C–O Coupling of Hydrazones with Diacetyliminoxyl Radical Leading to Azo Oxime Ethers—Novel Antifungal Agents
Abstract
:1. Introduction
2. Results and Discussion
3. In Vitro Fungicidal Activity of the Synthesized Azo Compounds
4. Materials and Methods
- (E)-3-((1-phenyl-1-(phenyldiazenyl)ethoxy)imino)pentane-2,4-dione, 3aa, was synthesized as a yellow oil (84%, purified by column chromatography with DCM as eluent). 1H NMR (300.13 MHz, CDCl3): δ = 7.81–7.69 (m, 2H), 7.56–7.43 (m, 5H), 7.43–7.28 (m, 3H), 2.48 (s, 3H), 2.27 (s, 3H), 2.05 (s, 3H). 13C NMR (75.47 MHz, CDCl3): δ = 198.8, 194.7, 156.6, 151.6, 139.4, 131.6, 129.2, 128.7, 128.6, 126.5, 122.9, 105.2, 30.5, 25.9, 23.8. FT-IR (thin layer): νmax = 1725, 1690, 1363, 960, 695. HR-MS (ESI): m/z = 360.1313, calcd. for C19H19N3O3+Na+: 360.1319.
- (E)-3-((1-(phenyldiazenyl)-1-(p-tolyl)ethoxy)imino)pentane-2,4-dione, 3ab, was synthesized as a yellow oil (96%, purified by column chromatography with DCM as eluent). 1H NMR (300.13 MHz, CDCl3): δ = 7.81–7.71 (m, 2H), 7.54–7.44 (m, 3H), 7.41 (d, J = 8.2 Hz, 2H), 7.19 (d, J = 8.2 Hz, 2H), 2.49 (s, 3H), 2.35 (s, 3H), 2.29 (s, 3H), 2.06 (s, 3H). 13C NMR (75.47 MHz, CDCl3): δ = 198.7, 194.7, 156.5, 151.6, 138.6, 136.4, 131.4, 129.24, 129.18, 126.5, 122.8, 105.2, 30.5, 25.8, 23.5, 21.2. FT-IR (thin layer): νmax = 1725, 1687, 1363, 1305, 968. HR-MS (ESI): m/z = 352.1654, calcd. for C20H21N3O3+H+: 352.1656.
- (E)-3-((1-((4-chlorophenyl)diazenyl)-1-(p-tolyl)ethoxy)imino)pentane-2,4-dione, 3ac, was synthesized as a yellow oil (81%, purified by column chromatography with DCM as eluent). 1H NMR (300.13 MHz, CDCl3): δ = 7.70 (d, J = 8.7 Hz, 2H), 7.44 (d, J = 8.7 Hz, 2H), 7.39 (d, J = 8.3 Hz, 2H), 7.19 (d, J = 8.3 Hz, 2H), 2.47 (s, 3H), 2.35 (s, 3H), 2.29 (s, 3H), 2.04 (s, 3H). 13C NMR (75.47 MHz, CDCl3): δ = 198.6, 194.6, 156.7, 149.9, 138.7, 137.5, 136.2, 129.4, 129.3, 126.4, 124.1, 105.3, 30.5, 25.8, 23.4, 21.2. FT-IR (thin layer): νmax = 1726, 1690, 1362, 1300, 1088, 959. HR-MS (ESI): m/z = 386.1252, 388.1230, calcd. for C20H20ClN3O3+H+: 386.1266, 388.1238.
- (E)-3-((1-phenyl-1-((4-(trifluoromethyl)phenyl)diazenyl)ethoxy)imino)pentane-2,4-dione, 3ad, was synthesized as a yellow oil (95%, purified by column chromatography with DCM as eluent). 1H NMR (300.13 MHz, CDCl3): δ = 7.85 (d, J = 8.4 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H), 7.58–7.49 (m, 2H), 7.47–7.32 (m, 3H), 2.49 (s, 3H), 2.29 (s, 3H), 2.10 (s, 3H). 13C NMR (75.47 MHz, CDCl3): δ = 198.5, 194.5, 156.7, 153.3, 138.8, 132.89 (q, J = 32.7 Hz), 128.9, 128.7, 126.42 (q, J = 3.6 Hz), 123.84 (q, J = 272.5 Hz), 123.0, 105.5, 30.5, 25.7, 23.6. FT-IR (thin layer): νmax = 1726, 1692, 1364, 1324, 1169, 1131, 1066, 959. HR-MS (ESI): m/z = 428.1198, calcd. for C20H18F3N3O3+Na+: 428.1192.
- (E)-3-((1-(4-nitrophenyl)-1-(phenyldiazenyl)ethoxy)imino)pentane-2,4-dione, 3ae, was synthesized as a yellow oil (98%, purified by column chromatography with DCM as eluent). 1H NMR (300.13 MHz, CDCl3): δ = 8.25 (d, J = 8.9 Hz, 2H), 7.81–7.67 (m, 4H), 7.56–7.45 (m, 3H), 2.48 (s, 3H), 2.24 (s, 3H), 2.03 (s, 3H). 13C NMR (75.47 MHz, CDCl3): δ = 198.2, 194.3, 157.1, 151.3, 148.0, 146.6, 132.2, 129.4, 127.8, 123.8, 123.0, 104.1, 30.4, 25.9, 24.4. FT-IR (thin layer): νmax = 1727, 1693, 1605, 1522, 1350, 1300, 1142, 1109, 1079, 1067, 958, 855, 769, 758, 693. HR-MS (ESI): m/z = 405.1161, calcd. for C19H18N4O5+Na+: 405.1169.
