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Abstract: Increasing antimicrobial resistance to the action of existing antibiotics has prompted re-
searchers to identify new natural molecules with antimicrobial potential. In this study, a green
system was developed for biosynthesizing gold nanoparticles (BAuNPs) using sage (Salvia officinalis
L.) leaf extract bioconjugated with non-toxic, eco-friendly, and biodegradable chitosan, forming
chitosan/gold bioconjugates (Chi/BAuNPs). Characterization of the BAuNPs and Chi/BAuNPs
conjugates takes place using transmission electron microscopy (TEM), X-ray spectra, Fourier trans-
form infrared (FT-IR) spectroscopy, and zeta potential (Z-potential). The chemical composition of
S. officinalis extract was evaluated via gas chromatography/mass spectrometry (GC/MS). This study
evaluated the antioxidant and antimicrobial activities of human pathogenic multidrug-resistant
(MDR) and multisensitive (MS) bacterial isolates using the agar diffusion method. Chi/BAuNPs
showed inhibition of the MDR strains more effectively than BAuNPs alone as compared with a posi-
tive standard antibiotic. The cytotoxicity assay revealed that the human breast adenocarcinoma cancer
cells (MCF7) were more sensitive toward the toxicity of 5-Fu + BAuNPs and 5-Fu + Chi/BAuNPs
composites compared to non-malignant human fibroblast cells (HFs). The study shows that BAuNPs
and Chi/BAuNPs, combined with 5-FU NPs, can effectively treat cancer at concentrations where the
free chemical drug (5-Fu) is ineffective, with a noted reduction in the required dosage for noticeable
antitumor action.

Keywords: multidrug-resistant bacteria; chitosan–capping AuNPs; cell viability; antibacterial;
antioxidants; anticancer; S. officinal extract; composite nano characterization

1. Introduction

AMR, or antimicrobial resistance, represents a serious threat to our society. It occurs
when multidrug-resistant bacteria (MDR) gain resistance to the available antimicrobials
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and/or chemotherapeutic medicines [1]. Specific resistance to the majority of antibiotics has
emerged to date. Innovative and potent antibacterial strategies must be developed immedi-
ately [2]. There are two key issues that need to be resolved: first, there are no new classes
of antibiotics; second, the time between the commercial release of new versions of existing
antibiotics and the emergence of resistant bacterial strains is becoming shorter [3]. Due to
rising drug resistance, antibiotics have recently been administered in higher doses, and the
toxicity that has resulted has brought attention to the necessity of developing and defining
novel and effective antimicrobial treatments [4–7]. Recently, there have been two models
of in vitro and in vivo research; the creation of novel potential alternative antimicrobial
agents to combat bacterial infections and for drug administration has been made possible
by the development of nanotechnology [8,9]. It is possible to use nanoparticles safely
in the medical field using the environmentally friendly method of biosynthesis [10,11].
Nanomaterials with antibacterial properties against human pathogenic bacteria and fungi
include gold, silver, copper, selenium, titanium, zinc oxide, and magnesium oxide [12–16].

Due to their distinctive qualities, including customizable size, shape, surface prop-
erties, optical properties, biocompatibility, low cytotoxicity, and excellent stability, gold
nanoparticles are among the most-often-utilized metals for biomedical applications [17–19].

Many potential medicinal uses of AuNPs, including as drugs and gene delivery, have
been investigated [20,21]. The synthesis, stabilization, and functionalization of AuNPs
are major areas of scientific focus [22]. After repeated treatments, the body may accu-
mulate AuNPs at toxic levels [23]. As a result, the majority of AuNPs research is still
in the preclinical stage [24]. It is recommended to utilize non-toxic reagents to increase
the biocompatibility of AuNPs [25]. These ideas have given rise to a number of papers
that proposed novel methods for synthesizing green AuNPs using green reduction and
protection agents. These agents’ function is to adsorb onto the surface of the freshly created
NPs in order to stop further growth and particle aggregation [26,27]. Plants have provided
the majority of these reducing and stabilizing substances [14,28]. Several protective agents
are frequently employed to stabilize and cap the nanoparticles. Organic, inorganic, or
complex systems found in nature can be used as capping agents. Chitosan is a biopolymer
composed of polysaccharides that exhibits remarkable biocompatibility, biodegradability,
and low toxicity [29–32].

A wide range of complex nutrients and bioactive metabolites, including alkaloids, pheno-
lic compounds, proteins, fatty acids, carbs, and amino acids, are found in plant extracts and are
essential for the production, reduction, and capping of nanoparticles [33,34]. The largest genus
of plants in the Lamiaceae family, Salvia officinalis L., contains about 900 species [35]. Due to this
plant’s antibacterial, anticancer, antifungal, and anti-inflammatory characteristics, it has, for a
long time, been used in traditional medicine to treat illnesses such as colds, gastrointestinal
problems, bronchitis, malignancies, and tuberculosis [36].

In previous studies, the Salvia officinalis herbal plant has been chosen for the synthesis
of gold nanoparticles, and the indoor work shows that this plant has been widely used in
pharmacognosy [37–40]. AgNPs were successfully biosynthesized using Salvia officinalis leaf
extract as an efficient biological coating and a stabilizing agent, nanomaterials showing significant
antibacterial activities against Salmonella typhimurium, Pseudomonas aeruginosa, Staphylococcus aureus,
and Escherichia coli [41]. The green synthesis of silver nanoparticles (SVAgNPs), obtained using
aqueous extracts of Salvia verticillata with biological properties, showed promising antimicrobial
potential, antioxidant activity, and significant cytotoxic activity (IC50 31.50 µg/mL) against human
colon cancer HCT-116 cell lines; moreover, SVAgNP showed pronounced antibacterial activity
(MIC < 39.1 µg/mL) for most of the tested bacterial species, i.e., Micrococcus lysodeikticus ATCC
4698, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Klebsiella pneumonia ATCC
70063, Pseudomonas aeruginosa ATCC 10145, Bacillus cereus ATCC 10876, Bacillus subtilis ATCC 6633,
Salmonella enteritidis ATCC 13076, Salmonella typhimurium ATCC 14028, Staphylococcus epidermidis
ATCC 12228, and Staphylococcus aureus ATCC 25923 [42]. Furthermore, the antifungal activity
of biosynthesized ZnONPs using aqueous leaf extract of S. officinalis was determined against
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different clinical Candida albicans isolates that showed significant growth inhibition to the tested
clinical C. albicans isolates [43].

The main objective of the present work was to biosynthesize environmentally friendly
gold nanoparticles in an aqueous extract of S. officinalis (BAuNPs), to prepare non-toxic and
biodegradable chitosan-coated, green-synthesized gold nanoparticle conjugates (Chi/BAuNPs),
and to characterize their different properties, such as their synthesis rate, yield, stability, crys-
tallite size, and morphology. Next, we evaluated the antioxidant and antibacterial activi-
ties of BAuNPs and Chi/BAuNPs composites against multidrug-resistant bacteria such as
Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli, (E. coli), Klebsiella pneumonia (K. pneumonia),
and Staphylococcus aureus (S. aureus). In addition, we evaluated, in vitro, the cytotoxic effect of
the free 5-Fu, or in combination with diverse concentrations of BAuNPs and Chi/BAuNPs,
against human breast adenocarcinoma cells (MCF7) and non-malignant human fibroblast
cells (HFs).

