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Abstract: In this study, we compared the polyphenolic composition of the roasted grapevine wood
chips of four Vitis vinifera cultivars—namely, Sorbara, Grasparossa, Malbo Gentile, and Spergola.
These waste byproducts have the potential as infusion chips for the aging of alcoholic beverages
and vinegars, contributing to an enriched sensory profile. Roasting amplifies aromatic nuances
and triggers the depletion of crucial bioactive compounds, including polyphenols. We investigated
the extent of polyphenolic loss in the ethanolic extract of roasted grapevine chips to repurpose
this waste byproduct and assess its potential. We assessed the levels of trans-resveratrol, trans-ε-
viniferin, trans-piceatannol, and the main resveratrol trimer. Our findings indicated a significant
decrease in polyphenol content as the roasting temperature increased, from 16.85–21.12 mg GAE/g
for grapevine chips roasted at 120 ◦C to 3.10–7.77 mg GAE/g for those roasted at 240 ◦C. This study
also highlights notable genotypic differences in polyphenolic content. Among the red grape cultivars
analyzed, Sorbara exhibited the highest levels (7.77–21.12 mg/GAEg), whereas the white grape
cultivar Spergola showed the lowest polyphenolic content (3.10–16.85 mg/GAEg). These findings
not only contribute to the scientific understanding of polyphenol stability but also hold practical
implications for the enhancement of aged beverages, as well as advancing sustainable practices in the
viticulture industries.

Keywords: Vitis vinifera; sustainability; trans-resveratrol; total phenolic content; HPLC-DAD; UHPLC-
MS/MS; waste valorization

1. Introduction

The wine industry, deeply rooted in history, culture, and traditions, has long been
a hallmark of European excellence [1,2]. Europe boasts the largest winery production
and vineyard area in the world and is home to some of the world’s most significant and
celebrated wine regions and vintages. Among the many countries that have embraced this
ancient craft, Italy, France, and Spain stand as true vanguards, exemplifying the art of wine
making on a global scale [3]. This industry not only reflects their history and traditions but
also plays a pivotal role in shaping their modern economies, since the export of premium
wines to global markets is a key factor in maintaining their commercial balance [3,4]. In
this context, Italy is the first largest wine producer, with 49.8 million hectoliters produced
in 2022, accounting for 19.3% of the total global wine production. A substantial portion
of Italian production is exported, generating a turnover of 7.8 billion euros in 2022. While
the wine industry often focuses on the final product, it is important to acknowledge the
waste generated throughout the production cycle [5], particularly in countries where a high
volume of wine production results in substantial quantities of waste. Various waste streams
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are generated from grape processing to bottling, including grape skins, stems, lees, and
canes [6,7]. Waste disposal practices, including incineration and landfilling, have raised
environmental concerns because of their impact on air quality and soil contamination [8].
The shift towards sustainability, promoted by Agenda 2030 for Sustainable Development
and crucial to combating climate change, has prompted the industry to reconsider its
waste management strategies [9–11]. Innovative approaches, such as composting and
anaerobic digestion, have proven successful in managing organic waste, yielding valuable
byproducts such as nutrient-rich compost and biogas [12–14]. The repurposing of grape
waste into food products, cosmetics, and pharmaceuticals is being explored, contributing to
a circular economy approach [15]. The wine industry’s journey towards sustainable waste
management is an integral part of its broader sustainability agenda. Collaborative efforts
among wineries, waste management companies, and researchers are crucial for developing
and implementing effective waste management strategies. Embracing the principles of
the circular economy, in which waste is minimized, resources are optimized, and value is
retained, will play a pivotal role in mitigating waste-related challenges in the industry.

Grapevine prunings, which are abundant in vineyards after the annual pruning cy-
cle, present a unique composition that is rich in aromatic compounds, polyphenols, and
essential minerals [16–19]. These compounds, responsible for the flavors and aromas of
wines, play a key role in the transformative potential of grapevine prunings. The most
important phenolic compounds in grapevine canes are resveratrol and its oligomers, such
as trans-ε-viniferin and miyabenol C [20–23]. These polyphenols are known for their an-
tioxidant properties and potential health benefits, such as cancer prevention, reduction in
cardiovascular risk, and anti-inflammatory properties. Resveratrol oligomers are charac-
terized by the polymerization of two to eight resveratrol units and comprise the largest
group of oligomeric stilbenes [22,23]. Trans-ε-viniferin, the main resveratrol dimer, has
attracted attention as a phytoalexin and has been reported to exhibit antioxidant, anticancer,
antifungal, antibacterial, and antiviral activities [24–27].