- (E)-3-((1-(4-methoxyphenyl)-1-(phenyldiazenyl)ethoxy)imino)pentane-2,4-dione, 3af, was synthesized as a yellow oil (75%, purified by column chromatography with DCM as eluent). 1H NMR (300.13 MHz, CDCl3): δ = 7.80–7.67 (m, 2H), 7.55–7.38 (m, 5H), 6.95–6.82 (m, 2H), 3.80 (s, 3H), 2.47 (s, 3H), 2.28 (s, 3H), 2.04 (s, 3H). 13C NMR (75.47 MHz, CDCl3): δ = 198.8, 194.7, 159.9, 156.5, 151.6, 131.4, 129.2, 128.0, 122.8, 113.9, 105.1, 55.4, 30.5, 25.8, 23.3. FT-IR (thin layer): νmax = 1725, 1690, 1608, 1514, 1363, 1303, 1253, 1185, 1109, 1030, 960, 834, 769. HR-MS (ESI): m/z = 390.1423, calcd. for C20H21N3O4+Na+: 390.1424.
- (E)-3-((1-(4-bromophenyl)-1-(phenyldiazenyl)ethoxy)imino)pentane-2,4-dione, 3ag, was synthesized as yellow crystals (82%, purified by column chromatography with DCM as eluent). Mp = 90–91 °C. 1H NMR (300.13 MHz, CDCl3): δ = 7.81–7.70 (m, 2H), 7.55–7.45 (m, 5H), 7.44–7.35 (m, 2H), 2.47 (s, 3H), 2.27 (s, 3H), 2.01 (s, 3H). 13C NMR (75.47 MHz, CDCl3): δ = 198.6, 194.6, 156.8, 151.4, 138.6, 131.8, 129.3, 128.4, 123.1, 122.9, 104.6, 102.8, 30.5, 25.9, 23.8. FT-IR (thin layer): νmax = 1773, 1484, 1397, 1362, 1302, 1135, 1078, 1010, 966, 920, 828, 685, 550. HR-MS (ESI): m/z = 416.0608, 418.0592, calcd. for C19H18BrN3O3+H+: 416.0604, 418.0585. Single crystal X-ray analysis is available (see Supplementary Figure S1, page S15).
- (E)-3-((1-(2-hydroxyphenyl)-1-(phenyldiazenyl)ethoxy)imino)pentane-2,4-dione, 3ah, was synthesized as a pale yellow solid (74%, purified by column chromatography with DCM as eluent) Mp = 103–104 °C. 1H NMR (300.13 MHz, CDCl3): δ = 8.16 (s, 1H), 7.74–7.71 (m, 2H), 7.54–7.49 (m, 3H), 7.36–7.27 (m, 2H), 6.97–6.90 (m, 2H), 2.46 (s, 3H), 2.25 (s, 3H), 2.09 (s, 3H). 13C NMR (75.47 MHz, CDCl3): δ = 198.2, 194.4, 157.0, 155.4, 150.9, 132.5, 131.3, 129.6, 127.3, 124.0, 123.0, 120.3, 118.5, 106.9, 30.6, 25.9, 22.8. FT-IR (thin layer): νmax = 1727, 1692, 1483, 1458, 1364, 1299, 1246, 1201, 1105, 957, 939, 76. HR-MS (ESI): m/z = 376.1260, cald. for C19H19N3O4+Na+ = 376.1268.
- (E)-3-((1-phenyl-1-(phenyldiazenyl)propoxy)imino)pentane-2,4-dione, 3ai, was synthesized as a yellow oil (87%, purified by column chromatography with DCM as eluent). 1H NMR (300.13 MHz, CDCl3): δ = 7.85–7.69 (m, 2H), 7.57–7.53 (m, 2H), 7.51–7.47 (m, 3H), 7.44–7.30 (m, 3H), 2.52 (s, 3H), 2.60–2.35 (m, 2H), 2.23 (s, 3H), 0.88 (t, J = 7.4 Hz, 3H). 13C NMR (75.47 MHz, CDCl3): δ = 198.8, 194.7, 156.7, 151.6, 138.2, 131.4, 129.2, 128.5, 128.3, 126.9, 122.8, 106.9, 31.1, 30.3, 25.8, 7.7. FT-IR (thin layer): νmax =2979, 1726, 1691, 1450, 1363, 1296, 1138, 1070, 963, 763, 699, 691. HR-MS (ESI): m/z = 374.1472, calcd. for C20H21N3O3+Na+: 374.1475.
- (E)-3-((diphenyl(phenyldiazenyl)methoxy)imino)pentane-2,4-dione, 3aj, was synthesized as a slightly yellow solid (98%, purified by column chromatography with DCM as eluent). Mp = 103–104 °C. 1H NMR (300.13 MHz, CDCl3): δ = 7.86–7.75 (m, 2H), 7.58–7.45 (m, 7H), 7.43–7.30 (m, 6H), 2.56 (s, 3H), 2.05 (s, 3H). 13C NMR (75.47 MHz, CDCl3): δ = 198.7, 194.7, 156.3, 151.5, 139.9, 131.6, 129.3, 128.6, 128.4, 128.0, 123.0, 105.6, 30.1, 25.7. FT-IR (thin layer): νmax = 1725, 1686, 1300, 1013, 976, 941, 762, 695. HR-MS (ESI): m/z = 422.1461, calcd. for C24H21N3O3+Na+: 422.1475.