2. Results

2.1. Chemical Analysis of Aqueous Extract from S. officinalis Leaves

2.1.1. Chemical Composition

The percentages and retention times (RI) of the chemical compounds in the aque-
ous extract of S. officinalis, identified using GC-MS analysis, are shown in Figure 1 and
summarized in Table 1. The main fractions detected were richness in salvianolic acid
(20.69%), rosmarinic acid (11.42%), caffeic acid hexoside (10.19%), luteolin-7-o-rutinose
(9.78%), apigenin (8.66%), apigenin-7-glucoside (8.12%), dicaffeoylquinic acid (7.76%), car-
vacrol (6.03%), methyl rosmarinate (4.14%), thujone (2.37%), salvigenin (2.0%), ferulic acid
derivative (1.88%), and camphor (0.53%) (Table 1), which have many bioactive properties,
including antimicrobial, antitumor, and antioxidant activities. Many medicinal plants have
a natural terpene.
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Figure 1. GC-MS of aqueous extract from leaves of Salvia officinalis.

Table 1. The relative percentage of S. officinalis aqueous extracts constituents.

ID Name of the Compound Retention Time
(min) Peak Area (%) Identification *

1 Rosmarinic acid 4.089 11.4228361 RI, MS
2 Sabinene 4.628 1.07748449 RI, MS
3 β-pinene 5.443 0.55135934 RI, MS
4 5-O-Caffeoylquinic acids 5.604 0.81992173 RI, MS
5 Quercetin 3-O-rhamnoside 5.960 1.29482077 RI, MS
6 Caffeic acid hexoside 17.287 10.1940505 RI, MS
7 Ferulic acid 17.432 1.87677256 RI, MS
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Table 1. Cont.

ID Name of the Compound Retention Time
(min) Peak Area (%) Identification *

8 Dicaffeoylquinic acid 18.532 7.76416171 RI, MS
9 Ferulic acid derivative 19.048 0.58989134 RI, MS
10 Carnosic acid 20.214 0.36857071 RI, MS
11 Salvianolic acid C 20.220 20.6931596 RI, MS
12 Carvacrol 36.884 6.03691661 RI, MS
13 Camphor 38.509 0.53245347 RI, MS
14 Thujone 38.816 2.37399975 RI, MS
15 Methyl rosmarenate 40.611 4.13873184 RI, MS
16 Methyl carnosate 40.89 1.68127316 RI, MS
17 Apigenin 49.700 8.6623548 RI, MS
18 Luteolin-7-o-rutinose 49.916 9.785653 RI, MS
19 Apigenin-7-glucoside 52.649 8.12475124 RI, MS
20 Salvigenin 55.912 2.0040468 RI, MS
21 Total -- 99.993 -

* (RI, MS): Identification of compounds via relative indices and mass spectra.

2.1.2. Phenolic Content

The phenolic content in an aqueous extract from the leaves of S. officinalis was
173.3 ± 27.61 mg GAE/g of extract. Since phenolic acids were found to be the major
class of phenolic compounds for all the studied species, salvianolic acid, rosmarinic, fer-
ulic, p-coumaric chlorogenic, and caffeic acids were frequent occurrences in S. officinalis
plants [44–46], and, in vitro, they showed antioxidant activity [47]. The highest concentra-
tion of rosmarinic acid in S. officinalis was also reported by Farhat et al. [48].

2.2. Preparation of Green-Synthesized AuNPs Conjugates

Gold nanoparticle (BAuNPs) conjugates were prepared through green-synthesized
S. officinalis aqueous extract. The prepared BAuNPs were characterized using TEM, EDX,
and FTIR, particle size was measured using zeta potential analysis, and they were further
tested for their antioxidant, antibacterial, and anticancer properties.

2.3. Characterization of BAuNPs

2.3.1. UV-Vis Spectroscopy

The surface plasmon resonance (SPR) absorption spectra ranged from 100 to 800 nm,
indicating that AuNPs were generated during overnight incubation. The SPR of the formed
BAuNPs was at 530 nm, while the SPR absorption spectral ranged from 400 to 600 nm
(Figure 2).
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Figure 2. UV-Vis spectroscopy graphs of green-synthesized gold nanoparticles using aqueous extract
from leaves of S. officinalis as a reducing agent.
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2.3.2. The Transmission Electron Microscopy Analysis of BAuNPs

The most effective technique for measuring the morphological structure and precise
particle size of the green-synthesized BAugNPs produced from S. officinalis plant extracts is
TEM (Figure 3). The TEM image shows spherical aggregated shapes with sizes in the range
of 15 to 70 nm on average.
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2.3.3. EDX Analysis of BAuNPs

Energy-dispersive X-ray spectroscopy (EDX) analysis of green-synthesized gold
nanoparticles confirmed the existence of gold ions in the TEM-investigated BAuNP. The
EDX spectra were performed at 9.7, 11.3, and 23 Ke V (Figure 4), which are consistent with
a previous study [24], and the EDX spectra revealed the existence of several well-defined
peaks associated with the gold nanostructures (Au); the carbon (C) component peak is
attributed to the TEM grid, and the detector window [49] and oxygen (O) peak may be due
to traces of phytochemicals in the S. officinalis extract [50,51].

Molecules 2023, 28, x FOR PEER REVIEW 6 of 24 
 

 

 
Figure 4. Energy-dispersive X-ray spectroscopy spectra of BAuNPs from the extracts of S. officinalis. 

2.3.4. The FT-IR Spectrum Analysis of BAuNPs 
Fourier transform infrared spectroscopy (FT-IR) spectrum analysis of green-synthe-

sized S. officinalis BAuNPs was performed by reducing the molecular interaction and using 
the S. officinalis extract as a capping agent, which enhanced the formation and stabilized 
the BAuNPs (Figure 5). The FT-IR spectra of BAuNPs show many peaks of functional 
groups at different wave numbers (3265, 2914, 2849, 1625, 1536, 1446, 1382, 1233, 1178, 
1095, 1033, 609, and 421 cm−1). The spectrum of the synthesized BAuNPs exhibited absorp-
tion bands at 2914 and 3265 cm−1. The stretched broad band observed at 3265 cm−1 absorb-
ance and the band at 2914 cm−1 may correspond to the C-H stretching vibrations of the 
alkanes group and the aldehydic variable group, whereas the peak at 2849 cm−1 matched 
the vibration of the amino acid group (N-H). The band at 1625 cm−1 indicates the existence 
of a strong carbonyl (C=O) group of amide I, and the narrow peak at 1536 cm−1 reveals the 
presence of a strong carbonyl (C=O) group of amide II and the C=N stretching vibration 
group. However, the peak at 1446 cm−1 may be because of the –N-H group. The peak at 
1233 cm−1 may be because of the –C-O group. The narrow peak at 1095 cm−1 can be assigned 
to the presence of C-N stretching vibrations of aliphatic amines. General bands and as-
signments of the FTIR spectra of Salvia officinalis, 609 cm−1 band (600–680 cm−1, -alkyne C-H 
bend), 1178−1 (1130–1190−1, -secondary amine –CH stretch), 1233−1 (1220–1270−1, -PO2-antisymmetric 
str), 1033 cm−1 and 1095 cm−1 (900–1200 cm−1, -C-O, C-C str., C-O-H, C-O-C def (carbohydrate), 
1382 cm−1 (1370–1420 cm−1, -organic sulfate), 1446 cm−1 (1430–1470 cm−1, -methyl C-H asym/sym 
bend), 1625 cm−1 (1590–1680 cm−1, -C = C str), and 2849 (1845–1855,-C-H str. (sym) of CH2 from lipid 
acyl chains) are as described Pin references [52–55]. The 3265 band (3400–3200 cm−1, hydroxyl 
group (O–H) and H-bonded stretching) is characteristic of polyphenolic compounds [56]. 

Figure 4. Energy-dispersive X-ray spectroscopy spectra of BAuNPs from the extracts of S. officinalis.



Molecules 2023, 28, 7762 6 of 23

2.3.4. The FT-IR Spectrum Analysis of BAuNPs

Fourier transform infrared spectroscopy (FT-IR) spectrum analysis of green-synthesized
S. officinalis BAuNPs was performed by reducing the molecular interaction and using the
S. officinalis extract as a capping agent, which enhanced the formation and stabilized the
BAuNPs (Figure 5). The FT-IR spectra of BAuNPs show many peaks of functional groups at
different wave numbers (3265, 2914, 2849, 1625, 1536, 1446, 1382, 1233, 1178, 1095, 1033, 609,
and 421 cm−1). The spectrum of the synthesized BAuNPs exhibited absorption bands at 2914
and 3265 cm−1. The stretched broad band observed at 3265 cm−1 absorbance and the band
at 2914 cm−1 may correspond to the C-H stretching vibrations of the alkanes group and the
aldehydic variable group, whereas the peak at 2849 cm−1 matched the vibration of the amino
acid group (N-H). The band at 1625 cm−1 indicates the existence of a strong carbonyl (C=O)
group of amide I, and the narrow peak at 1536 cm−1 reveals the presence of a strong carbonyl
(C=O) group of amide II and the C=N stretching vibration group. However, the peak at
1446 cm−1 may be because of the –N-H group. The peak at 1233 cm−1 may be because of
the –C-O group. The narrow peak at 1095 cm−1 can be assigned to the presence of C-N
stretching vibrations of aliphatic amines. General bands and assignments of the FTIR spectra
of Salvia officinalis, 609 cm−1 band (600–680 cm−1, -alkyne C-H bend), 1178−1 (1130–1190−1,
-secondary amine –CH stretch), 1233−1 (1220–1270−1, -PO2-antisymmetric str), 1033 cm−1

and 1095 cm−1 (900–1200 cm−1, -C-O, C-C str., C-O-H, C-O-C def (carbohydrate), 1382 cm−1

(1370–1420 cm−1, -organic sulfate), 1446 cm−1 (1430–1470 cm−1, -methyl C-H asym/sym
bend), 1625 cm−1 (1590–1680 cm−1, -C = C str), and 2849 (1845–1855,-C-H str. (sym) of CH2
from lipid acyl chains) are as described Pin references [52–55]. The 3265 band
(3400–3200 cm−1, hydroxyl group (O–H) and H-bonded stretching) is characteristic of polyphe-
nolic compounds [56].

Molecules 2023, 28, x FOR PEER REVIEW 7 of 24 
 

 

 
Figure 5. FT−IR analysis of BAuNPs. 

2.3.5. Particle Size Analysis 
Generally, it seems the role of adding the aqueous S. officinalis extract to the BAuNPs 

synthesized process is that of a reducing and capping agent that has a high content of 
bioactive compounds of polyphenols, flavonoids, and terpenoids fractions, accelerating 
the nucleation process and the formation of green-synthesized AuNPs at a small size. 
Therefore, adding the S. officinalis extract will lead to stopping the reducing reaction and 
result in a reduction in the particle size of the produced BAuNPs. The sizes of the obtained 
BAuNPs nanoparticles, measured using zeta potential as a mean value of the formed 
BAuNPs composite size, was 21.6 nm (Figure 6). The polydispersity index (PI) of the syn-
thesized BAuNPs was 0.219. 

 
Figure 6. Histograms of the particle size distribution via zeta potential analysis of the green-synthe-
sized BAuNPs composites using aqueous leaf extract of S. officinalis as a reducing agent. 

  

Size Distribution by Intensity 

Size (d.nm) 

In
te

ns
ity

 (P
er

ce
nt

) 

Figure 5. FT−IR analysis of BAuNPs.

2.3.5. Particle Size Analysis

Generally, it seems the role of adding the aqueous S. officinalis extract to the BAuNPs
synthesized process is that of a reducing and capping agent that has a high content of
bioactive compounds of polyphenols, flavonoids, and terpenoids fractions, accelerating the
nucleation process and the formation of green-synthesized AuNPs at a small size. Therefore,
adding the S. officinalis extract will lead to stopping the reducing reaction and result in a
reduction in the particle size of the produced BAuNPs. The sizes of the obtained BAuNPs
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nanoparticles, measured using zeta potential as a mean value of the formed BAuNPs
composite size, was 21.6 nm (Figure 6). The polydispersity index (PI) of the synthesized
BAuNPs was 0.219.
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2.4. DPPH and ABTS Scavenging Activities

The radical scavenging activities of green-synthesized S. officinalis BAuNPs and
chitosan-coated BAuNPs (Chi/BAuNPs) conjugates at different dilutions (100, 200, and
300 µg/mL) of nanoparticles were screened in vitro using DPPH (1,1-Diphenyl-2-
picrylhydrazyl) radical scavenging activity and ABTS (2,2-azinobis-(3-ethylbenzothiazoline-
6-sulfonicacid) radical cation photometric assays. DPPH scavenging activities are based on
their reduction in the presence of an antioxidant as a donor compound. In this work, the
inhibitory results of different concentrations of BAuNP and Chi/BAuNP on DPPH and
ABTS free radicals are presented in Table 2, and IC50 values are recorded in Figure 7.

Table 2. The percentage inhibition of DPPH and ABTS free radicals in the presence of different
concentrations of green-synthesized AuNPs and Chi/BAuNPs conjugates, using ascorbic acid as a
positive control.

Concentrations (µg/mL) % DPPH % ABTS

BAuNPs
100 22.60 ± 1.06 17.65 ± 0.15
200 34.15 ± 4.62 28.21 ± 2.025
300 51.08 ± 3.86 44.22 ± 4.02

Chi/BAuNPs
100 29.32 ± 2.61 22.46 ± 1.62
200 54.28 ± 3.05 36.7 ± 1.09
300 69.84 ± 6.15 53.15 ± 2.45

Ascorbic acid
100 56.22 ± 4.6 36.62 ± 3.06
200 63.59 ± 6.8 51.82 ± 2.56
300 81.05 ± 8.41 67.26 ± 3.87
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Overall, the scavenging abilities of Chi/BAuNPs and BAuNPs against DPPH and ABTS
free radicals were dose-dependent since an increase in inhibition activities against both
radicals was observed when increasing the concentrations of BAuNPs and Chi/BAuNPs
conjugates. The maximum inhibition percentage of the ABTS radical was 53.15% and recorded
at an application of 300 µg/mL Chi/BAuNPs, followed by 44.22% observed at 300 µg/mL
of BAuNPs composites, as compared with the 67.26% recorded in 300 µg/mL ascorbic
acid (positive control), while the minimum inhibition (17.65%) was observed at 100 µg/mL
of green-synthesized BAuNPs composites (Table 2). The IC50 values of ABTS inhibition
were 18.12 ± 0.02 µg/mL and 13.47 ± 0.026 µg/mL with the application of BAuNPs and
Chi/BAuNPs composites, respectively, as compared with 7.64± 0.032µg/mL in ASA (positive
control) (Figure 7), while the maximum inhibition percentage of the DPPH radical was 69.84%,
recorded at an application of 300 µg/mL of Chi/BAuNPs, followed by 51.08% observed at
300 µg/mL of BAuNPs composites, as compared with 81.05% recorded in 300 µg/mL ascorbic
acid (positive control),while the minimum inhibition percentage was 22.60% at 100 µg/mL
of green-synthesized BAuNPs composites (Table 2). The IC50 values of ABTS inhibition
were 26.37 ± 0.035 µg/mL and 23.68 ± 0.68 µg/mL with the application of BAuNPs and
Chi/BAuNPs composites, respectively, as compared with 5.2± 0.01µg/mL in ASA (positive
control) (Figure 7).