Incineration of grapevine branches and canes is a common practice for managing waste
and generating energy, a method that causes air pollution, greenhouse gas emissions, and
the loss of valuable organic matter. Moreover, the open burning of agricultural residues has
been strictly limited or prohibited by local authorities. For example, in Italy, such practices
have been restricted since 2010, as outlined in Legislative Decree D.Lgs. 205/2010 [28,29].
Therefore, it is important to explore new solutions to enhance these waste materials. A
proposal already explored in previous studies concerns the use of vine prunings as chips
for infusion during the aging process to produce alcoholic beverages and vinegars [17,19].
By carefully processing and preparing prunings as chips for infusion, we can leverage
their inherent qualities to enhance the complexity and character of alcoholic beverages,
such as wines, brandies, and whiskeys, and elevate the profiles of vinegars. The concept
of using wood chips for flavor enhancement during the aging of alcoholic beverages
is not new [30–33]; however, the use of grapevine prunings brings an interesting twist.
Drawing from the grapevine’s genetic heritage and regional terroir, infusion with grapevine
wood chips holds the promise of imparting distinctive nuances reminiscent of the grape
varietals and the environment in which they were cultivated. This technique can provide
an additional layer of complexity in the aging process, enabling beverage producers to craft
unique, high-quality products that resonate with both connoisseurs and enthusiasts.

A crucial aspect of harnessing grapevine prunings as chips for infusion is the roasting
phase, a process that plays an important role in enriching the aromatic profile of wood
and further refining the nuances imparted to aged beverages [34]. Studying the dynamics
of polyphenol content variation at different roasting temperatures is essential. The inter-
play between the temperature and the resulting chemical reactions is a critical focal point,
allowing us to determine the optimal conditions for extracting and preserving these valu-
able compounds. Understanding this intricate relationship will enable us to fine-tune the
sensory attributes of the final products while maximizing the potential health-enhancing
benefits of grapevine wood infusion.
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In this study, we focused our investigation on the grapevine prunings of four dis-
tinct cultivars native to the Modena–Reggio Emilia district: Malbo Gentile (MG), Sorbara
(SO), Grasparossa (GR), and Spergola (SP). This selection encompasses three red grape
Lambrusco cultivars (MG, SO, and GR) and one white grape cultivar (SP), presenting an
opportunity to explore both intragenotypic and intergenotypic differences in polyphenolic
content following roasting. The inclusion of both red and white grape cultivars is partic-
ularly intriguing, as it allows us to assess how varietal characteristics and the presence
of anthocyanins, predominantly found in red grape varieties, may influence the phenolic
composition after roasting.

In this paper, we explore the scientific context behind the utilization of grapevine
prunings as chips for infusion, discuss the extraction of polyphenols, the interplay between
roasting temperature and the preservation of phenolic compounds, and the potential
benefits for the final products. Understanding these genotypic variations is of paramount
importance, not only for fine-tuning infusion techniques, but also for broader viticultural
and winemaking practices. By investigating the complex connection between grape variety,
roasting temperature, and resulting polyphenol profiles, we can pave the way for a more
tailored approach in crafting beverages that not only reflects the unique terroir of the
Modena–Reggio Emilia district but also captures the essence of each cultivar. The grapevine
chips from the four cultivars were roasted at different temperatures (120, 140, 160, 180, 200,
220 and 240 ◦C), and polyphenols were extracted with ethanol. The total phenolic content
and quantification of trans-resveratrol, trans-ε-viniferin, trans-piceatannol, and the main
resveratrol trimer were determined.

Through this research, we aim to contribute to the advancement of innovative and
sustainable practices in the beverage and wine industry while also shedding light on the
broader concept of reimagining waste materials as valuable resources.

2. Results and Discussion

Enhancing the wood’s aromatic profile with unique and characteristic notes is the key
aim of the roasting process. These notes depend on the analyzed cultivar, as demonstrated
in prior studies that employ HS-SPME-GC-MS analysis [35]. Thermally activated reac-
tions generate a broad spectrum of volatile organic compounds (VOCs), the quantity and
prevalence of which vary significantly with changes in roasting temperature [36,37]. At
higher temperatures, the contributions linked to the degradation of cellulose, hemicellulose,
and lignin biopolymers become more pronounced. Conversely, at lower temperatures,
thermoactivated reactions, such as the Maillard reaction, take place [38,39]. These processes
not only entail substantial modification of the wood structure but also result in a shift in
the wood color, progressively darkening, as can be seen in Figure 1.

To conduct a thorough investigation encompassing the four grapevine cultivars, metic-
ulous sampling methods were used to ensure the acquisition of highly representative sam-
ples. The work plan involved the following steps for sampling and analyzing grapevine
cane samples from the Sorbara, Grasparossa, Spergola, and Malbo Gentile cultivars. First,
grapevine plants were sampled after grape harvest, with a total of 20 plants selected for
each cultivar. The collected grapevine wood amounted to approximately 6 kg. All collected
samples were completely intact, with no signs of damage caused by fungal attacks or other
pathologies. Subsequently, the grapevine cane samples were debarked and subjected to
roasting at eight different temperatures ranging from 120 to 260 ◦C. For each roasting
temperature, four replicates were performed to ensure the reliability of the results. The
selection of eight temperatures was based on the need to capture a comprehensive spectrum
of thermal conditions during the roasting process. This range was chosen to encompass a
variety of temperatures relevant to the transformation of wood following heat treatment. Fi-
nally, the roasted grapevine chips underwent sonication and macerative solvent extraction
in ethanol at 80 ◦C. This process was repeated four times in order to obtain four replicates.
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Figure 1. Grapevine chips from the Lambrusco Sorbara cultivar roasted at different temperatures
(from left to right: 120, 140, 160, 180, 200, 220 and 240 ◦C).