- (E)-3-((1-phenyl-1-(pyridin-2-yldiazenyl)ethoxy)imino)pentane-2,4-dione, 3ak, was synthesized as a yellow oil (89%, purified by column chromatography with PE/EtOAc = 2/5 as eluent). 1H NMR (300.13 MHz, CDCl3): δ = 8.70 (d, J = 4.2 Hz, 1H), 7.85 (td, J = 7.7, 1.8 Hz, 1H), 7.60–7.48 (m, 3H), 7.46–7.29 (m, 4H), 2.48 (s, 3H), 2.28 (s, 3H), 2.12 (s, 3H). 13C NMR (75.47 MHz, CDCl3): δ = 198.6, 194.6, 162.2, 156.8, 149.6, 138.6, 138.5, 129.0, 128.7, 126.5, 125.8, 114.3, 106.0, 30.6, 25.9, 23.5. FT-IR (thin layer): νmax = 1725, 1690, 1583, 1455, 1425, 1363, 1299, 1261, 1194, 1145, 1119,1069, 955, 791, 770, 699. HR-MS (ESI): m/z = 339.1448, calcd. for C18H18N4O3+H+: 339.1452.
- 3-((((Z)-1,4-diphenyl-1-((E)-phenyldiazenyl)but-3-en-1-yl)oxy)imino)pentane-2,4-dione, 3al, was synthesized as a slightly yellow viscous gum (87%, purified by column chromatography with DCM as eluent). 1H NMR (300.13 MHz, CDCl3): δ = 7.79–7.70 (m, 2H), 7.58–7.45 (m, 5H), 7.45–7.17 (m, 8H), 6.54 (d, J = 11.8 Hz, 1H), 5.58 (dt, J = 11.8, 7.2 Hz, 1H), 3.57 (dd, J = 7.2, 1.8 Hz, 2H), 2.50 (s, 3H), 1.98 (s, 3H). 13C NMR (75.47 MHz, CDCl3): δ = 198.6, 194.7, 156.6, 151.5, 137.3, 137.2, 132.5, 131.6, 129.2, 128.74, 128.67, 128.61, 128.4, 127.0, 126.9, 124.9, 122.9, 106.3, 36.2, 30.3, 25.6. FT-IR (thin layer): νmax = 1725, 1690, 1600, 1494, 1449, 1363, 1301, 1193, 1059, 1018, 1003, 950, 765, 699. HR-MS (ESI): m/z = 462.1781, calcd. for C27H25N3O3+Na+: 462.1788.
- (E)-3-(((1-([1,1′-biphenyl]-4-yl)-1-((2,4-dinitrophenyl)diazenyl)hexyl)oxy)imino)pentane-2,4-dione, 3am, was synthesized as a viscous orange gum (46%, purified by column chromatography with DCM as eluent). 1H NMR (300.13 MHz, CDCl3): δ = 8.83 (d, J = 2.3 Hz, 1H), 8.51 (dd, J = 8.7, 2.3 Hz, 1H), 7.73–7.56 (m, 6H), 7.52–7.41 (m, 3H), 7.41–7.32 (m, 1H), 2.60–2.47 (m, 2H), 2.44 (s, 3H), 2.33 (s, 3H), 1.42–1.20 (m, 6H), 0.94–0.77 (m, 3H). 13C NMR (75.47 MHz, CDCl3): δ = 198.5, 194.4, 157.1, 148.6, 148.1, 146.1, 141.7, 140.2, 135.6, 129.0, 128.4, 127.9, 127.5, 127.18, 127.15, 120.5, 120.3, 108.1, 37.3, 31.8, 30.2, 25.8, 22.6, 22.4, 14.0. FT-IR (thin layer): νmax = 3103, 2957, 2931, 2869, 1726, 1692, 1608, 1536, 1487, 1346, 1298, 1147, 954, 836, 766, 744, 698. HR-MS (ESI): m/z = 582.1955, calcd. for C29H29N5O7+Na+: 582.1959.
- (E)-3-(((1-([1,1′-biphenyl]-4-yl)-1-((2,4-dinitrophenyl)diazenyl)octyl)oxy)imino)pentane-2,4-dione, 3an, was synthesized as a viscous orange gum (42%, purified by column chromatography with DCM as eluent). 1H NMR (300.13 MHz, CDCl3): δ = 8.82 (d, J = 2.3 Hz, 1H), 8.51 (dd, J = 8.7, 2.3 Hz, 1H), 7.78–7.55 (m, 6H), 7.54–7.40 (m, 3H), 7.39–7.29 (m, 1H), 2.66–2.49 (m, 2H), 2.45 (s, 3H), 2.34 (s, 3H), 1.55–1.09 (m, 10H), 0.86 (t, J = 6.5 Hz, 3H). 13C NMR (75.47 MHz, CDCl3): δ = 198.5, 194.4, 157.1, 148.6, 148.1, 146.1, 141.8, 140.2, 135.6, 129.0, 128.4, 127.9, 127.5, 127.2, 120.5, 120.3, 108.1, 37.4, 31.8, 30.3, 29.6, 29.1, 25.8, 23.0, 22.7, 14.2. FT-IR (thin layer): νmax = 1724, 1691, 1607, 1545, 1541, 1346, 1297, 1194, 1146, 963, 835, 766, 747, 698. HR-MS (ESI): m/z = 605.2712, calcd. for C31H33N5O7+H+: 605.2718.