2.5. Antibacterial Assay

The antibacterial activity of various concentrations of S. officinalis green-synthesized
BAuNPs and Chi/BAuNPs composites (100, 200, and 300 µg/mL) was evaluated against
four human pathogenic and multidrug-resistant bacterial strains of E. coli, P. aeruginosa,
K. pneumonia, and S. aureus in vitro, as compared with a 10 µg/mL penicillin/streptomycin
standard antibiotic solution and DMSO as the negative control group of the study. Table 3
shows the diameter of the inhibition zone of BAuNPs and Chi/BauNPs composites. The
results reveal antibacterial activity against four investigated bacterial strains. The antibacte-
rial effect of nanoparticles was dose-dependent since an increase in antibacterial potential
was associated with an increase in the concentration of BauNPs and Chi/BauNPs compos-
ites as compared to the positive control. In addition, P. aeruginosa and S. aureus bacteria
were more susceptible to the green-synthesized BauNPs and Chi/BauNPs compared to
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Klebsiella pneumonia and E. coli strains (Figure 8); this may be due to the difference in bacte-
rial cell wall structures [57]. The highest inhibition activities of Chi/AuNPs and BauNPs
conjugate were 31, 30, 29, and 28 (mm) at 300 µg/mL of Chi/BauNPs against S. aureus,
P. aeruginosa, K. pneumonia, and E. coli strains, respectively, followed by positive control
inhibition 11 (mm) recorded at 100 µg/mL of BauNPs against the E. coli strain, as compared
with positive control inhibition activity 33, 32, 31, and 30 (mm) against multidrug-resistant
strains P. aeruginosa, S. aureus, K. pneumonia, and E. coli, respectively.

Table 3. Antimicrobial activity of BAuNPs and Chi/BAuNPs composites against four bacterial strains
with the indicated concentrations. Values are expressed as mean ± SE (n = 5).

Concentrations
(µg/mL)

Inhibition Zone (mm)

P. aeruginosa E. coli K. pneumonia S. aureus

BAuNPs
100 17 ± 0.012 11 ± 0.012 12 ± 0.014 14 ± 0.014
200 21 ± 0.15 14 ± 0.15 14 ± 0.12 16 ± 0.012
300 28 ± 0.15 19 ± 0.16 20 ± 0.15 21 ± 0.13

Chi/ BAuNPs
100 19 ± 0.13 18 ± 0.14 19 ± 0.021 21 ± 0.15
200 24 ± 0.12 23 ± 0.15 26 ± 0.12 27 ± 0.012
300 30 ± 0.25 28 ± 0.11 29 ± 0.14 31 ± 0.024

Penicillin/streptomycin 10 33 ± 0.13 30 ± 0.16 31 ± 0.18 32 ± 0.02
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Figure 8. The antimicrobial effects of different concentrations—100 µg/mL (1), 200 µg/mL (2), and
300 µg/mL (3)—of S. officinalis BAuNPs (A) and Chi/BAuNPs (B) composites against four human
pathogenic bacterial strains: E. coli, P. aeruginosa, K. pneumonia, and S. aureus in vitro, as compared
with 10 µg/mL standard penicillin/streptomycin solution.

The main properties of the bioactive polymer chitosan are its non-toxicity, biodegrad-
ability, biocompatibility, low immunogenicity, and hemostatic properties [58–60]. By con-
jugating non-toxic, low-immunogenic, biodegradable, and biocompatible chitosan with
bioactive AuNPs, their efficacy and stability will increase significantly, with a significant
decrease in AuNP toxicity. Potara et al. [61] report that chitosan stabilizes AgNPs and
inhibits agglomeration. Additionally, AgNPs receive a positive charge from chitosan, which
improves their ability to attach to the negative charges found on bacterial cell surfaces.
Saha et al. [62] state that chitosan improves the stability and performance of AuNPS that
is biosynthesized. In contrast to biosynthesized AgNPS, biosynthesized Chi-AgNPs have
greater antibacterial action against pathogenic bacteria according to Shinde et al.’s [63]
investigation into the antibacterial activity of biosynthesized AgNPs and Chi-AgNPs. Ad-
ditionally, they discovered that normal cells do not exhibit any toxicity from Chi-AgNPs.
The antibacterial activity of Ch-AuNPs was examined by Fuster et al. [52] against two
Gram-positive bacterial strains—methicillin-resistant S. aureus ATCC 43300 and methicillin-
sensitive S. aureus ATCC 29213—and Gram-negative E. coli ATCC 25922, a clinical isolate of
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E. coli 11046 (CI-EC). Ch-AuNPs demonstrated noteworthy antibacterial efficacy against ev-
ery pathogenic strain examined, indicating that they may be a viable option for mitigating
bacterial infections in the future [64].

The inhibitory activities of green-synthesized BAuNPs and Chi/BAuNPs compos-
ites in DMSO were evaluated according to MIC and MBC values against various human
pathogenic strains as compared with the antibacterial activities of standard antibiotics
(Table 4). Three Gram-negative bacteria (P. aeruginosa, E. coli, and K. pneumonia) and three
Gram-positive bacteria (S. aureus) were investigated via turbidity. According to the re-
sults presented in Table 4, the Chi/BAuNPs composites exhibited higher antimicrobial
activities than BAuNPs conjugate against P. aeruginosa, E. coli, K. pneumonia, and S. aureus,
respectively, with minimal inhibitory concentration (MIC) values of 563, 394, 453, and
711 g/mL, while the MIC values of BAuNPs against these bacteria were 984, 648, 843, and
1352 g/mL, respectively. Furthermore, the minimum bactericidal concentration (MBC)
values presented in Table 4 indicated that the bactericidal activities of Chi/BAuNPs com-
posites were much higher than those of BAuNPs against P. aeruginosa, E. coli, K. pneumonia,
and S. aureus.

Table 4. MIC and MBC values of BAuNPs and Chi/BAuNPs composites against four human pathogenic
bacterial strains with the indicated concentrations. Values are expressed by mean ± SD (n = 5).

Concentrations
(µg/mL)

Microorganisms

P. aeruginosa E. coli K. pneumonia S. aureus

BAuNPs
MIC 984 648 843 1352
MBC 546 386 406 617

Chi/ BAuNPs
MIC 563 394 453 711
MBC 324 186 213 412

Penicillin/streptomycin MIC 36 12 16 43
MBC 16 8 10 19

2.6. In Vitro Anticancer Activity of BAuNPs and Chi/BAuNPs Composites

The cytotoxicity effect of 5-Fu + BAuNPs and 5-Fu + Chi/BAuNPs composites was
determined in vitro against human breast adenocarcinoma cells (MCF7) (Figure 9A) and
non-malignant human fibroblast cells (HFs) (Figure 9B) exposed to various concentrations
(0, 25, 50, 100, 200, and 500 µg/mL) using the MTT assay in comparison with an 8 µg/mL
5-Fu positive control. The cell viability rate of MCF7 cells is represented in Figure 9A, show-
ing a decrease with increasing concentrations of 5-Fu + BAuNPs and 5-Fu + Chi/BAuNPs
composites. The results obtained from the cytotoxicity assay revealed that the MCF7 cancer
cells were more sensitive toward the toxicity of 5-Fu + BAuNPs and 5-Fu + Chi/BAuNPs
composites compared to the non-malignant HFs cells; both BAuNPs and Chi/BAuNPs com-
posites exhibited a concentration-dependent cytotoxic (cell mortality) effect on MCF7 cells,
and the maximum cytotoxic effect was observed at 17.99 ± 0.27% cell viability observed
at 5-Fu + 500 µg/mL Chi/BAuNPs, followed with 26.93 ± 0.015% and 29.42 ± 0.025%
cell viability rates at 5-Fu + 200 µg/mL Chi/BAuNPs and 5-Fu + 500 µg/mL BAuNPs,
respectively, while the lowest toxicity effect against MCF7 83.23 ± 0.03% cell viability was
observed at free 8 5-Fu µg/mL as compared with the 100% cell viability rate in negative
control (DMSO). The amounts of 5-Fu + Chi/BAuNPs and 5-Fu + BAuNPs composites re-
quired to decrease the cell viability rate of MCF7 cancer cells to 50% of the initial population
(IC50) were 34.1932 µg/mL and 46.32 µg/mL, respectively (Figure 9A).
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Figure 9. Dose-dependent cytotoxicity on the proliferation of human breast adenocarcinoma (MCF7)
Cell line (A), and non-malignant human fibroblast (HFs) cell line (B) at 5-Fu (8 µg/mL) or 5-Fu
combined with various concentrations (0, 25, 50, 100, 200, and 500 µg/mL) of NPs for 24, and 48 h
exposure time. Values represent the means of three replicates ± SE. IC50: the half-maximal inhibitory
concentration. (N.B.) significant at p ≤ 0.05, compared with negative control and 8 µg/mL free 5-Fu
(positive control).

The results obtained from the cytotoxicity assay of 5-Fu + BAuNPs and 5-Fu + Chi/BAuNPs
composites against non-malignant HFs cells (Figure 9B) showed that both BAuNPs and
Chi/BAuNPs composites had no significant toxicity at concentrations of 8 µg/mL of 5-Fu,
5-Fu + 25 µg/mL BAuNPs, and 25 µg/mL Chi/BAuNPs, with high cell viability rates of 96.52
0.015, 84.180.021, and 81.95 0.036%, respectively. After which, the toxic effect was significantly
increased with an increment in the 5-Fu + BAuNPs and 5-Fu + Chi/BAuNPs composite con-
centrations on non-malignant HFs cells, reaching its maximum point by recording 40.14 0.25%
cell viability at 5-Fu + 500 µg/mL Chi/BAuNPs, followed by 43.13 0.015 and 51.87 0.025% cell
viability rates at 5-Fu + 500 µg/mL BAuNPs and 5-Fu + 200 µg/mL Chi/BAuNPs, respec-
tively, as compared with the 100% cell viability rate in the negative control. The amounts of
5-Fu + Chi/BAuNPs and 5-Fu + BAuNPs composites required to decrease the cell viability
rate of HFs non-malignant cells to 50% of the initial population (IC50) were 424.52 µg/mL and
416.8 µg/mL, respectively (Figure 9B).

The obtained results for the cell viability effects of various concentrations (0, 25, 50,
100, 200, and 500 µg/mL) of 5-Fu + BAuNPs and 5-Fu + Chi/BAuNPs composites on
the mortality rate and morphological changes of MCF7 cancer cells (Figure 10) and non-
malignant HFs cells (Figure 11) that are dose dependent, indicate a significant increase in
the mortality rate associated with the large-scale morphological changes that occur at the
cell surface. In the cytoskeleton, necrotic cells and apoptotic cells that can be followed and
observed were related to the maximum cell cytotoxicity activity of different concentrations
of 5-Fu + BAuNPs and 5-Fu + Chi/BauNPs composites against MCF7 cancer cells, i.e.,
80.1, 73.07, and 70.58% cell mortality rate at 5-Fu + 500 µg/mL and 5-Fu + 200 µg/mL
Chi/BAuNPs (Figure 10A) and 5-Fu + 500 µg/mL BAuNPs (Figure 10B), respectively; while
for the maximum cell cytotoxicity activity of different concentrations of 5-Fu + BAuNPs
and 5-Fu + Chi/BAuNPs composites against normal HFs cells, we observed a 59.86, 56.87,
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and 48.73% cell mortality rate at 5-Fu + 500 µg/mL Chi/BAuNPs, 5-Fu + 500 µg/mL
5-Fu + BAuNPs (Figure 11A), and 5-Fu + 200 µg/mL BAuNPs (Figure 11B), respectively.
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Figure 11. Dose-dependent cell viability effects of different concentrations (0, 25, 50, 100, 200, and
500 µg/mL) of 5-Fu + BAuNPs (A) and 5-Fu + Chi/BAuNPs (B) composites on non-malignant human
fibroblast (HFs) cell line at 48h exposure time via MTT assay as compared with negative control and
8 µg/mL free 5-Fu (positive control).
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3. Discussion

According to the chemical compositions of the S. officinalis aqueous extract, as deter-
mined by the GC/MS analysis data presented in Table 1, the S. officinalis L. extract was rich
in the main bioactive components that demonstrated antioxidant, antimicrobial, antitumor,
anti-inflammatory, insecticidal, and hepatic protection of monoterpenes such as thujone
and carvacrol, in agreement with previous studies reports [65,66]. A natural terpenoid
called thujone fraction, found in many medicinal plants, has antioxidant, anti-diabetic, and
anti-tumorigenic characteristics, and it is utilized as a food additive and cosmetic addi-
tive [67]. Well-known chemicals with specific antibacterial properties include camphor and
1,8-cineole [68,69]. The flavonoids rosmarinic acid, luteolin, quercetin, and apigenin were
identified in the ethyl acetate fraction of R. officinalis flowers. The primary components of
sage that have been associated with its antibacterial and antioxidant effects include thujone
(54.2% v/w) in the essential oil of S. fruticosa species, camphor (6.9%, v/w), 1, 8-cineole
(13.0% v/w) in the essential oil of S. ringens species [70], 1,8-cineole in different samples of
S. officinalis (ranging between 39.5 and 50.3%), and camphor (10.3–25.0%) [71]. This dif-
ference in the sequence of the essential elements may be due to variances in the plant’s
natural habitat (land, weather, etc.).

Our results indicated the presence of phenolic compounds in S. officinalis extract
among the phenolic compounds determined in sage extracts, such as salvianolic acid
(20.69%), rosmarinic acid (11.42%), caffeic acid hexoside (10.19%), luteolin-7-o-rutinose
(9.78%), apigenin (8.66%), apigenin-7-glucoside (8.12%), dicaffeoylquinic acid (7.76%),
carvacrol (6.03%), methyl rosmarenate (4.14%), thujone (2.37%), salvigenin (2.0%), ferulic
acid derivative (1.88%), and camphor (0.53%), as well as traces of other phenolic compounds.
These results are in agreement with previous studies [72]. The main avonoid and phenolic
substances were apigenin and thymol, respectively. More than 25 and 21% of the phenolic
chemicals isolated from sage and thyme, respectively, were apigenin and thymol. Such
results are in agreement with those reported by Wojdylo et al. [73] and Shan et al. [74].
The improved antioxidant capability of the thyme–sage mixture can be attributed mostly
to these components [75]. According to Roby et al. [76], the sage methanolic solution
extract’s enhanced DPPH radical scavenging action was probably regulated by flavonoid
components such as apigenin.

As a new nanomaterial, the biosynthesis of gold nanoparticles in S. officinalis extract as
a reducing agent has significant advantages—namely, stability and feasibility—compared
with other nanoparticles. Based on their bioavailability, stability, sensitivity, and specificity,
the BAuNP nanocomposite was successfully created in the current investigation. TEM
is the most efficient method of determining the size and morphological structure of a
nanostructure. The TEM image showed that the produced BAuNPs demonstrated good
shaping, confirming the spherical Au nanostructures’ crystalline structure and ranging
in size from 15 to 70 nm. The measured mean value of the formed BAuNPs composite
size was 21.6 nm. In agreement with previous research described by [77–79], the gold
nanostructures (Au) were associated with multiple distinct peaks in the EDX spectra of
(Au), with other subsidiary peaks of the carbon peak attributed to the TEM grid and oxygen
peaks attributed to phytochemical traces [50,51,80].

FT-IR analysis was conducted to detect the functional groups responsible for reduction,
capping, and stabilizing the synthesized gold nanoparticles. The FTIR spectra of AuNPs
revealed absorption peaks at different wave numbers that correspond to many functional
groups, such as the C=O, C=N, N-H, C-O, C-N, and C-H stretching vibrations of the
alkane group and aldehydic variable group. The obtained functional groups of the FTIR
spectra were in agreement with previous studies [79]. The particle size measurement of
the particle surface charge was used to assess the conjugate stability of green-synthesized
gold nanoparticles in S. officinalis extract as reducing agents that have a high content of
bioactive fractions of terpenoids, polyphenols, and flavonoids. This is in agreement with
previous studies that indicated that nanoparticles are affected by zeta values in solutions,
which stabilize nanoparticles if the zeta values are negative [15,79,81,82].
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In this work, the inhibitory effect of the prepared BAuNPs and Chi/BAuNPs com-
posites against DPPH and ABTS radicals was assayed based on the composites’ reduction
in the presence of an antioxidant compound as a hydrogen donor, and the results are in
agreement with previous study [79]. For the determination of MIC, a series of dilutions of
green-synthesized BAuNPs and Chi/BAuNPs composites (100, 200, and 300 µg/mL) were
evaluated against human pathogenic and multidrug-resistant bacterial strains of E. coli,
P. aeruginosa, K. pneumonia, and S. aureus.

The results revealed that among the Chi/BAuNPs conjugates, Chi/BAuNPs com-
posites exhibited higher antimicrobial activity against Pseudomonas aeruginosa, E. coli,
K. pneumonia, and S. aureus compared with BAuNPs. In agreement with [82], gold nanopar-
ticles in different dimensions and shapes are the most widely studied nanomaterials for
antibacterial applications [60]. The use of sage extracts in the biosynthesis of gold nanopar-
ticles enhanced the antibacterial activity of the BAuNPs and chitosan-encapsulated AuNPs
that related to carvacrol, rosmarinic acid, and apigenin fractions of sage extracts [83].

The cytotoxic effect of a free 5-Fu chemical drug (8 g/mL), and in combination with
diverse concentrations (25, 50, 100, 200, and 500 g/mL) of BAuNPs and Chi/BAuNPs
composites, was studied in MCF7 cancer cells and non-malignant HFs cells, and the
cytotoxicity consequences were analyzed using the MTT assay. The results indicated that
the cytotoxicity effect was dose-dependent, while the cell mortality rate increased as the
concentrations of nanoparticles increased, relating to the decreased cell viability of the
investigated cancer and normal cells. The MCF-7 cancer cells were more sensitive to the
cytotoxicity effect of 5-Fu, 5-Fu + BAuNPs, and 5-Fu + Chi/BAuNPs nanocomposites than
non-malignant HFs cells, which were not significantly affected by the cytotoxicity effect
of the investigated 5-Fu + NPs. Therefore, our study examined the synergistic effect of
BAuNPs, chitosan-capped AuNPs, and 5-FU on breast carcinoma MCF7 and non-malignant
HFs cell viability. The IC50 values were calculated for the cytotoxic effect of 5-Fu + BAuNPs
and 5-Fu + chitosan-capped BAuNPs in diverse concentrations against MCF7 cancer cells
and normal HFs cells. The results showed that an increase in IC50 values in the case
of non-malignant cells treated with 5-Fu combined with nanogold and chitosan-capped
nanogold is responsible for the non-significant cytotoxic effect of nanocomposites against
HFs. Normal cells and the cytotoxic selectivity of nanogold and chitosan-encapsulated
AuNPs against cancer cell lines, in addition to the synergistic effect of a combination of gold
NPs and chitosan-capped AuNPs with a chemical drug (5-Fu), significantly reduced MCF7
and HFs cell viability at a concentration at which the active drug did not induce an effect.
Our results were in agreement with other studies and demonstrate that administering
Fe3O4 NPs in combination with 5-Fu NPs will lower the dosage of the drug needed to
produce noticeable antitumor action [84]. The latter outcome is relevant since 5-Fu has a
high level of toxicity, which can be decreased, for example, by employing metal–organic
frameworks for its immobilization for anticancer activity enhancement [85–87].

4. Materials and Methods

4.1. Chemicals and Reagents

All of the chemicals and reagents used in this investigation met the standards
of an analytical laboratory and had purity levels over 98%. DMSO (Sigma-Aldrich,
St. Louis, MO, USA), chitosan (MW 100–300 kDa), gallic acid, Folin–Ciocalteu reagents,
penicillin–streptomycin antibiotic solution (10,000 U/mL of penicillin and 10,000 U/mL of
streptomycin), 5-fluorouracil (5-Fu), and microbial materials such as nutrient agar were
bought from Sigma-Aldrich, St. Louis, MO, USA. Loba Chemie (Mumbai, India) was used
to acquire chloroauric acid (HAuCl4·3H2O). The following items were bought from Gibco,
Waltham, MA, USA: cell culture media, trypsin, penicillin/streptomycin, andphosphate
buffered saline, N-Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA), 99.8% (Sigma
Aldrich, USA). Every other substance, including reagents, was of analytical grade.
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4.2. Plant Materials

Sage (S. officinalis L.) plants were collected manually in September 2022 from their natural
habitat, the Borg El-Arab city (30◦4948.3′ N, 29◦3143.5′ E) on the northern Mediterranean coast of
Egypt. The collected plants were identified according to Gonz’alez-Tejero et al.’s [88] procedures
and confirmed by the botanists at the Botany Department of the Faculty of Science, Mansoura
University, Egypt. The aerial parts were washed three times with distilled (dist.) water to
remove any undesired matter and dried in an oven at 40–45 ◦C for five days. They were then
pulverized to a fine powder using a lab grinder and sieved using a 63-mm sieve. They were
then kept frozen in amber bottles at −18 ◦C for further tests.

4.3. Aqueous Extraction of S. officinalis

Ten grams of the dried leaf sample were combined with 100 mL of double-distilled
water (DDW) and heated to 100 ◦C for 10 min under reduced pressure in order to create
an aqueous extract of the S. officinalis plant leaf (stock 10%). The produced solution was
then sonicated for 15 min and refluxed in a water bath at 90 ◦C for 2 h. After that, it was
ultra-filtered again using a 0.22 µm polyethersulfone membrane filter (TPP, Techno Plastic,
Trasadingen, Switzerland).

Samples were derivatized based on the protocol devised by Gullberg and co-workers [89].
Briefly, to each dried sample, 30 µL of 20 mg/mL methoxylamine hydrochloride (98%, Sigma-
Aldrich) in pyridine (Rathburn chemicals, Walkerburn, UK) was added. Each sample was
vortexed briefly and left to stand at room temperature for 17 h. After the addition of 30 µL of
N-Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) to each sample, they were left to stand
at room temperature for one hour. The samples were diluted 1:20 in hexane. A volume of 1 µL
of sample was injected, and samples were run splitless.

4.3.1. Chemical Characterization of S. officinalis Extract

The major chemical composition of S. officinalis leaf aqueous extract was evaluated
via a gas chromatography–mass spectrometry (GC-MS) instrument. GC-MS analyses
were performed with a GC-MS-QP2010 Ultra analysis system (Shimadzu, Tokyo, Japan).
Compounds were separated on a Premier C18 5-micron (2.1 × 100mm reversed-phase C18
column with 120A pore size) using helium as the carrier gas with a constant flow rate of
1.5 mL/min. The oven temperature program was initiated at 50 ◦C, held for 3 min, then
increased at a rate of 8 ◦C/min to 250 ◦C and held for 10 min. The spectrophotometer was
operated in electron-impact mode. The injector, interface, and ion source were kept at 250,
250, and 220 ◦C, respectively. Split injection (1 µL diluted sample in n-hexane (1:1, v/v))
was conducted with a split ratio of 1:20.

Identification of the components of the sample was based on a comparison of their
relative indices and mass spectra (RI-MS) via computer matching with WILEY and National
Institute of Standards and Technology (NIST08) library data (http://webbook.nist.gov,
accessed on 20 November 2021) provided with the computer-controlled GC-MS system.
Individually isolated compound identifications were also performed by comparing their
mass spectra and retention times with authentic compounds.

4.3.2. Folin–Ciocalteu Assay of S. officinalis Extract

For the total concentration of the phenolic compounds in the aqueous extracts of
S. officinalis, according to the Folin–Ciocalteu (F-C) assay described by Slinkard et al. [90],
300 µL plant extract was taken in a test tube; 1 mL methanol, 3.16 mL distilled water,
and 200 µL Folin–Ciocalteu reagent were added; then, after 8 min of incubation at room
temperature, we added 2.0 mL of a 7.5% (m/v) sodium carbonate (Na2CO3) solution (10%),
and the test tube was covered with aluminum foil and incubated at 50 ◦C for 20 min. A
blank was prepared using the same procedure but replacing the plant extract with an equal
volume of methanol. The absorbance of the sample was determined using a UV-visible
spectrophotometer at 765 nm. The calibration solutions of the gallic acid (GA) standard
contained from 10 to 200 mg/L of GA. The final results are expressed as GA equivalents.

http://webbook.nist.gov


Molecules 2023, 28, 7762 16 of 23

4.4. Green Synthesis of AuNPs with Aqueous Leaf Extract

For the biosynthesis of gold nanoparticles (BAuNPs), a 3 mM aqueous Au solution
was prepared from solid tetrachloroauric acid (HAuCl4·3H2O). Then, 10.0 mL of 1% (v/v)
S. officinalis aqueous extract was directly mixed with 10 mL of gold ion solution, previously
prepared by diluting HauCl4·3H2O in a conical flask wrapped with aluminum foil to
prevent reduction with light. Then, we incubated the mixtures in a water bath at 50 ◦C
for 24 h. The mixture’s color changed from colorless to purple, signifying the creation
of AuNPs. The suspension that followed was filtered and dried in a vacuum after being
cleaned three times with distilled water.

4.5. Characterization of BAuNPs and Chi/BAuNPs

4.5.1. UV-Vis Absorption Spectrophotometer

Samples containing the created BAuNPs were subjected to measurements via UV-Vis
absorption spectrophotometry at 530 nm using a UV-Vis spectrophotometer (Genway,
Yokohama, Japan). The change in mixture color was an indication of gold ion reduction
and the creation of green-synthesized AuNPs.

4.5.2. FT-IR

The chemical structure of the created BAuNPs and Chi/BAuNPs was determined using a
FT-IR Tensor 27 spectrometer (Bruker, Yokohama, Japan) in the range 4000–400 cm−1, with a
resolution of 4 cm−1.

4.5.3. TEM and Energy-Dispersive X-ray Spectroscopy

A TEM tool was used to assess the surface morphology, size, and shape of the produced
BAuNPs conjugate. On carbon-coated copper grids, a drop of a sonicated methanolic
solution of BAuNPs or Chi/BAuNPs was applied, and the thin films were subsequently
air-dried and examined under a JEM-2100F transmission electron microscope (JEOL, Tokyo,
Japan). The lithium-doped silicon EDAX detector, chilled by liquid nitrogen, was used to
gather energy-dispersive X-ray spectra.

4.5.4. Particle Size Analysis

The BAuNPs conjugate powder was recorded via Zeta potential analyzer: The Malvern
Zetasizer Nano ZS system measures a particle size distribution from 0.6 nm to 6 µm. The
used gold solution was freshly prepared.

4.6. Synthesis of Chitosan–BAuNPs Conjugates

Chi/BAuNPs were synthesized according to the technique reported by
Dananjaya et al. [91] protocol with minimum changes, utilizing chitosan as a reducing
and stabilizing agent by chemical reduction process. Chitosan solution (0.2% w/v) was
prepared by dissolving the chitosan having a molecular weight of 375 kDa (Showa, Japan)
in 0.01 M acetic acid (Sigma Aldrich, USA) at 65 ◦C, over 2 hrs with stirring to create a
homogeneous solution. Green-synthesized BAuNPs (100 g mL−1) were added in a concen-
tration of 10% (w/v), drop by drop, into a 20 mL chitosan solution previously prepared and
stirred at 300 rpm for 5 h at 50 ◦C to develop the Chi/BAuNPs composite. The BAuNPs and
Chi/BAuNPs composites were dissolving in 2% dimethyl sulfoxide (DMSO) at different
concentrations (100, 200, and 300 g/mL) for the next bioassay.

4.7. Antioxidant Activity of BAuNPs and Chi/BAuNPs

The DPPH scavenging activity of BAuNPs and Chi/BAuNPs composites was estimated
according to Zengin et al. [26]. Briefly, a DPPH working solution (1 mg DPPH/10 mL methanol)
and serial dilutions (100, 200, and 300 µg/mL) of BAuNPs and Chi/BAuNPs composites
were prepared. A total of 1 mL of nanocomposites was diluted with 2 mL of ethanol; then, a
DPPH solution was added with a final concentration of 100 µmol/L. The resulting solution was
incubated in the dark at 25 ◦C for 30 min. The assay depends on the reduction of DPPH (purple
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color) to a diphenyl picrylhydrazine (yellow color), and the remaining DPPH was measured
at 517 nm. A control reading was obtained using methanol instead of the extract. The DPPH
radical scavenging activity was expressed as a percentage of inhibition activity, and ascorbic
acid was used as a positive control.

The percentage inhibition of DPPH· was calculated by applying this formula:

DPPH scavenged (%) = [(Ab − As) / Ab] × 100.

Ab: absorbance of blank; As: absorbance of sample
The ABTS scavenging activity of BAuNPs and Chi/BAuNPs composites was estimated

according to Zengin et al.’s [92] and Lu and Foo’s [93] protocols based on the ability of
antioxidants to reduce radical cation to ABTS− 2. ABTS radical cation solution was
produced by reacting 7.0 mM ABTS with K2S2O8 (2.45 mM) at a ratio of 2/1 (v/v). The
mixture could stand in the dark at room temperature for 12 h. After adjusting the pH
by treating the ABTS solution with phosphate buffer (0.1 mM, pH 7.4), BAuNPs and
Chi/BAuNPs composites were treated with ABTS (1.0 mL) at serial concentrations (100,
200, and 300 µg/mL). The sample absorbance was measured at 734 nm using a UV-VIS
spectrophotometer (Genway, Japan), and the ABTS concentration was calculated via the
calibration curve. Ascorbic acid was used as a positive control.

The percentage inhibition of DPPH· was calculated by applying this formula:

ABTS scavenged (%) = [(Ab − As) / Ab] × 100.

Ab: absorbance of blank; As: absorbance of sample

4.8. Antibacterial Assayof BAuNPs and Chi/BAuNPs

4.8.1. Microbial Strains

Three Gram-negative bacteria (P. aeruginosa MTCC1034, E. coli ATCC 25922, and
K. pneumonia ATCC 13883) and one Gram-positive bacterium (S. aureus ATCC 2592_ were
grown in Luria broth medium and incubated at 37 ◦C for 16 to 18 h [94]. The antibacterial
potential of green-synthesized BAuNPs and Chi/BAuNPs was determined via an agar-well
diffusion assay [95].

4.8.2. Antibacterial Assay

The antibacterial activity of BAuNPs and Chi/BAuNPs conjugates against human
pathogenic and multidrug-resistant bacterial strains of P. aeruginosa, S. aureus,
K. pneumonia, and E. coli in vitro was carried out via the disc diffusion method following
US CLSI (Clinical and Laboratory Standards Institute) [96]. The BAuNPs and Chi/BAuNPs
composites were dissolved in 2% DMSO to final concentrations (100, 200, and 300 µg/mL).
The solutions were sterilized via filtration on 0.45 µm millipore filters. Then, 20 µL of
different concentrations of prepared nanosolutions were soaked into sterile filter paper
discs. These discs were placed on Muller–Hinton agar plates, previously swabbed with
100 µL of bacterial inoculum (approximately 108 CFU/mL). The DMSO was used as a
negative control, as compared with antibiotic standards of penicillin–streptomycin solution
(10 µg/mL) as a positive control for comparison, using a filter paper disc (5 mm) in the
assay. The minimal inhibitory concentration (MIC) and minimum bacterial concentration
(MBC) tests of BAuNPs and Chi/BAuNPs composites in DMSO were performed via a
serial microdilution method according to [97,98].

4.9. Anticancer Activity of BAuNPs and Chi/BAuNPs Conjugates

4.9.1. Cell Culture

The selected cell lines are human breast adenocarcinoma (MCF7) and normal cell
lines. Human fibroblasts (HFs) were obtained from the American Type Culture Collection,
maintained frozen in liquid nitrogen (−180 ◦C) at the Tumor Biology Department, National
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Cancer Institute, Cairo, Egypt. The cell lines were inoculated in a 96-well tissue culture
plate at 1 × 105 cells ml−1 (100 uL per well) and incubated at 37 ◦C for 24 h to develop a
complete monolayer sheet. Growth medium was decanted from 96-well microtiter plates
after a confluent sheet of cells was formed. The cell monolayer was washed twice with
wash media.

4.9.2. Evaluation of Cytotoxicity by MTT Assay

An MTT standard cytotoxicity assay was utilized to evaluate the cytotoxic activity
of free 5-Fu (8 µg/mL) and different concentrations (90, 25, 50, 100, 200, and 500 µg/mL)
of 5-Fu + BAuNPs and 5-Fu + Chi/BAuNPs, as described by Mosmann [99] and Hamida
et al. [100], at 48 h exposure time. Two-fold dilutions of the tested sample were made
in RPMI medium with 2% serum (maintenance medium), and 0.1 mL of each dilution
was tested in different wells, leaving 3 wells as controls and receiving only maintenance
medium. The plate was incubated in 5% CO2 at 37 ◦C and examined. Cells were checked
for any physical signs of toxicity, e.g., partial or complete loss of the monolayer, rounding,
shrinkage, or cell granulation. For each cell line, the cell viability potential and mortality
percentages against each concentration and the half-maximal inhibitory concentration (IC50)
were determined.

4.10. Statistical Analysis

The data were presented as the mean ± standard deviations (SD) via triplicate ex-
periments. Statistical analysis was performed with SPSS software 16.0 version (SPSS Inc.,
Chicago, IL, USA). The obtained data of phytochemical and biological assays findings were
analyzed via one-way ANOVA test performed for a significant difference at the p < 0.05
level [101].

5. Conclusions

S. officinalis extract, studied for its high phenol and flavonoid content, has demon-
strated antioxidant activity and antibacterial and antifungal properties in naturopathic
medicine. This research used nanomedicine to biosynthesize gold nanoparticles from
S. officinalis extract and coat them with safe and environmentally friendly chitosan-coated
AuNP conjugates to develop new therapies in response to the increasing interest of today’s
society and the pharmaceutical industry in medicinal plants. In recent decades, chitosan
has received great interest and attention due to its wide range of potential applications
and unique advantages. In this study, nanocomposites based on AuNPs and chitosan
were prepared using a simple method. This nanocomposite has promising antibacterial
activity against Gram-negative and Gram-positive bacteria. As-prepared BAuNPs and
chitosan-coated BAuNPs showed potential antioxidant and antibacterial activities against
multidrug-resistant (MDR) and multisensitive (MS) bacterial isolates of human pathogens:
P. aeruginosa, E. coli, K. pneumonia, and S. aureus. In addition, AuNPs and Chi/AuNPs
nanocomposites are safe to use as they show very high toxicity to MCF7 cancer cells and
very low toxicity to normal HF cell lines. Our aim is to further investigate the use of gold
nanoparticles in medical, pharmaceutical, food, and cosmetic applications to determine
their dosage.
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