Comparative Study of Essential Oils from Different Organs of Syzygium cumini (Pamposia) Based on GC/MS Chemical Profiling and In Vitro Antiaging Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC/MS Analysis of the Essential Oils
2.2. Chemometric Analysis of the Essential Oils
2.3. Assessment of Anti-Collagenase, Anti-Elastase, and Anti-Hyaluronidase Activities
3. Materials and Methods
3.1. Plant Material
3.2. Isolation of the Essential Oils
3.3. GC/MS Analysis of Essential Oils
3.4. Identification of the Oil Components
3.5. Chemometric Analysis
3.6. Assessment of In Vitro Antiaging Activities
3.6.1. Anti-Collagenase Activity
3.6.2. Anti-Elastase Activity
3.6.3. Anti-Hyaluronidase Activity
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guerra-Araiza, C.; Álvarez-Mejía, A.L.; Sánchez-Torres, S.; Farfan-García, E.; Mondragón-Lozano, R.; Pinto-Almazán, R.; Salgado-Ceballos, H. Effect of natural exogenous antioxidants on aging and on neurodegenerative diseases. Free Radic. Res. 2013, 47, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Pillai, S.; Oresajo, C.; Hayward, J. Ultraviolet radiation and skin aging: Roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation—A review. Int. J. Cosmet. Sci. 2005, 27, 17–34. [Google Scholar] [CrossRef] [PubMed]
- Wölfle, U.; Seelinger, G.; Bauer, G.; Meinke, M.C.; Lademann, J.; Schempp, C.M. Reactive molecule species and antioxidative mechanisms in normal skin and skin aging. Ski. Pharmacol. Physiol. 2014, 27, 316–332. [Google Scholar] [CrossRef] [PubMed]
- Sivamani, R.K.; Jagdeo, J.R.; Elsner, P.; Maibach, H.I. Cosmeceuticals and Active Cosmetics; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Ishaq, A.R.; El-Nashar, H.A.; Younis, T.; Mangat, M.A.; Shahzadi, M.; Ul Haq, A.S.; El-Shazly, M. Genus Lupinus (Fabaceae): A review of ethnobotanical, phytochemical and biological studies. J. Pharm. Pharmacol. 2022, 74, 1700–1717. [Google Scholar] [CrossRef] [PubMed]
- Ashmawy, N.S.; El-Labbad, E.M.; Hamoda, A.M.; El-Keblawy, A.A.; El-Shorbagi, A.-N.A.; Mosa, K.A.; Soliman, S.S. The Anti-Candida Activity of Tephrosia apollinea Is More Superiorly Attributed to a Novel Steroidal Compound with Selective Targeting. Plants 2022, 11, 2120. [Google Scholar] [CrossRef]
- El-Nashar, H.A.; Mostafa, N.M.; El-Badry, M.A.; Eldahshan, O.A.; Singab, A.N.B. Chemical composition, antimicrobial and cytotoxic activities of essential oils from Schinus polygamus (Cav.) cabrera leaf and bark grown in Egypt. Nat. Prod. Res. 2021, 35, 5369–5372. [Google Scholar] [CrossRef]
- El-Nashar, H.A.; El-Labbad, E.M.; Al-Azzawi, M.A.; Ashmawy, N.S. A new xanthone glycoside from Mangifera indica L.: Physicochemical properties and in vitro anti-skin aging activities. Molecules 2022, 27, 2609. [Google Scholar] [CrossRef]
- Corrêa, R.C.; Peralta, R.M.; Haminiuk, C.W.; Maciel, G.M.; Bracht, A.; Ferreira, I.C. New phytochemicals as potential human anti-aging compounds: Reality, promise, and challenges. Crit. Rev. Food Sci. Nutr. 2018, 58, 942–957. [Google Scholar] [CrossRef]
- El-Shawi, O.E.; El-Nashar, H.A.S.; Abd El-Rahman, S.S.; Eldahshan, O.A.; Singab, A.N.B. Protective effect of Acrocarpus fraxinifolius extract against hepatic fibrosis induced by Gamma irradiation and carbon tetrachloride in albino rats. Int. J. Radiat. Biol. 2023, 99, 270–280. [Google Scholar] [CrossRef]