The process of removing the outer bark from the specimens is designed to mitigate
the presence of pesticides and contaminants. Additionally, strict adherence to Regulation
(EC) No. 1107/2009 of the European Parliament and of the Council [40,41], dated 21 Octo-
ber 2009, mandates precise compliance with safety intervals between the final pesticide
application and fruit harvesting. Collecting vine shoots post-harvest thus ensures a high
level of phytosanitary safety.

2.1. Proximate Analysis

Table 1 lists the proximate chemical composition of the grapevine chips from the four
studied cultivars: three PGI (Protected Geographical Indication)–PDO (Protected Desig-
nation of Origin) Lambrusco species, namely Malbo Gentile, Sorbara, and Grasparossa,
and PDO Spergola. Plant matrices exhibit chemical compositions and physical properties
that significantly hinge on their geographical origin, maturation degree [19,42], genotypic
characteristics [18,19,43], the soil type of cultivation, and meteorological conditions. The
sampling process was systematically carried out within the same geographical area and
during a consistent period of the year (20–25 September 2022). This approach ensured
constant exposure to atmospheric conditions, as well as uniform soil characteristics and
vine plant maturation levels across samples. Therefore, the variations highlighted in Table 1
primarily stem from genotypic differences.

Table 1. Proximate chemical composition of three Lambrusco cultivars Malbo Gentile, Sorbara and
Grasparossa, and Spergola grapevine canes.

Malbo Gentile Sorbara Grasparossa Spergola

Moisture (at 105 ◦C) % 18.0 ± 0.1 17.7 ± 0.2 17.6 ± 0.1 22.9 ± 0.4
C% * 45.7 ± 0.1 46.8 ± 0.1 46.9 ± 0.3 44.9 ± 0.2
H% * 6.99 ± 0.06 6.94 ± 0.07 6.92 ± 0.05 6.98 ± 0.07
N% * 0.46 ± 0.03 0.46 ± 0.05 0.44 ± 0.03 0.48 ± 0.04
S% * <0.1 <0.1 <0.1 <0.1

O% * # 43.8 ± 0.08 42.7 ± 0.06 42.6 ± 0.07 44.6 ± 0.05
Ash% * 3.01 ± 0.04 3.08 ± 0.05 3.09 ± 0.06 3.00 ± 0.05

* on dry basis at 105 ◦C. # by difference.
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The moisture content was similar among the woods of the red grape cultivars (Malbo
Gentile, Sorbara, and Grasparossa), while a slightly higher value characterized the white
grape variety Spergola. This observation is in agreement with earlier studies [44]. Woody
matrices, primarily consisting of hemicelluloses, cellulose, and lignin [45–47], typically
exhibit elevated levels of carbon and oxygen (C% and O%, respectively), along with
lower levels of nitrogen and sulfur (N% and S%, respectively). The findings presented
in Table 1 align with the established literature, where grapevine wood is characterized
by approximately 40–42% cellulose, 24–26% hemicellulose, and 18–21% lignin [48]. The
residual portion comprises minor compounds, including lipids, essential minerals, aro-
matic compounds, and bioactive molecules, such as polyphenols, vitamins, and other
antioxidants [16,17,49–51]. This extractable component fraction accounts for 8–10%.

2.2. Effect of Roasting on Sample Mass Loss

Table 2 shows the mass loss (∆m%) values obtained from the roasting at different
temperatures of grapevine cane samples of the four Vitis vinifera cultivars Malbo Gentile
(MG), Sorbara (SO), Grasparossa (GR), and Spergola (SP). Values are expressed as mean
± standard deviation of four replicates. Data followed by different letters in a column
indicate statistically significant differences (p < 0.05).

Table 2. Mass variation of roasted grapevine chips at different temperatures for the four Vitis vinifera
cultivars. Data followed by different letters in a column indicate statistically significant differences
(p < 0.05).

−∆m%

t/◦C Malbo Gentile (MG) Sorbara (SO) Grasparossa (GR) Spergola (SP)

120 29.69 ± 0.26 a 16.88 ± 0.24 a 12.90 ± 0.27 a 16.07 ± 0.19 a
140 36.29 ± 0.33 b 25.16 ± 0.18 b 34.09 ± 0.20 b 24.37 ± 0.23 b
160 37.18 ± 0.23 c 26.96 ± 0.22 c 42.04 ± 0.27 c 28.60 ± 0.19 c
180 37.64 ± 0.30 cd 28.66 ± 0.25 d 42.17 ± 0.25 c 29.46 ± 0.23 d
200 38.25 ± 0.33 d 30.60 ± 0.32 e 43.66 ± 0.27 d 30.60 ± 0.25 e
220 40.47 ± 0.29 e 34.38 ± 0.25 f 47.52 ± 0.34 e 33.42 ± 0.26 f
240 46.26 ± 0.32 f 39.21 ± 0.39 g 53.40 ± 0.35 f 37.30 ± 0.28 g
260 56.23 ± 0.37 g 46.24 ± 0.42 h 58.91 ± 0.50 g 42.72 ± 0.37 h

The data obtained are consistent with those reported in previous studies [17,19]. To
obtain a comprehensive understanding of the changes that roasting temperature induces in
the composition of matrices, it is important to look at the mass losses, which enable a quick
assessment of the degree of change resulting from heat treatment. The observed trend was
almost the same for all the samples examined, with a progressive decrease in the mass up
to 220 ◦C, followed by a more marked decrease at higher temperatures. In absolute terms,
the highest mass losses were observed for the GR and MG cultivars, which showed a loss
of 56.23–58.91% at 260 ◦C. In contrast, SP and SO showed a mass loss of 42–46%, indicating
a probable higher heat resistance, rigidity, and greater wood density for these cultivars.
Even if the greatest mass loss was observed above the roasting temperature of 220 ◦C, the
first degradation mechanism of hemicellulose and cellulose occurred already from 160 ◦C,
which consists of the loss of intermolecular water [36]. At this temperature, the effect of
roasting became significant because the wood gradually stiffened, losing its elasticity, and
the loss of structural water began. The slow increase in mass loss up to 140 ◦C is due to
moisture removal and the loss of volatile organic compounds (VOCs) and semi-volatile
organic compounds (SVOCs). Proteins persist up to 200–220 ◦C; therefore, starting from
this temperature range, the chemical structure of the biomass begins to destabilize and
partly depolymerize [52,53]. Furthermore, above 200 ◦C, hemicelluloses and cellulose start
to decompose effectively. The structural decay reactions of proteins occur at temperatures
up to 240 ◦C, leading to a strong mass loss above this temperature. The degradation of
lignin occurs over a wide thermal range, from 150 ◦C to over 500 ◦C, because of its high
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three-dimensional complexity. The units of lignin vary in composition and possess different
levels of thermal stability [54].

2.3. TPC–Total Phenolic Content

Table 3 shows the total phenolic content (TPC), obtained through the Folin-Ciocalteau
method, of the ethanolic extracts from roasted grapevine chips.

Table 3. TPC (mg GAE/g) of ethanolic extracts from roasted grapevine chips.

TPC (mg GAE */g)
◦C MG SO GR SP

nts # 21.84 ± 1.22 aAB 23.43 ± 1.36 aAB 24.63 ± 1.25 aAB 19.93 ± 1.15 aAB

120 18.56 ± 0.97 aAB 21.12 ± 1.32 aA 20.01 ± 0.99 aA 16.85 ± 0.87 aB

140 16.35 ± 1.12 bAC 20.31 ± 1.11 abB 17.56 ± 1.21 bAB 14.32 ± 0.96 bC

160 14.25 ± 0.86 bcAC 18.52 ± 0.96 bcB 15.48 ± 1.14 bcA 12.22 ± 0.64 cC

180 12.69 ± 0.89 cdA 17.44 ± 0.71 cB 13.2 ± 0.97 cdA 10.64 ± 0.43 cD

200 10.79 ± 0.46 dA 12.58 ± 0.87 dB 11.1 ± 0.62 deAB 8.62 ± 0.21 dC

220 8.36 ± 0.65 eA 11.43 ± 0.53 dB 9.59 ± 0.33 eC 5.44 ± 0.11 eD

240 4.53 ± 0.11 fA 7.77 ± 0.13 eB 6.35 ± 0.21 fC 3.10 ± 0.09 fD

* GAE = Gallic Acid Equivalent; nts # = no thermal stress; Data are expressed as mean ± standard deviation of
four replicates. Means in the same column followed by the same lowercase letter are not significantly different,
whereas means in the same row followed by the same uppercase letter are not significantly different. (Lowercase
letters for roasting temperature effect; uppercase letters for cultivar effect; Tukey-Kramer HSD test, at p < 0.05).

Upon analyzing the data presented in Table 3, several key insights regarding the
influence of roasting temperature on the total phenolic content (TPC) of grapevine wood
chips were obtained. The TPC values exhibited notable variations in the direct response
to the temperature at which the chips were roasted. This observation aligns with the
well-established fact that polyphenols, being thermally labile molecules, undergo structural
alterations under the influence of heat [55]. The same trend was observed for the four
cultivars in which an increase in roasting temperature was consistently associated with
a decrease in TPC. Examining the variations within individual cultivars emphasizes the
intricate relationship between grape variety and roasting temperature. Notably, among the
red grape cultivars, Lambrusco Sorbara demonstrated consistently higher TPC values at all
temperatures. This observation highlights the specific composition and phenolic stability
of Sorbara grapevine prunings, possibly due to varietal-specific chemical structures that
influence wood thermal stability. The samples from the Spergola cultivar, the only white
grape variety, consistently exhibited the lowest TPC values at all the roasting temperatures
tested. Red grape varieties possess higher levels of anthocyanins and proanthocyanidins,
which significantly contribute to their phenolic content. Anthocyanins, which are respon-
sible for the characteristic color of red grapes, also exhibit greater thermal stability than
other polyphenols. Therefore, during roasting, red grape-derived prunings may retain
a higher proportion of phenolic compounds, resulting in elevated TPC values. Factors
such as chemical structure, the presence of certain functional groups, interactions between
phenolic compounds and matrix constituents, and environmental factors such as pH can
collectively influence the susceptibility of polyphenols to thermal degradation [56].