- (E)-3-((phenyl(phenyldiazenyl)methoxy)imino)pentane-2,4-dione, 3ba, was synthesized as a yellow oil (79%, purified by column chromatography with DCM as eluent). 1H NMR (300.13 MHz, CDCl3): δ = 7.79–7.76 (m, 2H), 7.55–7.51 (m, 2H), 7.50–7.47 (m, 3H), 7.44–7.39 (m, 3H), 6.50 (s, 1H), 2.46 (s, 3H), 2.35 (s, 3H). 13C NMR (75.47 MHz, CDCl3): δ = 198.9, 194.4, 157.2, 151.6, 134.4, 131.9, 130.7, 129.8, 129.3, 129.0, 127.9, 123.7, 107.3, 30.6, 25.9. FT-IR (thin layer): νmax =1725, 1693, 1453, 1419, 1360, 1195, 1098, 1019, 952, 766, 695. HR-MS (ESI): m/z = 346.1162 cald. for C18H17N3O3+Na+ = 346.1162.
- (E)-3-(((4-chlorophenyl)(phenyldiazenyl)methoxy)imino)pentane-2,4-dione, 3bb, was synthesized as a yellow powder (58%, purified by column chromatography with DCM as eluent). Mp = 49–50 °C. 1H NMR (300.13 MHz, CDCl3): δ = 7.84–7.69 (m, 2H), 7.57–7.42 (m, 5H), 7.42–7.35 (m, 2H), 6.45 (s, 1H), 2.45 (s, 3H), 2.35 (s, 3H) 13C NMR (75.47 MHz, CDCl3): δ = 197.7, 194.3, 157.3, 151.4, 135.9, 132.9, 132.1, 129.3, 129.23, 129.19, 123.1, 106.5, 30.6, 26.0. FT-IR (thin layer): νmax = 1725, 1697, 1488, 1413, 1363, 1296, 1091, 1049, 1019, 939, 821, 768, 691. HR-MS (ESI): m/z = 380.0770, cald. for C18H16ClN3O3+Na+: 380.0772.
- (E)-3-(((4-methoxyphenyl)(phenyldiazenyl)methoxy)imino)pentane-2,4-dione, 3bc, was synthesized as a yellow solid (88%, purified by column chromatography with DCM as eluent). Mp = 69–70 °C 1H NMR (300 MHz, CDCl3): δ = 7.81–7.69 (m, 2H), 7.51–7.38 (m, 5H), 6.98–6.89 (m, 2H), 6.44 (s, 1H), 3.81 (s, 3H), 2.45 (s, 3H), 2.35 (s, 3H). 13C NMR (76 MHz, CDCl3): δ = 198.0, 194.5, 160.8, 157.0, 151.5, 131.8, 129.3, 129.2, 126.6, 123.0, 114.4, 107.2, 55.4, 30.6, 25.9. FT-IR (thin layer): νmax = 1725, 1692, 1515, 1360, 1300, 1253, 1027, 951. HR-MS (ESI): m/z = 376.1261 cald. for C19H19N3O4+Na+ = 376.1268.
- (E)-3-(((4-chlorophenyl)(methyldiazenyl)methoxy)imino)pentane-2,4-dione, 3bd, was synthesized as a yellow oil (68%, purified by column chromatography with DCM as eluent). 1H NMR (300.13 MHz, DMSO-d6): δ = 7.53 (d, J = 8.6 Hz, 2H), 7.47 (d, J = 8.6 Hz, 1H), 6.36 (s, 1H), 3.85 (s, 3H), 2.35 (s, 3H), 2.32 (s, 3H). 13C NMR (75.47 MHz, DMSO-d6): δ = 198.2, 193.7, 156.9, 134.5, 133.1, 129.5, 128.9, 104.5, 57.0, 30.1, 25.6. FT-IR (thin layer): νmax = 1727, 1693, 1493, 1363, 1298, 1090, 977, 950. HR-MS (ESI): m/z = 318.0611, cald. for C13H14ClN3O3+Na+: 318.0616.
- (E)-3-(((2-(phenyldiazenyl)propan-2-yl)oxy)imino)pentane-2,4-dione, 3ca, was synthesized as a yellow oil (85%, purified by column chromatography with DCM as eluent). 1H NMR (300.13 MHz, CDCl3): δ = 7.76–7.67 (m, 2H), 7.52–7.43 (m, 3H), 2.44 (s, 3H), 2.35 (s, 3H), 1.62 (s, 6H). 13C NMR (75.47 MHz, CDCl3): δ = 198.9, 194.8, 156.3, 151.6, 131.3, 129.2, 122.6, 104.7, 30.6, 25.8, 23.5. FT-IR (thin layer): νmax =1726, 1690, 1384, 1303, 1196, 1173, 1145, 1070, 963, 767, 691. HR-MS (ESI): m/z = 298.1160, calcd. for C14H17N3O3+Na+: 298.1162.