- El-Nashar, H.A.S.; Eldehna, W.M.; Al-Rashood, S.T.; Alharbi, A.; Eskandrani, R.O.; Aly, S.H. GC/MS Analysis of Essential Oil and Enzyme Inhibitory Activities of Syzygium cumini (Pamposia) Grown in Egypt: Chemical Characterization and Molecular Docking Studies. Molecules 2021, 26, 6984. [Google Scholar] [CrossRef]
- Panda, S.; Sahoo, S.; Tripathy, K.; Singh, Y.D.; Sarma, M.K.; Babu, P.J.; Singh, M.C. Essential oils and their pharmacotherapeutics applications in human diseases. Adv. Tradit. Med. 2020, 22, 1–15. [Google Scholar] [CrossRef]
- El-Nashar, H.A.S.; Eldahshan, O.A.; Elshawi, O.E.; Singab, A.N.B. Phytochemical Investigation, Antitumor Activity, and Hepatoprotective Effects of Acrocarpus fraxinifolius Leaf Extract. Drug Dev. Res. 2017, 78, 210–226. [Google Scholar] [CrossRef] [PubMed]
- El-Nashar, H.; Eldahshan, O.; Singab, A. The tribe Caesalpinieae (Fabaceae): An updated review on pharmacological aspects. Med. Aromat. Plants 2015, 4, 215. [Google Scholar]
- Fahmy, N.M.; Elhady, S.S.; Bannan, D.F.; Malatani, R.T.; Gad, H.A. Citrus reticulata Leaves Essential Oil as an Antiaging Agent: A Comparative Study between Different Cultivars and Correlation with Their Chemical Compositions. Plants 2022, 11, 3335. [Google Scholar] [CrossRef]
- Gad, H.A.; El Hassab, M.A.; Elhady, S.S.; Fahmy, N.M. Insights on Citrus clementina essential oil as a potential antiaging candidate with a comparative chemometric study on different cultivars. Ind. Crops Prod. 2023, 194, 116349. [Google Scholar] [CrossRef]
- Tomaino, A.; Cimino, F.; Zimbalatti, V.; Venuti, V.; Sulfaro, V.; De Pasquale, A.; Saija, A. Influence of heating on antioxidant activity and the chemical composition of some spice essential oils. Food Chem. 2005, 89, 549–554. [Google Scholar] [CrossRef]
- Gad, H.A.; Mamadalieva, R.Z.; Khalil, N.; Zengin, G.; Najar, B.; Khojimatov, O.K.; Al Musayeib, N.M.; Ashour, M.L.; Mamadalieva, N.Z. GC-MS Chemical Profiling, Biological Investigation of Three Salvia Species Growing in Uzbekistan. Molecules 2022, 27, 5365. [Google Scholar] [CrossRef]
- Saroj, A.; Pragadheesh, V.S.; Palanivelu; Yadav, A.; Singh, S.C.; Samad, A.; Negi, A.S.; Chanotiya, C.S. Anti-phytopathogenic activity of Syzygium cumini essential oil, hydrocarbon fractions and its novel constituents. Ind. Crops Prod. 2015, 74, 327–335. [Google Scholar] [CrossRef]
- Benherlal, P.S.; Arumughan, C. Chemical composition and in vitro antioxidant studies on Syzygium cumini fruit. J. Sci. Food Agric. 2007, 87, 2560–2569. [Google Scholar] [CrossRef]
- Ayyanar, M.; Subash-Babu, P. Syzygium cumini (L.) Skeels: A review of its phytochemical constituents and traditional uses. Asian Pac. J. Trop. Biomed. 2012, 2, 240–246. [Google Scholar] [CrossRef]
- Dharani, N. A Review of Traditional Uses and Phytochemical Constituents of Indigenous Syzygium Species in East Africa. Pharm. J. Kenya 2016, 22, 123–127. [Google Scholar]
- Dias, C.N.; Rodrigues, K.A.F.; Carvalho, F.A.A.; Carneiro, S.M.P.; Maia, J.G.S.; Andrade, E.H.A.; Moraes, D.F.C. Molluscicidal and Leishmanicidal Activity of the Leaf Essential Oil of Syzygium cumini (L.) Skeels from Brazil. Chem. Biodivers. 2013, 10, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Dickel, M.L.; Rates, S.M.K.; Ritter, M.R. Plants popularly used for loosing weight purposes in Porto Alegre, South Brazil. J. Ethnopharmacol. 2007, 109, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Khare, C.P. Indian Medicinal Plants: An Illustrated Dictionary; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Jain, A.; Katewa, S.S.; Galav, P.K.; Sharma, P. Medicinal plant diversity of Sitamata wildlife sanctuary, Rajasthan, India. J. Ethnopharmacol. 2005, 102, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Naga Raju, G.J.; Sarita, P.; Ramana Murty, G.A.V.; Ravi Kumar, M.; Seetharami Reddy, B.; John Charles, M.; Lakshminarayana, S.; Seshi Reddy, T.; Reddy, S.B.; Vijayan, V. Estimation of trace elements in some anti-diabetic medicinal plants using PIXE technique. Appl. Radiat. Isot. 2006, 64, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.K.; Chhangte, L.; Dolui, A.K. Traditional medicinal plants in Mizoram, India. Fitoterapia 2001, 72, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Chhetri, D.R.; Parajuli, P.; Subba, G.C. Antidiabetic plants used by Sikkim and Darjeeling Himalayan tribes, India. J. Ethnopharmacol. 2005, 99, 199–202. [Google Scholar] [CrossRef]
- Jabeen, K.; Javaid, A. Antifungal activity of Syzygium cumini against Ascochyta rabiei—The cause of chickpea blight. Nat. Prod. Res. 2010, 24, 1158–1167. [Google Scholar] [CrossRef]
- Badawy, M.E.I.; Abdelgaleil, S.A.M. Composition and antimicrobial activity of essential oils isolated from Egyptian plants against plant pathogenic bacteria and fungi. Ind. Crops Prod. 2014, 52, 776–782. [Google Scholar] [CrossRef]
- Shafi, P.M.; Rosamma, M.K.; Jamil, K.; Reddy, P.S. Antibacterial activity of Syzygium cumini and Syzygium travancoricum leaf essential oils. Fitoterapia 2002, 73, 414–416. [Google Scholar] [CrossRef]
- Elansary, H.; Salem, M.Z.M.; Ashmawy, N.; Yacout, M. Chemical Composition, Antibacterial and Antioxidant Activities of Leaves Essential Oils from Syzygium cumini L., Cupressus sempervirens L. and Lantana camara L. from Egypt. J. Agric. Sci. 2012, 4, 144–152. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Ali, S.I.; El-Baz, F.K. Antioxidant and antibacterial activities of crude extracts and essential oils of Syzygium cumini leaves. PLoS ONE 2013, 8, e60269. [Google Scholar] [CrossRef] [PubMed]
- Hanif, M.U.; Hussain, A.I.; Aslam, N.; Kamal, G.M.; Chatha, S.A.S.; Shahida, S.; Khalid, M.; Hussain, R. Chemical Composition and Bioactivities of Essential Oil from Leaves of Syzygium cumini (L.) Skeels Native to Punjab, Pakistan. Chem. Biodivers. 2020, 17, e1900733. [Google Scholar] [CrossRef]
- Rodrigues, K.A.d.F.; Amorim, L.V.; Dias, C.N.; Moraes, D.F.C.; Carneiro, S.M.P.; Carvalho, F.A.d.A. Syzygium cumini (L.) Skeels essential oil and its major constituent α-pinene exhibit anti-Leishmania activity through immunomodulation in vitro. J. Ethnopharmacol. 2015, 160, 32–40. [Google Scholar] [CrossRef]
- Da Silva, V.P.; Alves, C.C.F.; Miranda, M.L.D.; Bretanha, L.C.; Balleste, M.P.; Micke, G.A.; Silveira, E.V.; Martins, C.H.G.; Ambrosio, M.A.L.V.; de Souza Silva, T.; et al. Chemical composition and in vitro leishmanicidal, antibacterial and cytotoxic activities of essential oils of the Myrtaceae family occurring in the Cerrado biome. Ind. Crops Prod. 2018, 123, 638–645. [Google Scholar] [CrossRef]
- Machado, R.R.P.; Jardim, D.F.; Souza, A.R.; Scio, E.; Fabri, R.L.; Carpanez, A.G.; Grazul, R.M.; de Mendonça, J.P.R.F.; Lesche, B.; Aarestrup, F.M. The effect of essential oil of Syzygium cumini on the development of granulomatous inflammation in mice. Rev. Bras. Farmacogn. 2013, 23, 488–496. [Google Scholar] [CrossRef]
- Siani, A.C.; Souza, M.C.; Henriques, M.G.; Ramos, M.F. Anti-inflammatory activity of essential oils from Syzygium cumini and Psidium guajava. Pharm. Biol. 2013, 51, 881–887. [Google Scholar] [CrossRef]
- Stalin, N.; Swamy, P.S. Screening of phytochemical and pharmacological activities of Syzygium caryophyllatum (L.) Alston. Clin. Phytosci. 2018, 4, 3. [Google Scholar]
- Moresco, R.N.; Sperotto, R.L.; Bernardi, A.S.; Cardoso, R.F.; Gomes, P. Effect of the aqueous extract of Syzygium cumini on carbon tetrachloride-induced hepatotoxicity in rats. Phytother. Res. 2007, 21, 793–795. [Google Scholar] [CrossRef]
- El-Moneim, A.; Afify, M.; Fayed, S.; Shalaby, E.; El-Shemy, H. Syzygium cumini (pomposia) active principles exhibit potent anticancer and antioxidant activities. Afr. J. Pharm. Pharmacol. 2011, 5, 948–956. [Google Scholar]
- Li, L.; Adams, L.S.; Chen, S.; Killian, C.; Ahmed, A.; Seeram, N.P. Eugenia jambolana Lam. berry extract inhibits growth and induces apoptosis of human breast cancer but not non-tumorigenic breast cells. J. Agric. Food Chem. 2009, 57, 826–831. [Google Scholar] [CrossRef] [PubMed]
- Bopp, A.; De Bona, K.S.; Bellé, L.P.; Moresco, R.N.; Moretto, M.B. Syzygium cumini inhibits adenosine deaminase activity and reduces glucose levels in hyperglycemic patients. Fundam. Clin. Pharmacol. 2009, 23, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Malik, N.; Javaid, S.; Ashraf, W.; Siddique, F.; Rasool, M.F.; Alqahtani, F.; Ahmad, T.; Abrar, M.A.; Imran, I. Long-Term Supplementation of Syzygium cumini (L.) Skeels Concentrate Alleviates Age-Related Cognitive Deficit and Oxidative Damage: A Comparative Study of Young vs. Old Mice. Nutrients 2023, 15, 666. [Google Scholar] [CrossRef] [PubMed]
- Halim, M.A.; Kanan, K.A.; Nahar, T.; Rahman, M.J.; Ahmed, K.S.; Hossain, H.; Mozumder, N.H.M.R.; Ahmed, M. Metabolic profiling of phenolics of the extracts from the various parts of blackberry plant (Syzygium cumini L.) and their antioxidant activities. LWT 2022, 167, 113813. [Google Scholar] [CrossRef]
- Barra, A. Factors affecting chemical variability of essential oils: A review of recent developments. Nat. Prod. Commun. 2009, 4, 1147–1154. [Google Scholar] [CrossRef]
- Kumar, A.; Naqvi, A.A.; Kahol, A.P.; Tandon, S. Composition of leaf oil of Syzygium cumini L. from north India. Indian Perfum. 2004, 48, 439–441. [Google Scholar]
- Nishandhini, S.; Sudha, V.; Mallavarapu, G.R.; Murugan, R. Chemical Compositions, α-Amylase Inhibitory and Antioxidant Activities of the Essential Oils from Unripe Fruit Pulp and Leaves of Syzygium cumini. Int. J. Pharm. Pharm. Sci. 2015, 7, 515–519. [Google Scholar]
- Sarma, N.; Begum, T.; Pandey, S.; Gogoi, R.; Munda, S.; Lal, D. Chemical Composition of Syzygium cumini (L.) Skeels Leaf Essential Oil with Respect to its Uses from North East Region of India. J. Essent. Oil Bear. Plants 2020, 23, 601–607. [Google Scholar] [CrossRef]
- Vijayanand, P.; Jagan Mohan Rao, L.; Narasimham, P. Volatile flavour components of jamun fruit (Syzygium cumini L). Flavour Fragr. J. 2001, 16, 47–49. [Google Scholar] [CrossRef]
- Mehta, P.K.; de Sousa Galvão, M.; Soares, A.C.; Nogueira, J.P.; Narain, N. Volatile Constituents of Jambolan (Syzygium cumini L.) Fruits at Three Maturation Stages and Optimization of HS-SPME GC-MS Method Using a Central Composite Design. Food Anal. Methods 2018, 11, 733–749. [Google Scholar] [CrossRef]
- Demirci, B.; Kırcı, D.; Öztürk, G.; Demirci, F. Effect of Extraction Time on Origanum onites L. Infusions and Essential Oils—Biological Evaluation, Statistical Principal Component and Hierarchial Cluster Analyses. Chem. Biodivers. 2022, 19, e202200482. [Google Scholar] [CrossRef] [PubMed]
- Ashmawy, N.S.; Hamoda, A.M.; Gad, H.A.; El-Keblawy, A.A.; Soliman, S.S. Newly-sprouted leaves at the stem base differ anatomically and histochemically from the crown leaves in Ficus johannis. Bot. Lett. 2023, 170, 591–599. [Google Scholar] [CrossRef]
- Solano, F. Metabolism and functions of amino acids in the skin. In Amino Acids in Nutrition and Health; Springer: Cham, Switzerland, 2020; pp. 187–199. [Google Scholar]
- Tzaphlidou, M. The role of collagen and elastin in aged skin: An image processing approach. Micron 2004, 35, 173–177. [Google Scholar] [CrossRef]
- Almine, J.F.; Wise, S.G.; Weiss, A.S. Elastin signaling in wound repair. Birth Defects Res. Part C Embryo Today Rev. 2012, 96, 248–257. [Google Scholar] [CrossRef]
- Wong, R.; Geyer, S.; Weninger, W.; Guimberteau, J.C.; Wong, J.K. The dynamic anatomy and patterning of skin. Exp. Dermatol. 2016, 25, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Lewis, P.N.; White, T.L.; Young, R.D.; Bell, J.S.; Winlove, C.P.; Meek, K.M. Three-dimensional arrangement of elastic fibers in the human corneal stroma. Exp. Eye Res. 2016, 146, 43–53. [Google Scholar] [CrossRef]
- Papakonstantinou, E.; Roth, M.; Karakiulakis, G. Hyaluronic acid: A key molecule in skin aging. Derm. Endocrinol. 2012, 4, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Langton, A.K.; Halai, P.; Griffiths, C.E.; Sherratt, M.J.; Watson, R.E. The impact of intrinsic ageing on the protein composition of the dermal-epidermal junction. Mech. Ageing Dev. 2016, 156, 14–16. [Google Scholar] [CrossRef]
- Callaghan, T.; Wilhelm, K.P. A review of ageing and an examination of clinical methods in the assessment of ageing skin. Part 2: Clinical perspectives and clinical methods in the evaluation of ageing skin. Int. J. Cosmet. Sci. 2008, 30, 323–332. [Google Scholar] [CrossRef]
- Madan, K.; Nanda, S. In-vitro evaluation of antioxidant, anti-elastase, anti-collagenase, anti-hyaluronidase activities of safranal and determination of its sun protection factor in skin photoaging. Bioorg. Chem. 2018, 77, 159–167. [Google Scholar] [CrossRef]
- Jugreet, B.S.; Lall, N.; Anina Lambrechts, I.; Reid, A.-M.; Maphutha, J.; Nel, M.; Hassan, A.H.; Khalid, A.; Abdalla, A.N.; Van, B.L. In Vitro and In Silico Pharmacological and Cosmeceutical Potential of Ten Essential Oils from Aromatic Medicinal Plants from the Mascarene Islands. Molecules 2022, 27, 8705. [Google Scholar] [CrossRef] [PubMed]
- Faria, A.F.; Marques, M.C.; Mercadante, A.Z. Identification of bioactive compounds from jambolão (Syzygium cumini) and antioxidant capacity evaluation in different pH conditions. Food Chem. 2011, 126, 1571–1578. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Hasan, M.; Lorenzo, J.M.; Dhumal, S.; Nishad, J.; Rais, N.; Verma, A.; Changan, S.; Barbhai, M.D.; Chandran, D. Jamun (Syzygium cumini (L.) Skeels) seed bioactives and its biological activities: A review. Food Biosci. 2022, 50, 102109. [Google Scholar] [CrossRef]
- Karakaya, S.; Yilmaz, S.V.; Özdemir, Ö.; Koca, M.; Pınar, N.M.; Demirci, B.; Yıldırım, K.; Sytar, O.; Turkez, H.; Baser, K.H.C. A caryophyllene oxide and other potential anticholinesterase and anticancer agent in Salvia verticillata subsp. amasiaca (Freyn & Bornm.) Bornm. (Lamiaceae). J. Essent. Oil Res. 2020, 32, 512–525. [Google Scholar]
- Leporini, M.; Bonesi, M.; Loizzo, M.R.; Passalacqua, N.G.; Tundis, R. The essential oil of Salvia rosmarinus Spenn. from Italy as a source of health-promoting compounds: Chemical profile and antioxidant and cholinesterase inhibitory activity. Plants 2020, 9, 798. [Google Scholar] [CrossRef] [PubMed]
- Gushiken, L.F.S.; Beserra, F.P.; Hussni, M.F.; Gonzaga, M.T.; Ribeiro, V.P.; de Souza, P.F.; Campos, J.C.L.; Massaro, T.N.C.; Hussni, C.A.; Takahira, R.K.; et al. Beta-caryophyllene as an antioxidant, anti-inflammatory and re-epithelialization activities in a rat skin wound excision model. Oxid. Med. Cell Longev. 2022, 2022, 9004014. [Google Scholar] [CrossRef] [PubMed]
- Flores-Soto, M.E.; Corona-Angeles, J.A.; Tejeda-Martinez, A.R.; Flores-Guzman, P.A.; Luna-Mujica, I.; Chaparro-Huerta, V.; Viveros-Paredes, J.M. β-Caryophyllene exerts protective antioxidant effects through the activation of NQO1 in the MPTP model of Parkinson’s disease. Neurosci. Lett. 2021, 742, 135534. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Gad, H.A.; Ayoub, I.M.; Wink, M. Phytochemical profiling and seasonal variation of essential oils of three Callistemon species cultivated in Egypt. PLoS ONE 2019, 14, e0219571. [Google Scholar] [CrossRef]
- El Bishbishy, M.H.; Gad, H.A.; Aborehab, N.M. Chemometric discrimination of three Pistacia species via their metabolic profiling and their possible in vitro effects on memory functions. J. Pharm. Biomed. Anal. 2020, 177, 112840. [Google Scholar] [CrossRef]
- Gad, H.A.; Mukhammadiev, E.A.; Zengen, G.; Musayeib, N.M.A.; Hussain, H.; Bin Ware, I.; Ashour, M.L.; Mamadalieva, N.Z. Chemometric Analysis Based on GC-MS Chemical Profiles of Three Stachys Species from Uzbekistan and Their Biological Activity. Plants 2022, 11, 1215. [Google Scholar] [CrossRef]
- Van Wart, H.E.; Steinbrink, D.R. A continuous spectrophotometric assay for Clostridium histolyticum collagenase. Anal. Biochem. 1981, 113, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Stein, R.L.; Trainor, D.A. Mechanism of inactivation of human leukocyte elastase by a chloromethyl ketone: Kinetic and solvent isotope effect studies. Biochemistry 1986, 25, 5414–5419. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-S.; Noh, Y.-K.; Lee, G.-I.; Kim, Y.-K.; Lee, K.-S.; Min, K.-R. Inhibitory effects of herbal medicines on hyaluronidase activity. Korean J. Pharmacogn. 1995, 26, 265–272. [Google Scholar]
No. | KI | Compound | Relative Abundance% | ||||
---|---|---|---|---|---|---|---|
Cal. | Rep. | Scl | Scf | Scs | Scb | ||
1. | 932 | 939 | α-pinene | 0.69 | 13.13 | 5.47 | 7.92 |
2. | 946 | 946 | Camphene | - | 0.55 | - | 0.21 |
3. | 972 | 971 | α-thujene | 0.86 | - | - | - |
4. | 974 | 974 | β-pinene | 0.45 | 6.58 | 5.20 | 3.34 |
5. | 991 | 991 | β-Myrecene | - | 0.42 | - | 0.06 |
6. | 1024 | 1028 | o-Cymene | 0.48 | - | - | 0.36 |
7. | 1028 | 1029 | D-Limonene | 1.69 | 2.67 | - | 4.08 |
8. | 1059 | 1060 | γ-terpinene | 0.21 | - | - | - |
9. | 1071 | 1071 | Linalool oxide | - | - | - | 0.05 |
10. | 1097 | 1097 | α-Pinene epoxide | - | - | - | 0.34 |
11. | 1100 | 1100 | Linalool | 0.48 | - | - | 0.7 |
12. | 1106 | 1105 | trans-para-Mentha-2,8-dien-1-ol | 0.44 | - | - | 0.46 |
13. | 1113 | 1111 | Fenchol | 1.12 | 0.62 | - | 0.68 |
14. | 1122 | 1122 | cis-2-p-Menthen-1-ol | 0.28 | - | - | 0.20 |
15. | 1126 | 1125 | α-Campholenal | 0.13 | - | - | 0.17 |
16. | 1134 | 1134 | Limonene 1,2-epoxide | - | - | - | 0.12 |
17. | 1139 | 1139 | (-)-trans-Pinocarveol | 0.67 | 0.5 | - | 0.78 |
18. | 1145 | 1143 | cis-Verbenol | 0.75 | - | - | 0.27 |
19. | 1148 | 1148 | Camphene hydrate | 0.77 | - | - | 0.41 |
20. | 1163 | 1164 | Pinocarvone | 0.12 | 0.43 | - | 0.31 |
21. | 1166 | 1166 | Endo-Borneol | 0.85 | 0.57 | - | 0.59 |
22. | 1178 | 1182 | Terpinen-4-ol | 1.60 | - | - | 0.45 |
23. | 1187 | 1188 | p-Cymen-8-ol | 1.48 | - | - | 0.22 |
24. | 1193 | 1192 | α-Terpineol | 12.31 | 12.48 | - | 6.79 |
25. | 1198 | 1198 | Myrtenal | 0.73 | 0.75 | - | 0.70 |
26. | 1210 | 1210 | Verbenone | 0.40 | - | - | 0.29 |
27. | 1221 | 1220 | α-Fenchyl acetate | 1.45 | - | - | 0.58 |
28. | 1224 | 1227 | 2-Hydroxy-1,8-cineole | 0.32 | - | - | 0.06 |
29. | 1243 | 1243 | p-Cumic aldehyde | 0.22 | - | - | - |
30. | 1247 | 1246 | Carvone | 0.11 | - | - | 0.25 |
31. | 1277 | 1274 | p-Menth-1-en-7-al | 1.75 | - | - | 0.12 |
32. | 1287 | 1287 | Bornyl acetate | 5.85 | - | - | 1.5 |
33. | 1294 | 1293 | p-Cymen-7-ol | 0.23 | - | - | - |
34. | 1301 | 1297 | trans-Pinocarvyl acetate | 0.42 | - | - | 0.52 |
35. | 1306 | 1305 | Carvacrol | 0.61 | - | - | 0.39 |
36. | 1351 | 1351 | α-Terpinyl acetate | 0.14 | - | - | - |
37. | 1379 | 1379 | α-Copaene | 0.17 | - | - | 0.1 |
38. | 1385 | 1385 | Geranyl acetate | - | - | - | 0.22 |
39. | 1423 | 1422 | trans-β-Caryophyllene | 1.35 | 13.6 | 60.79 | 0.34 |
40. | 1431 | 1432 | α-Ionone | 0.19 | - | - | 0.16 |
41. | 1443 | 1447 | Aromandendrene | 0.1 | - | - | 0.15 |
42. | 1458 | 1459 | α-Caryophyllene | 1.33 | 10.05 | 25.15 | 0.38 |
43. | 1466 | 1466 | Alloaromadendrene | 0.31 | - | - | - |
44. | 1474 | 1479 | Aristolochene | 0.53 | - | - | 0.20 |
45. | 1480 | 1480 | γ-Muurolene | 0.33 | 4.04 | - | 0.15 |
46. | 1492 | 1492 | β-Selinene | 0.76 | - | 0.51 | 0.15 |
47. | 1504 | 1504 | α-Muurolene | 0.16 | - | - | 0.71 |
48. | 1528 | 1528 | γ-Cadinene | 1.56 | - | 1.14 | 0.47 |
49. | 1559 | 1552 | Isopatchoulane | - | - | - | 0.76 |
50. | 1567 | 1567 | trans-(E)-Nerolidol | 1.03 | - | - | 0.23 |
51. | 1577 | 1581 | Palustrol | 1.93 | 0.60 | - | 0.58 |
52. | 1586 | 1586 | (+)-Spathulenol | 4.49 | - | - | 0.32 |
53. | 1592 | 1592 | Caryophyllene oxide | 17.24 | 22.63 | 1.27 | 26.92 |
54. | 1599 | 1598 | Viridiflorol | 0.32 | - | - | 0.41 |
55. | 1609 | 1608 | Epiglobulol | 2.39 | 1.26 | - | 0.58 |
56. | 1618 | 1613 | α-Humulene epoxide II | 8.27 | 7.62 | 0.46 | 10.44 |
57. | 1640 | 1641 | Caryophylla-4(12),8(13)-dien-5α-ol | 1.59 | 0.88 | - | 1.55 |
58. | 1644 | 1644 | Caryophylla-4(12),8(13)-dien-5β-ol | 0.62 | - | - | 0.87 |
59. | 1648 | 1648 | τ-Cadinol | 0.38 | - | - | 0.55 |
60. | 1653 | 1652 | δ-Cadinol | 0.1 | - | - | 0.14 |
61. | 1659 | 1655 | trans-Guai-11-en-10-ol | 1.49 | - | - | 1.41 |
62. | 1678 | 1679 | α-Bisabolene oxide | 0.76 | - | - | 2.1 |
63. | 1731 | 1733 | (Z)-α-Bisabolene epoxide | 0.54 | - | - | 1.05 |
64. | 1744 | 1746 | Bisabolone | 0.22 | - | - | 0.47 |
65. | 1785 | 1789 | β-bisabolen-15-ol | 0.43 | - | - | 0.63 |
66. | 1839 | 1838 | Hexahydro farnesyl acetone | - | - | - | 0.31 |
67. | 1971 | 1961 | Cembrene A | 0.34 | - | - | - |
68. | 2026 | 2033 | Kaur-16-ene | 0.49 | - | - | - |
69. | 2084 | 2085 | 1-Octadecanol | - | - | - | 0.07 |
70. | 2097 | 2100 | n-Heneicosane | - | - | - | 0.1 |
71. | 2114 | 2114 | Phytol | 0.27 | - | - | - |
72. | 2128 | 2120 | Phenethyl anthranilate | 0.28 | - | - | 0.34 |
73. | 2155 | 2161 | Cembrenol | 0.32 | - | - | - |
74. | 2169 | 2158 | incensole | 3.41 | - | - | - |
75. | 2197 | 2200 | n-Docosane | - | - | - | 0.13 |
76. | 2297 | 2300 | n-Tricosane | 0.13 | - | - | 0.43 |
77. | 2303 | 2302 | Methyl cis-11-eicosenoate | 0.12 | - | - | - |
78. | 2397 | 2400 | n-Tetracosane | - | - | - | 0.32 |
79. | 2496 | 2500 | n-Pentacosane | 0.2 | - | - | 0.87 |
80. | 2696 | 2700 | n-Heptacosane | - | - | - | 1.53 |
81. | 2895 | 2900 | n-Nonacosane | 0.21 | - | - | 1.77 |
82. | 3095 | 3100 | n-Hentriacontane | - | - | - | 1.38 |
Total identified compounds% | 92.13% | 99.42% | 100% | 92.97% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashmawy, N.S.; Gad, H.A.; El-Nashar, H.A.S. Comparative Study of Essential Oils from Different Organs of Syzygium cumini (Pamposia) Based on GC/MS Chemical Profiling and In Vitro Antiaging Activity. Molecules 2023, 28, 7861. https://doi.org/10.3390/molecules28237861
Ashmawy NS, Gad HA, El-Nashar HAS. Comparative Study of Essential Oils from Different Organs of Syzygium cumini (Pamposia) Based on GC/MS Chemical Profiling and In Vitro Antiaging Activity. Molecules. 2023; 28(23):7861. https://doi.org/10.3390/molecules28237861
Chicago/Turabian StyleAshmawy, Naglaa S., Haidy A. Gad, and Heba A. S. El-Nashar. 2023. "Comparative Study of Essential Oils from Different Organs of Syzygium cumini (Pamposia) Based on GC/MS Chemical Profiling and In Vitro Antiaging Activity" Molecules 28, no. 23: 7861. https://doi.org/10.3390/molecules28237861
APA StyleAshmawy, N. S., Gad, H. A., & El-Nashar, H. A. S. (2023). Comparative Study of Essential Oils from Different Organs of Syzygium cumini (Pamposia) Based on GC/MS Chemical Profiling and In Vitro Antiaging Activity. Molecules, 28(23), 7861. https://doi.org/10.3390/molecules28237861