2.4. Stilbenoid Concentration in the Different Samples of Roasted Grapevine Chips

This study investigates four main stilbenoids: trans-resveratrol, trans-ε-viniferin, trans-
piceatannol, and the main trimer of trans-resveratrol. The latter, identified as miyabenol C or
one of its various isomers [57], exhibits a molecular ion [M − H]− of 679 amu. The detected
stilbenoids were effectively quantified, and the total stilbenoid content was represented as
the sum of their concentrations expressed in trans-resveratrol equivalents.

Figure 2 shows a representative chromatogram of the reversed-phase UHPLC-MS/MS
analysis of the ethanolic extract of SO160.
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Figure 2. UHPLC-MS/MS chromatogram of the ethanolic extract of the sample SO160; chemical
structure of the identified stilbenoids (trans-piceatannol, trans-resveratrol, trans-ε-viniferin, miyabenol
C as the main trimer of trans-resveratrol).

As can be observed in Figure 2, the signals present in the chromatogram are not
exclusively associated with stilbenoids. They may encompass phenolic acids, flavonoids,
and organic acids—compounds not specifically investigated in this study but previously
identified by other authors [58].

Table 4 presents the results of the UHPLC-MS/MS analysis. Data are expressed as
mean ± standard deviation of four replicates. Data followed by different letters in a column
indicate statistically significant differences (p < 0.05).

Table 4. Stilbenoid concentrations in grape pruning cane samples roasted at different temperatures.
Data followed by different letters in a column indicate statistically significant differences (p < 0.05).

Stilbenoid Concentration (mg/kg) 1,2

Sample trans-Resveratrol trans-Piceatannol trans-ε-Viniferin Main Trimer Total

MG 997.3 ± 160.4 a 213.5 ± 51.8 a 281.2 ± 71.6 a 152.7 ± 57.5 a 1645 ± 345 a
MG120 956.7 ± 166.3 a 201.7 ± 62.3 a 268.1 ± 67.5 a 143.2 ± 66.3 a 1570 ± 372 a
MG140 903.9 ± 160.7 a 185.3 ± 48.5 ab 259.8 ± 61.2 ab 121.3 ± 47.8 a 1470 ± 318 a
MG160 741.3 ± 153.5 ab 156.8 ± 46.2 ab 246.9 ± 63.6 ab 100.6 ± 34.3 ab 1246 ± 298 a
MG180 643.8 ± 141.1 ab 136.8 ± 33.7 ab 223.5 ± 52.9 ab 71.02 ± 20.1 ab 1075 ± 248 ab
MG200 486.2 ± 138.6 bc 110.6 ± 39.9 ab 200.3 ± 49.8 abc 54.36 ± 9.9 b 851.5 ± 238.2 abc
MG220 233.1 ± 100.2 cd 83.51 ± 21.2 b 156.9 ± 47.6 bc NQ 473.5 ± 169.0 bc
MG240 96.23 ± 31.20 d NQ 129.3 ± 38.9 c NQ 225.5 ± 70.1 c

SO 1359 ± 164 a 247.4 ± 72.4 a 321.7 ± 76.8 a 167.6 ± 27.3 a 2095 ± 346 a
SO120 1269 ± 188.3 a 231.8 ± 77.5 a 299.6 ± 88.3 a 155.6 ± 36.9 a 1956 ± 391 a
SO140 1211 ± 182.3 ab 200.6 ± 69.9 a 276.2 ± 49.6 a 139.3 ± 41.0 ab 1827 ± 343 a
SO160 1082 ± 183.6 ab 189.3 ± 56.8 a 259.9 ± 80.7 ab 110.3 ± 25.8 ac 1641 ± 347 ab
SO180 911.3 ± 167.6 abc 169.8 ± 44.1 a 226.3 ± 52.3 ab 79.92 ± 19.9 bd 1387 ± 284 ab
SO200 796.2 ± 151.0 bc 144.8 ± 45.6 a 209.3 ± 47.6 ab 67.31 ± 21.3 cd 1218 ± 265 ab
SO220 523.4 ± 110.2 cd 109.7 ± 36.9 a 177.4 ± 35.5 ab 40.36 ± 7.8 cd 850.9 ± 190.4 bc
SO240 179.3 ± 80.9 d NQ 133.3 ± 20.1 b NQ 312.6 ± 101.0 c
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Table 4. Cont.

Stilbenoid Concentration (mg/kg) 1,2

Sample trans-Resveratrol trans-Piceatannol trans-ε-Viniferin Main Trimer Total

GR 1276 ± 188.7 a 231.7 ± 27.2 a 299.3 ± 56.5 a 158.0 ± 30.6 a 1965 ± 307 a
GR120 1220 ± 177.6 a 219.3 ± 20.6 a 284.6 ± 65.8 a 149.7 ± 21.0 a 1874 ± 285 a
GR140 1189 ± 171.2 a 199.6 ± 38.6 ab 270.5 ± 71.9 ab 127.6 ± 33.8 a 1787 ± 315 a
GR160 1002 ± 160.3 ab 177.6 ± 33.9 ab 253.2 ± 75.3 ab 105.9 ± 15.5 ab 1539 ± 285 ab
GR180 897.3 ± 138.7 ab 143.6 ± 41.8 abc 220.9 ± 62.2 ab 74.66 ± 10.2 b 1336 ± 253 ab
GR200 703.6 ± 140.2 bc 122.3 ± 22.4 bc 204.7 ± 48.5 ab 59.32 ± 10.4 b 1090 ± 221 bc
GR220 486.3 ± 120.3 cd 96.3 ± 18.9 c 168.3 ± 33.6 b NQ 750.9 ± 172.8 cd
GR240 135.6 ± 88.9 d NQ 130.6 ± 42.5 b NQ 266.2 ± 131.4 d

SP 960.3 ± 133 a 203.1 ± 54.9 a 272.4 ± 62.5 a 143.2 ± 45.7 a 1579 ± 296 a
SP120 901.7 ± 152.3 a 188.5 ± 49.8 a 255.3 ± 66.9 a 135.6 ± 58.3 a 1481 ± 347 a
SP140 864.2 ± 144.6 a 163.2 ± 33.7 ab 241.9 ± 67.5 a 111.9 ± 46.9 ab 1381 ± 293 a
SP160 710.6 ± 133.6 ab 150.2 ± 38.7 ab 233.6 ± 31.1 ab 96.3 ± 22.1 ab 1191 ± 225 a
SP180 530.5 ± 117.3 bc 129.8 ± 40.2 ab 200.4 ± 77.6 ab 55.51 ± 15.3 ab 916.2 ± 250.4 ab
SP200 261.7 ± 99.8 cd 100.3 ± 35.9 ab 148.3 ± 36.6 ab 40.32 ± 8.8 b 550.6 ± 181.1 bc
SP220 80.24 ± 23.5 d 74.32 ± 20.1 b 110.3 ± 33.7 ab NQ 264.9 ± 77.3 c
SP240 68.88 ± 34.6 d NQ 91.32 ± 21.1 b NQ 160.2 ± 55.7 c

1 Data are expressed as mean ± standard deviation of four replicates. 2 Data are expressed as trans-resveratrol
equivalents [18,19]. NQ means detected but not quantified because of very low levels.

Before examining the values obtained in this work, let us focus on the data related to
the stilbenoid content of the untreated natural samples. It is well known from the literature
that plant enzymatic systems remain active for at least 6–8 months, even after the removal
of pruning shoots, resulting in an increase in the concentration of stilbenoids produced and
synthesized by natural biocycles [21]. Therefore, we collected some literature data for an
effective comparison with our results (Figure 3) [21,42]. The data examined relate to the
different maturation times for grapevine wood samples. In particular, the PN Bulnes 2, PN
Bulnes 3, and PN Negrete cultivars were analyzed after 2 and 6 months from collection,
while the PN France cultivar was analyzed after 4 months. It is important to note that our
samples were analyzed only 2 weeks after collection.
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In Figure 3, the trend related to the stilbenoid content in grapevine shoots from
different Vitis vinifera cultivars from various geographical regions is depicted.

To simplify the comparison, we present data for only one variety, namely Pinot Noir
(PN) from Bulnes and Negrete (Chile), as well as Villenave d’Ornon (France). The plant
materials underwent various stages of maturation: the Chilean PN samples were matured
for 2 and 6 months after harvest before analysis, while the French samples were from
shoots matured for 4 months. It is interesting to note that the Chilean samples showed an
approximately fivefold increase in stilbenoid content from 2 to 6 months of maturation,
while the values for the French samples reached approximately 8 g/kg of dry wood after
4 months of storage.

Our samples, originating from cultivars different from PN, were analyzed approxi-
mately 2 weeks after harvest. However, the stilbenoid content is approximately twice that
of the Chilean PN samples aged for 2 months and roughly half of the values for shoots
aged for 6 months.

The data for the French PN averages are significantly higher than our values by a
factor ranging from 4 to 5 times. This substantial difference can be attributed, in part, to the
different cultivars being compared, but especially to the wood aging time, 4 months versus
2 weeks. These quantitative observations should be taken into careful consideration if there
is a need to utilize vine pruning waste biomass to extract bioactive molecules and com-
pounds for productive purposes, starting from mature wood under ordinary conditions.

The significant differences in stilbenoid concentrations among the samples from differ-
ent grape cultivars, despite identical cultivation under consistent climatic and geographical
conditions, highlight the presence of strong genotypic differences. Spergola, the only white-
berry cultivar, had the lowest overall stilbenoid content. Moreover, the most significant loss
(−90%) was observed when moving from the 120 ◦C-roasted sample to the 240 ◦C-roasted
one. In contrast, the other three cultivars showed a reduction of approximately 85%.

Trans-resveratrol had the highest concentration, followed by trans-ε-viniferin, trans-
piceatannol, and the main trimer of trans-resveratrol. As expected, the concentration values
decreased as the roasting temperature increased, mainly because of the thermal instability
of the stilbenoids. This leads to the non-quantification of trans-piceatannol and the main
trimer of trans-resveratrol in some samples roasted at least 220 ◦C.

Figure 4 illustrates the relative percentage difference in the total concentration of
stilbenoid between two consecutive thermal steps. ∆C% is calculated as:

∆C% =
Ci − Cf

Ci
%

where Ci and Cf represent the total stilbenoid concentrations in two consecutive ther-
mal steps (for example, the total stilbenoid concentrations in MG120 and MG140). This
value provides information on the extent to which a specific thermal step affects the total
stilbenoid concentration.

From Figure 4, it is evident that an increase in temperature not only results in the
reduction of stilbenoids, as indicated in Table 4, but also amplifies the degree of the
reduction itself. This effect is particularly pronounced in the Lambrusco Malbo Gentile
and especially Spergola cultivars, which experience a loss exceeding 40% during the
200–220 ◦C thermal step. This may deter the use of roasting temperatures above 200 ◦C
to retain a large quantity of stilbenoids. Moreover, a recent study demonstrated that
temperatures exceeding 200 ◦C can result in the emission of certain toxic compounds,
including benzene, toluene, and xylenes [35]. Conversely, starting at 160 ◦C, volatile
organic compounds characteristic of wood roasting are emitted, contributing to a pleasant
aroma. Therefore, selecting temperatures within the range of 160–180 ◦C can constitute a
favorable compromise between preserving the total stilbenoid content and enhancing the
aroma imparted by roasted grapevine chips.
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To the best of our knowledge, according to studies concerning the concentration of
stilbenes in grapevine canes, it has been observed that the concentration of trans-resveratrol
falls within the range of 100 to 4700 mg/kg dw, while trans-ε-viniferin ranges from less
than 100 to 1700 mg/kg dw. It is important to note that these studies pertain to grapevine
chips that have not undergone any thermal treatment. Our findings are almost in line with
the data available in this dataset, indicating the reliability and consistency of our results.
There were exceptions to samples MG240, SP220, and SP240, wherein the concentration of
trans-resveratrol fell below the lower limit of the range (100 mg/kg dw).

The levels of stilbenes in our samples indicate substantial potential for commercial
applications due to their strong antioxidant properties. This observation becomes even
more interesting when considering that it involves waste grapevine wood, traditionally
perceived as having little inherent value. By highlighting the modest yet existent levels
of stilbenes, we underscore the possibility of extracting value from what might otherwise
be overlooked as mere waste material. Stilbenes, such as trans-resveratrol and trans-ε-
viniferin, are highly regarded for their bioactive properties, making them valuable in both
the nutraceutical and pharmaceutical industries. Additionally, it is worth highlighting that
stilbenes are known for their significant anti-phytopathogenic properties, making them
advantageous for plant protection.

3. Materials and Methods
3.1. Reagents and Standards

Ethanol (96%) was obtained from Carlo Erba Reagents, Milano (Italy). HPLC-grade
methanol and formic acid were obtained from Sigma Aldrich (St. Luis, MO, USA). Deion-
ized water was produced using a Milli-Q Plus (Millipore system). Trans-resveratrol standard
was obtained from Sigma Aldrich, distributed by Merck KGaA (Darmstadt, Germany).

3.2. Sample Preparation

Grapevine canes of Vitis vinifera cv. Malbo Gentile (MG), Sorbara (SO), Grasparossa
(GR) and Spergola (SP) were collected in a farm of the territorial district of Modena (Italy).
The vine plants grew under the same climatic and hydric conditions and on the same soil.
To avoid any contamination by pesticides and fungicides typically deposited on the outer
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bark, we selected only the internal parts of the grapevine canes. The outer layer was peeled
off and manually removed.

The sampling was carried out in September 2022, and the pruned canes were air-dried
at room temperature for one week.

All the samples were manually dehulled, minced, reduced to 4–5 mm chips, closed
in glass containers, and thermally treated for 2 h at different temperatures: 120, 140, 160,
180, 200, 220, 240 ◦C in an inert atmosphere (N2). They were then manually ground into
powder and extracted through maceration with ethanol.

3.3. Proximate Composition

Moisture, ash, and elemental analysis were determined following the methods rec-
ommended by the Association of Official Analytical Chemists [59]. Moisture content was
determined by drying the grapevine cane samples at 105 ◦C to a constant weight. The ash
content was determined using a laboratory furnace at 550 ◦C and the temperature was
gradually increased. Each measurement was performed in quadruplicate, and the results
were averaged.

3.4. Macerative Solvent Extraction

For the extraction of the active components, 2 g (±1%) of milled grapevine canes was
placed into the extraction vessel, covered with ethanol 96% v/v (10 mL/g of powdered
material), and closed with a PBT screw cap. They were sonicated for 1 h at 35 ◦C and
macerated for 24 h in an oven at 80 ◦C. The extracts were then filtered, and the solid was
washed three times with 10 mL of ethanol to collect the washing in the filtrate. The extracts
were dried using a rotary evaporator, and the final step was conducted in an oven at 70 ◦C
for 2 h before quantification. The final products had a pitchy/powdery consistency and
were stored at 4 ◦C until analysis.

3.5. HPLC-DAD Analysis

The quantification of stilbenes was performed using HPLC-DAD analysis. Trans-
resveratrol standards were processed and analyzed in replicates. Analytes were separated
using a C18 Cortecs column (2.7 µm, 2.1 mm × 100 mm) (Waters Co., Milford, MA, USA).
The analysis was performed at a constant flow rate of 0.3 mL/min, using a binary gradient
elution with acidified water (0.1% formic acid), methanol 80:20 (mobile phase A), and
methanol 100% (mobile phase B). The gradient was programmed as follows: 0 min, 20% B;
25 min, 98%, and held for 5 min to return to the initial conditions. Finally, a conditioning
cycle of 10 min under initial conditions was adopted. UV detection was performed at
280 nm and 325 nm. The stilbenoid content was determined from the calibration curve
of the trans-resveratrol standards (injected concentrations ranging from 2 to 500 µg/mL).
The linearity of the response (correlation coefficient R2 = 0.9982) of the trans-resveratrol
standards was determined by plotting the peak area versus its concentration.

3.6. UHPLC-MS/MS Analysis

A UHPLC system coupled with an Orbitrap Q-Exactive equipped with a micro-ESI
(Thermo Fisher Scientific, Waltham, MA, USA) was used. All samples were processed
and analyzed in replicates. Analytes were separated using a C18 Cortecs column (2.7 µm,
2.1 mm × 100 mm) (Waters Co., Milford, MA, USA). The analysis was performed under
the same conditions as those used for the quantification of trans-resveratrol via HPLC-DAD
analysis. The analysis was performed at a constant flow rate of 0.3 mL/min, using a binary
gradient elution with acidified water (0.1% formic acid), methanol 80:20 (mobile phase A),
and methanol 100% (mobile phase B). The gradient was programmed as follows: 0 min, 20%
B; 25 min, 98%, and held for 5 min to return to the initial conditions. Finally, a conditioning
cycle of 10 min under initial conditions was adopted. Electrospray ionization in negative
mode was used. Detection was performed considering a mass range of 50–1000 u.m.a.
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Compounds in the extracts were identified according to their mass spectrum, and for
trans-resveratrol only, the retention time was compared to the external standard. Quan-
tification was performed using an external calibration curve, with trans-resveratrol as the
external standard, and the results were expressed as trans-resveratrol equivalents.

3.7. Statistical Analysis

The experimental data were compared by conducting an analysis of variance (one-way
ANOVA) with Tukey-Kramer honestly significant difference (HSD) post hoc testing, by
using the Matlab® 2023a environment (Mathworks Inc., Natick, MA, USA). The level of
significance was determined at p < 0.05 to see whether there were statistical differences
between the mean values.

4. Conclusions

In this study, an analysis of the total phenolic content (TPC) and stilbenoid content in
roasted grapevine canes derived from three Lambrusco cultivars, Sorbara, Grasparossa and
Malbo Gentile, and Spergola cultivar was conducted. Stilbenoids are compounds of signifi-
cant interest because of their potential applications in the pharmaceutical and nutraceutical
sectors. Additionally, these molecules have displayed promising anti-phytopatogenic
properties, opening doors for potential applications in agriculture. Our main aim was to
demonstrate that grapevine canes maintained substantial concentrations of stilbenoids,
even after heat treatment. This resilience offers prospects for applications in the food indus-
try, particularly as wood chips used for infusion during the aging of alcoholic beverages
and vinegars. In this context, roasting is fundamental for boosting the aromatic notes of
grapevine wood. Furthermore, we sought to investigate whether variances in stilbenoid
content exist among different cultivars and are influenced by genotypic variations. The
stilbenoids quantified included trans-resveratrol, trans-viniferin, trans-piceatannol, and
the main trimer of trans-resveratrol. Among the cultivars studied, Spergola exhibited
the lowest concentration values. In contrast, the Sorbara cultivar displayed the highest
stilbenoid values, followed by GraspaRossa and Malbo Gentile. The TPC followed the
same trend among the four cultivars. The stilbenoid content decreased with increasing
roasting temperature, and the magnitude of the decrease progressively increased. Notably,
the concentration values observed in our roasted grapevine cane samples were consistent
with the trends observed in similar non-heat-treated samples. This reaffirms that despite
the roasting process, these materials retain their high polyphenol content.

Finally, the findings of this study hold considerable significance in the context of
sustainable resource utilization. By demonstrating the retention of high stilbenoid content
in roasted grapevine canes, we highlight a sustainable avenue for the reintegration of
agri-food byproducts into production cycles. This not only aligns with the principles of a
circular economy but also reduces the ecological burden associated with waste disposal.
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