- (E)-3-(((4-(phenyldiazenyl)heptan-4-yl)oxy)imino)pentane-2,4-dione, 3cb, was synthesized as a yellow oil (73%, purified by column chromatography with DCM as eluent). 1H NMR (300.13 MHz, CDCl3): δ = 7.75–7.63 (m, 2H), 7.54–7.41 (m, 3H), 2.44 (s, 3H), 2.34 (s, 3H), 2.15–1.91 (m, 4H), 1.55–1.19 (m, 4H), 0.90 (t, J = 7.3 Hz, 6H). 13C NMR (75.47 MHz, CDCl3): δ = 199.0, 194.8, 156.2, 151.6, 131.2, 129.2, 122.5, 107.5, 37.2, 30.4, 25.8, 16.3, 14.6. FT-IR (thin layer): νmax = 2964, 2934, 2875, 1726, 1690, 1363, 1303, 960, 768, 691. HR-MS (ESI): m/z = 354.1782, calcd. for C18H25N3O3+Na+: 354.1788.
- (E)-3-(((6-(phenyldiazenyl)undecan-6-yl)oxy)imino)pentane-2,4-dione, 3cc, was synthesized as a yellow oil (70%, purified by column chromatography with DCM as eluent). 1H NMR (300.13 MHz, CDCl3): δ = 7.73–7.64 (m, 2H), 7.53–7.42 (m, 3H), 2.44 (s, 3H), 2.34 (s, 3H), 2.13–1.93 (m, 4H), 1.49–1.18 (m, 12H), 0.86 (t, J = 6.8 Hz, 6H). 13C NMR (75.47 MHz, CDCl3): δ = 198.9, 194.8, 156.3, 151.7, 131.1, 129.2, 122.5, 107.6, 34.8, 32.2, 30.4, 25.8, 22.5, 22.4, 14.1. FT-IR (thin layer): νmax = 2957, 2932, 2870, 1727, 1692, 1363, 1301, 960, 767. HR-MS (ESI): m/z = 410.2402, calcd. For C22H33N3O3+Na+: 410.2414.
- (E)-3-(((2-(phenyldiazenyl)hex-5-en-2-yl)oxy)imino)pentane-2,4-dione, 3cd, was synthesized as a slightly yellow viscous gum (79%, purified by column chromatography with PE/EA = 10/1 as eluent). 1H NMR (300.13 MHz, CDCl3): δ = 7.76–7.66 (m, 2H), 7.54–7.44 (m, 3H), 5.93–5.62 (m, 1H), 5.21–4.77 (m, 2H), 2.45 (s, 3H), 2.35 (s, 3H), 2.27–1.98 (m, 4H), 1.63 (s, 3H). 13C NMR (75.47 MHz, CDCl3): δ = 198.9, 194.8, 156.4, 151.6, 137.7, 131.4, 129.2, 122.6, 115.1, 106.0, 36.4, 30.5, 27.4, 25.9, 21.4. FT-IR (thin layer): νmax = 1726, 1690, 1420, 1367, 1303, 982, 960, 826. HR-MS (ESI): m/z = 338.1475, calcd. for C17H21N3O3+Na+: 338.1475.
- (E)-3-((1-(phenyldiazenyl)cyclobutoxy)imino)pentane-2,4-dione, 3ce, was synthesized as a slightly yellow viscous gum (89%, purified by column chromatography with DCM as eluent). 1H NMR (300.13 MHz, CDCl3): δ = 7.81–7.70 (m, 2H), 7.56–7.42 (m, 3H), 2.69–2.50 (m, 4H), 2.46 (s, 3H), 2.35 (s, 3H), 2.09–1.84 (m, 2H).13C NMR (75.47 MHz, CDCl3): δ = 198.7, 194.7, 157.3, 151.7, 131.4, 129.2, 122.8, 105.2, 31.9, 30.7, 25.9, 12.0. FT-IR (thin layer): νmax = 1727, 1690, 1364, 1304, 1251, 1143, 954, 768, 690. HR-MS (ESI): m/z = 310.1163, calcd. for C15H17N3O3+Na+: 310.1162.
- (E)-3-(((1-(phenyldiazenyl)cyclopentyl)oxy)imino)pentane-2,4-dione, 3cf, was synthesized as a slightly yellow viscous gum (82%, purified by column chromatography with DCM as eluent). 1H NMR (300.13 MHz, CDCl3): δ = 7.78–7.63 (m, 2H), 7.55–7.40 (m, 3H), 2.44 (s, 3H), 2.35 (s, 3H), 2.30–2.12 (m, 4H), 1.96–1.81 (m, 4H). 13C NMR (75.47 MHz, CDCl3): δ = 198.8, 194.8, 156.8, 151.7, 131.2, 129.2, 122.6, 115.6, 36.4, 30.5, 25.9, 24.8. FT-IR (thin layer): νmax = 2959, 1725, 1685, 1363, 1302, 1188, 959, 766, 690. HR-MS (ESI): m/z = 340.1059, calcd. for C16H19N3O3+K+: 340.1058.
- (E)-3-(((1-(phenyldiazenyl)cyclohexyl)oxy)imino)pentane-2,4-dione, 3cg, was synthesized as a slightly yellow viscous gum (89%, purified by column chromatography with DCM as eluent). 1H NMR (300.13 MHz, CDCl3): δ = 7.74–7.64 (m, 2H), 7.55–7.39 (m, 3H), 2.46 (s, 3H), 2.45 (s, 3H), 2.19–2.06 (m, 2H), 1.92–1.68 (m, 5H), 1.67–1.46 (m, 2H), 1.45–1.27 (m, 1H). 13C NMR (75.47 MHz, CDCl3): δ = 198.9, 194.8, 156.6, 151.7, 131.2, 129.2, 122.6, 105.2, 32.1, 30.6, 25.9, 25.0, 21.9. FT-IR (thin layer): νmax = 2938, 2863, 1727, 1689, 1599, 1450, 1420, 1363, 1304, 1275, 1256, 1195, 1159, 1146, 1069, 1023, 983, 960, 928, 911, 766, 691. HR-MS (ESI): m/z = 316.1654, calcd. for C17H21N3O3+H+: 316.1656.
- (E)-3-((1-(phenyldiazenyl)ethoxy)imino)pentane-2,4-dione, 3da, was synthesized as a pale brown gum (74%, purified by column chromatography with DCM as eluent). 1H NMR (300 MHz, CDCl3): δ = 7.79–7.69 (m, 2H), 7.54–7.44 (m, 3H), 5.67 (q, J = 6.3 Hz, 1H), 2.45 (s, 3H), 2.34 (s, 3H), 1.59 (d, J = 6.3 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ = 198.2, 194.5, 156.8, 151.5, 131.7, 129.3, 122.8, 103.5, 30.6, 25.9, 17.5. FT-IR (thin layer): νmax = 1727, 1691, 1365, 1299, 1107, 1088, 1060, 965, 770, 691. HR-MS (ESI): m/z = 300.0733, calcd. for C13H15N3O3+K+: 300.0745.
- (E)-3-((1-(phenyldiazenyl)propoxy)imino)pentane-2,4-dione, 3db, was synthesized as a pale yellow gum (59%, purified by column chromatography with DCM as eluent). 1H NMR (300 MHz, CDCl3): δ = 7.83–7.64 (m, 2H), 7.60–7.39 (m, 3H), 5.55–5.41 (m, 1H), 2.45 (s, 3H), 2.33 (s, 3H), 2.15–1.88 (m, 2H), 1.05 (t, J = 7.5 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ = 198.2, 194.6, 156.9, 151.5, 131.6, 129.3, 122.8, 107.9, 30.6, 25.9, 25.3, 8.7. FT-IR (thin layer): νmax = 1726, 1691, 1363, 1301, 1022, 988, 950, 769, 691. HR-MS (ESI): m/z = 298.1152, calcd. for C14H17N3O3+Na+: 298.1162.
- (E)-3-((2-methyl-1-(phenyldiazenyl)propoxy)imino)pentane-2,4-dione, 3dc, was synthesized as a yellow gum (68%, purified by column chromatography with DCM as eluent). 1H NMR (300 MHz, DMSO-d6): δ = 7.77–7.68 (m, 2H), 7.62–7.49 (m, 3H), 5.42 (d, J = 5.5 Hz, 1H), 2.40 (s, 3H), 2.39–2.28 (m, 1H), 2.26 (s, 3H), 0.99 (t, J = 7.5 Hz, 6H). 13C NMR (75 MHz, DMSO-d6): δ = 198.3, 193.7, 156.7, 150.9, 131.8, 129.4, 122.3, 109.1, 31.1, 30.0, 25.5, 17.5, 16.6. FT-IR (thin layer): νmax = 2970, 1726, 1691, 1364, 1299, 1020, 998, 959, 769, 691. HR-MS (ESI): m/z = 290.1500, calcd. For C15H19N3O3+H+: 290.1499.
- (E)-3-((2,2-dimethyl-1-(phenyldiazenyl)propoxy)imino)pentane-2,4-dione, 3dd, was synthesized as a pale yellow gum (21%, purified by column chromatography with DCM as eluent). 1H NMR (300 MHz, CDCl3): δ = 7.80–7.69 (m, 2H), 7.53–7.44 (m, 3H), 5.27 (s, 1H), 2.44 (s, 3H), 2.29 (s, 3H), 1.08 (s, 9H). 13C NMR (75 MHz, CDCl3): δ = 198.1, 194.5, 156.8, 151.6, 131.6, 129.3, 122.9, 112.1, 36.0, 30.4, 25.7. FT-IR (thin layer): νmax = 2973, 1727, 1693, 1365, 1300, 1021, 999, 959. HR-MS (ESI): m/z = 326.1474, calcd. for C16H21N3O3+Na+: 326.1475.
- (E)-3-(((1-(phenyldiazenyl)hexyl)oxy)imino)pentane-2,4-dione, 3de, was synthesized as a yellow gum (70%, purified by column chromatography with DCM as eluent). 1H NMR (300 MHz, CDCl3): δ = 7.80–7.67 (m, 2H), 7.55–7.42 (m, 3H), 5.55 (dd, J = 7.7, 5.1 Hz, 1H), 2.45 (s, 3H), 2.33 (s, 3H), 2.11–1.76 (m, 2H), 1.55–1.40 (m, 2H), 1.40–1.23 (m, 4H), 0.89 (t, J = 6.9 Hz, 3H). 13C NMR (75 MHz, CDCl3): δ = 198.2, 194.6, 156.8, 151.5, 131.6, 129.2, 122.8, 107.0, 31.8, 31.6, 30.6, 25.9, 23.9, 22.5, 14.1. FT-IR (thin layer): νmax = 2956, 2931, 1727, 1691, 1363, 1299, 964. HR-MS (ESI): m/z = 318.1810, calcd. for C17H23N3O3+H+: 318.1812.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Castellino, N.J.; Montgomery, A.P.; Danon, J.J.; Kassiou, M. Late-Stage Functionalization for Improving Drug-like Molecular Properties. Chem. Rev. 2023, 123, 8127–8153. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A.K.; Lei, A. Recent Advances in Radical C–H Activation/Radical Cross-Coupling. Chem. Rev. 2017, 117, 9016–9085. [Google Scholar] [CrossRef] [PubMed]
- Leifert, D.; Studer, A. Organic Synthesis Using Nitroxides. Chem. Rev. 2023, 123, 10302–10380. [Google Scholar] [CrossRef] [PubMed]
- Krylov, I.B.; Paveliev, S.A.; Shelimov, B.N.; Lokshin, B.V.; Garbuzova, I.A.; Tafeenko, V.A.; Chernyshev, V.V.; Budnikov, A.S.; Nikishin, G.I.; Terent’ev, A.O. Selective Cross-Dehydrogenative C–O Coupling of N-Hydroxy Compounds with Pyrazolones. Introduction of the Diacetyliminoxyl Radical into the Practice of Organic Synthesis. Org. Chem. Front. 2017, 4, 1947–1957. [Google Scholar] [CrossRef]
- Prieto, A.; Bouyssi, D.; Monteiro, N. Radical-Mediated Formal C(Sp2)–H Functionalization of Aldehyde-Derived N, N-Dialkylhydrazones. Eur. J. Org. Chem. 2018, 2018, 2378–2393. [Google Scholar] [CrossRef]
- Van Der Worp, B.A.; Kosobokov, M.D.; Levin, V.V.; Dilman, A.D. Photoredox Fluoroalkylation of Hydrazones in Neutral and Reductive Modes. Adv. Synth. Catal. 2021, 363, 1152–1158. [Google Scholar] [CrossRef]
- Latrache, M.; Hoffmann, N. Photochemical Radical Cyclization Reactions with Imines, Hydrazones, Oximes and Related Compounds. Chem. Soc. Rev. 2021, 50, 7418–7435. [Google Scholar] [CrossRef]
- Lv, Y.; Meng, J.; Li, C.; Wang, X.; Ye, Y.; Sun, K. Update on the Synthesis of N-Heterocycles via Cyclization of Hydrazones (2017–2021). Adv. Synth. Catal. 2021, 363, 5235–5265. [Google Scholar] [CrossRef]
- Si, Y.; Lv, Q.; Yu, B. Radical Cascade Reactions of β,γ-Unsaturated Hydrazones/Oximes. Adv. Synth. Catal. 2021, 363, 4640–4666. [Google Scholar] [CrossRef]
- Paveliev, S.A.; Segida, O.O.; Bityukov, O.V.; Tang, H.; Pan, Y.; Nikishin, G.I.; Terent’ev, A.O. Electrocatalytic Synthesis of Substituted Pyrazoles via Hypervalent Iodine Mediated Intramolecular C−N Coupling. Adv. Synth. Catal. 2022, 364, 3910–3916. [Google Scholar] [CrossRef]
- Rubanov, Z.M.; Supranovich, V.I.; Levin, V.V.; Dilman, A.D. BF 2 -Chelates of N-Acylhydrazones as Versatile Coupling Partners in Photoredox Promoted Reactions. Eur. J. Org. Chem. 2023, 26, e202300247. [Google Scholar] [CrossRef]
- Rubanov, Z.M.; Levin, V.V.; Dilman, A.D. Zinc Chelate Complexes of N-Acyl Hydrazones as Substrates for Addition of Alkyl and Fluorinated Radicals. Adv. Synth. Catal. 2023, 365, 2636–2642. [Google Scholar] [CrossRef]
- Dmitriev, I.A.; Levin, V.V.; Dilman, A.D. Boron Chelates Derived from N -Acylhydrazones as Radical Acceptors: Photocatalyzed Coupling of Hydrazones with Carboxylic Acids. Org. Lett. 2021, 23, 8973–8977. [Google Scholar] [CrossRef] [PubMed]
- Nishinaga, A.; Yamazakhi, S.; Nogusa, H.; Shimoyam, T.; Matsuura, T. Oxidation of Phenols and Hydrazones with T-Butyl Hydroperoxide and Catalysis by Co(Salen). Chem. Informationsdienst 1985, 1985, 378–386. [Google Scholar] [CrossRef]
- Tezuka, T.; Ando, S. Novel Substituent Effect Controlling the Stability of α-Azohydroperoxides. Chem. Lett. 1986, 15, 1671–1674. [Google Scholar] [CrossRef]
- Schulz, M.; Missol, U.; Bohm, H. Azoperoxide. I Synthese von trans-α-Hydroxy-dialkyldiazenen Aus α-Alkylazo-alkylhydroperoxiden. J. Prakt. Chem. 1974, 316, 47–53. [Google Scholar] [CrossRef]
- Baumstark, A.L.; Vasquez, P.C. Oxygen-Atom Transfer Chemistry of α-AZO Hydroperoxides: Effect of Competitive Intramolecular Hydrogen Bonding and α-Methyl Substitution. J. Phys. Org. Chem. 1988, 1, 259–265. [Google Scholar] [CrossRef]
- Harej, M.; Dolenc, D. Autoxidation of Hydrazones. Some New Insights. J. Org. Chem. 2007, 72, 7214–7221. [Google Scholar] [CrossRef]
- Nazran, A.S.; Warkentin, J. Concerted Homolysis in Thermal Decomposition of Peresters from. Alpha.-Hydroperoxydiazenes. J. Am. Chem. Soc. 1982, 104, 6405–6407. [Google Scholar] [CrossRef]
- Fernández, M.; Uria, U.; Vicario, J.L.; Reyes, E.; Carrillo, L. Enantioselective Conjugate Addition of Donor–Acceptor Hydrazones to α,β-Unsaturated Aldehydes through Formal Diaza–Ene Reaction: Access to 1,4-Dicarbonyl Compounds. J. Am. Chem. Soc. 2012, 134, 11872–11875. [Google Scholar] [CrossRef]
- Mondal, B.; Maiti, R.; Yang, X.; Xu, J.; Tian, W.; Yan, J.-L.; Li, X.; Chi, Y.R. Carbene-Catalyzed Enantioselective Annulation of Dinucleophilic Hydrazones and Bromoenals for Access to Aryl-Dihydropyridazinones and Related Drugs. Chem. Sci. 2021, 12, 8778–8783. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, H.; Takeda, N.; Yasui, M.; Ito, Y.; Konishi, K.; Ueda, M. Synthesis of Pyrazoles Utilizing the Ambiphilic Reactivity of Hydrazones. Org. Lett. 2020, 22, 9249–9252. [Google Scholar] [CrossRef] [PubMed]
- De Gracia Retamosa, M.; Matador, E.; Monge, D.; Lassaletta, J.M.; Fernández, R. Hydrazones as Singular Reagents in Asymmetric Organocatalysis. Chem. A Eur. J. 2016, 22, 13430–13445. [Google Scholar] [CrossRef] [PubMed]
- Moon, M.W. Chlorination of Aldehyde and Ketone Phenylhydrazones. J. Org. Chem. 1972, 37, 383–385. [Google Scholar] [CrossRef]
- Okimoto, M.; Takahashi, Y.; Kakuchi, T. Electrochemical Formation of Methoxy- and Cyano(Phenylazo)Alkanes from Aldehyde and Ketone Phenylhydrazones. Synthesis 2003, 13, 2057–2063. [Google Scholar] [CrossRef]
- Zheng, J.; Meng, S.; Wang, Q.; Wang, J. Synthesis of Antimicrobial Benzo[1,2,4]Triazoloazepinium Salts and Tetrahydronaphtho[1,2-e][1,2,4]Triazines by Polar [3+ + 2] and [4 + 2]-Cycloaddition Reactions. J. Org. Chem. 2022, 87, 464–478. [Google Scholar] [CrossRef] [PubMed]
- Luan, L.; Song, Z.; Li, Z.; Wang, Q.; Wang, J. Synthesis of Triazolodiazepinium Salts: Sequential [3+ +2] Cycloaddition/Rearrangement Reaction of 1-Aza-2-Azoniaallenium Cation Intermediates Generated from Piperidin-4-Ones. J. Org. Chem. 2018, 83, 3441–3452. [Google Scholar] [CrossRef]
- Iffland, D.C.; Salisbury, L.; Schafer, W.R. The Preparation and Structure of Azoacetates, a New Class of Compounds 1. J. Am. Chem. Soc. 1961, 83, 747–749. [Google Scholar] [CrossRef]
- Yin, Y.; Miao, J.; Shao, W.; Liu, X.; Zhao, Y.; Ma, Z. Fungicide Resistance: Progress in Understanding Mechanism, Monitoring, and Management. Phytopathology 2023, 113, 707–718. [Google Scholar] [CrossRef]
- Arastehfar, A.; Gabaldón, T.; Garcia-Rubio, R.; Jenks, J.D.; Hoenigl, M.; Salzer, H.J.F.; Ilkit, M.; Lass-Flörl, C.; Perlin, D.S. Drug-Resistant Fungi: An Emerging Challenge Threatening Our Limited Antifungal Armamentarium. Antibiotics 2020, 9, 877. [Google Scholar] [CrossRef]
- Corkley, I.; Fraaije, B.; Hawkins, N. Fungicide Resistance Management: Maximizing the Effective Life of Plant Protection Products. Plant Pathol. 2022, 71, 150–169. [Google Scholar] [CrossRef]
- Budnikov, A.S.; Krylov, I.B.; Ushakov, I.E.; Subbotina, I.R.; Monin, F.K.; Nikishin, G.I.; Efimov, N.N.; Gorbunov, D.E.; Gritsan, N.P.; Tretyakov, E.V.; et al. Two Discoveries in One Crystal: σ-Type Oxime Radical as an Unforeseen Building Block in Molecular Magnetics and Its Spatial Structure. Inorg. Chem. 2023, 62, 10965–10972. [Google Scholar] [CrossRef] [PubMed]
- Budnikov, A.S.; Krylov, I.B.; Kuzmin, I.V.; Segida, O.O.; Lastovko, A.V.; Shevchenko, M.I.; Nikishin, G.I.; Terent’ev, A.O. Diacetyliminoxyl as a Selective Radical Reagent for Organic Synthesis: Dehydrogenation and Dehydrogenative C–O Coupling Reactions. Org. Chem. Front. 2023, 10, 388–398. [Google Scholar] [CrossRef]
- