of Official’s Analytical Chemists, 14th ed.; Associataion of Official Analytical Chemist: Washington, DC, USA, 1990; pp. 223–225, 992–995. [Google Scholar]
Malbo Gentile | Sorbara | Grasparossa | Spergola | |
---|---|---|---|---|
Moisture (at 105 °C) % | 18.0 ± 0.1 | 17.7 ± 0.2 | 17.6 ± 0.1 | 22.9 ± 0.4 |
C% * | 45.7 ± 0.1 | 46.8 ± 0.1 | 46.9 ± 0.3 | 44.9 ± 0.2 |
H% * | 6.99 ± 0.06 | 6.94 ± 0.07 | 6.92 ± 0.05 | 6.98 ± 0.07 |
N% * | 0.46 ± 0.03 | 0.46 ± 0.05 | 0.44 ± 0.03 | 0.48 ± 0.04 |
S% * | <0.1 | <0.1 | <0.1 | <0.1 |
O% * # | 43.8 ± 0.08 | 42.7 ± 0.06 | 42.6 ± 0.07 | 44.6 ± 0.05 |
Ash% * | 3.01 ± 0.04 | 3.08 ± 0.05 | 3.09 ± 0.06 | 3.00 ± 0.05 |
−Δm% | ||||
---|---|---|---|---|
t/°C | Malbo Gentile (MG) | Sorbara (SO) | Grasparossa (GR) | Spergola (SP) |
120 | 29.69 ± 0.26 a | 16.88 ± 0.24 a | 12.90 ± 0.27 a | 16.07 ± 0.19 a |
140 | 36.29 ± 0.33 b | 25.16 ± 0.18 b | 34.09 ± 0.20 b | 24.37 ± 0.23 b |
160 | 37.18 ± 0.23 c | 26.96 ± 0.22 c | 42.04 ± 0.27 c | 28.60 ± 0.19 c |
180 | 37.64 ± 0.30 cd | 28.66 ± 0.25 d | 42.17 ± 0.25 c | 29.46 ± 0.23 d |
200 | 38.25 ± 0.33 d | 30.60 ± 0.32 e | 43.66 ± 0.27 d | 30.60 ± 0.25 e |
220 | 40.47 ± 0.29 e | 34.38 ± 0.25 f | 47.52 ± 0.34 e | 33.42 ± 0.26 f |
240 | 46.26 ± 0.32 f | 39.21 ± 0.39 g | 53.40 ± 0.35 f | 37.30 ± 0.28 g |
260 | 56.23 ± 0.37 g | 46.24 ± 0.42 h | 58.91 ± 0.50 g | 42.72 ± 0.37 h |
TPC (mg GAE */g) | ||||
---|---|---|---|---|
°C | MG | SO | GR | SP |
nts # | 21.84 ± 1.22 aAB | 23.43 ± 1.36 aAB | 24.63 ± 1.25 aAB | 19.93 ± 1.15 aAB |
120 | 18.56 ± 0.97 aAB | 21.12 ± 1.32 aA | 20.01 ± 0.99 aA | 16.85 ± 0.87 aB |
140 | 16.35 ± 1.12 bAC | 20.31 ± 1.11 abB | 17.56 ± 1.21 bAB | 14.32 ± 0.96 bC |
160 | 14.25 ± 0.86 bcAC | 18.52 ± 0.96 bcB | 15.48 ± 1.14 bcA | 12.22 ± 0.64 cC |
180 | 12.69 ± 0.89 cdA | 17.44 ± 0.71 cB | 13.2 ± 0.97 cdA | 10.64 ± 0.43 cD |
200 | 10.79 ± 0.46 dA | 12.58 ± 0.87 dB | 11.1 ± 0.62 deAB | 8.62 ± 0.21 dC |
220 | 8.36 ± 0.65 eA | 11.43 ± 0.53 dB | 9.59 ± 0.33 eC | 5.44 ± 0.11 eD |
240 | 4.53 ± 0.11 fA | 7.77 ± 0.13 eB | 6.35 ± 0.21 fC | 3.10 ± 0.09 fD |
Stilbenoid Concentration (mg/kg) 1,2 | |||||
---|---|---|---|---|---|
Sample | trans-Resveratrol | trans-Piceatannol | trans-ε-Viniferin | Main Trimer | Total |
MG | 997.3 ± 160.4 a | 213.5 ± 51.8 a | 281.2 ± 71.6 a | 152.7 ± 57.5 a | 1645 ± 345 a |
MG120 | 956.7 ± 166.3 a | 201.7 ± 62.3 a | 268.1 ± 67.5 a | 143.2 ± 66.3 a | 1570 ± 372 a |
MG140 | 903.9 ± 160.7 a | 185.3 ± 48.5 ab | 259.8 ± 61.2 ab | 121.3 ± 47.8 a | 1470 ± 318 a |
MG160 | 741.3 ± 153.5 ab | 156.8 ± 46.2 ab | 246.9 ± 63.6 ab | 100.6 ± 34.3 ab | 1246 ± 298 a |
MG180 | 643.8 ± 141.1 ab | 136.8 ± 33.7 ab | 223.5 ± 52.9 ab | 71.02 ± 20.1 ab | 1075 ± 248 ab |
MG200 | 486.2 ± 138.6 bc | 110.6 ± 39.9 ab | 200.3 ± 49.8 abc | 54.36 ± 9.9 b | 851.5 ± 238.2 abc |
MG220 | 233.1 ± 100.2 cd | 83.51 ± 21.2 b | 156.9 ± 47.6 bc | NQ | 473.5 ± 169.0 bc |
MG240 | 96.23 ± 31.20 d | NQ | 129.3 ± 38.9 c | NQ | 225.5 ± 70.1 c |
SO | 1359 ± 164 a | 247.4 ± 72.4 a | 321.7 ± 76.8 a | 167.6 ± 27.3 a | 2095 ± 346 a |
SO120 | 1269 ± 188.3 a | 231.8 ± 77.5 a | 299.6 ± 88.3 a | 155.6 ± 36.9 a | 1956 ± 391 a |
SO140 | 1211 ± 182.3 ab | 200.6 ± 69.9 a | 276.2 ± 49.6 a | 139.3 ± 41.0 ab | 1827 ± 343 a |
SO160 | 1082 ± 183.6 ab | 189.3 ± 56.8 a | 259.9 ± 80.7 ab | 110.3 ± 25.8 ac | 1641 ± 347 ab |
SO180 | 911.3 ± 167.6 abc | 169.8 ± 44.1 a | 226.3 ± 52.3 ab | 79.92 ± 19.9 bd | 1387 ± 284 ab |
SO200 | 796.2 ± 151.0 bc | 144.8 ± 45.6 a | 209.3 ± 47.6 ab | 67.31 ± 21.3 cd | 1218 ± 265 ab |
SO220 | 523.4 ± 110.2 cd | 109.7 ± 36.9 a | 177.4 ± 35.5 ab | 40.36 ± 7.8 cd | 850.9 ± 190.4 bc |
SO240 | 179.3 ± 80.9 d | NQ | 133.3 ± 20.1 b | NQ | 312.6 ± 101.0 c |
GR | 1276 ± 188.7 a | 231.7 ± 27.2 a | 299.3 ± 56.5 a | 158.0 ± 30.6 a | 1965 ± 307 a |
GR120 | 1220 ± 177.6 a | 219.3 ± 20.6 a | 284.6 ± 65.8 a | 149.7 ± 21.0 a | 1874 ± 285 a |
GR140 | 1189 ± 171.2 a | 199.6 ± 38.6 ab | 270.5 ± 71.9 ab | 127.6 ± 33.8 a | 1787 ± 315 a |
GR160 | 1002 ± 160.3 ab | 177.6 ± 33.9 ab | 253.2 ± 75.3 ab | 105.9 ± 15.5 ab | 1539 ± 285 ab |
GR180 | 897.3 ± 138.7 ab | 143.6 ± 41.8 abc | 220.9 ± 62.2 ab | 74.66 ± 10.2 b | 1336 ± 253 ab |
GR200 | 703.6 ± 140.2 bc | 122.3 ± 22.4 bc | 204.7 ± 48.5 ab | 59.32 ± 10.4 b | 1090 ± 221 bc |
GR220 | 486.3 ± 120.3 cd | 96.3 ± 18.9 c | 168.3 ± 33.6 b | NQ | 750.9 ± 172.8 cd |
GR240 | 135.6 ± 88.9 d | NQ | 130.6 ± 42.5 b | NQ | 266.2 ± 131.4 d |
SP | 960.3 ± 133 a | 203.1 ± 54.9 a | 272.4 ± 62.5 a | 143.2 ± 45.7 a | 1579 ± 296 a |
SP120 | 901.7 ± 152.3 a | 188.5 ± 49.8 a | 255.3 ± 66.9 a | 135.6 ± 58.3 a | 1481 ± 347 a |
SP140 | 864.2 ± 144.6 a | 163.2 ± 33.7 ab | 241.9 ± 67.5 a | 111.9 ± 46.9 ab | 1381 ± 293 a |
SP160 | 710.6 ± 133.6 ab | 150.2 ± 38.7 ab | 233.6 ± 31.1 ab | 96.3 ± 22.1 ab | 1191 ± 225 a |
SP180 | 530.5 ± 117.3 bc | 129.8 ± 40.2 ab | 200.4 ± 77.6 ab | 55.51 ± 15.3 ab | 916.2 ± 250.4 ab |
SP200 | 261.7 ± 99.8 cd | 100.3 ± 35.9 ab | 148.3 ± 36.6 ab | 40.32 ± 8.8 b | 550.6 ± 181.1 bc |
SP220 | 80.24 ± 23.5 d | 74.32 ± 20.1 b | 110.3 ± 33.7 ab | NQ | 264.9 ± 77.3 c |
SP240 | 68.88 ± 34.6 d | NQ | 91.32 ± 21.1 b | NQ | 160.2 ± 55.7 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Eusanio, V.; Morelli, L.; Marchetti, A.; Tassi, L. Polyphenolic Compounds in Extracts from Roasted Grapevine Canes: An Investigation for a Circular Approach to Increase Sustainability in the Viticulture Sectors. Molecules 2023, 28, 7676. https://doi.org/10.3390/molecules28227676
D’Eusanio V, Morelli L, Marchetti A, Tassi L. Polyphenolic Compounds in Extracts from Roasted Grapevine Canes: An Investigation for a Circular Approach to Increase Sustainability in the Viticulture Sectors. Molecules. 2023; 28(22):7676. https://doi.org/10.3390/molecules28227676
Chicago/Turabian StyleD’Eusanio, Veronica, Lorenzo Morelli, Andrea Marchetti, and Lorenzo Tassi. 2023. "Polyphenolic Compounds in Extracts from Roasted Grapevine Canes: An Investigation for a Circular Approach to Increase Sustainability in the Viticulture Sectors" Molecules 28, no. 22: 7676. https://doi.org/10.3390/molecules28227676
APA StyleD’Eusanio, V., Morelli, L., Marchetti, A., & Tassi, L. (2023). Polyphenolic Compounds in Extracts from Roasted Grapevine Canes: An Investigation for a Circular Approach to Increase Sustainability in the Viticulture Sectors. Molecules, 28(22), 7676. https://doi.org/10.3390/molecules28227676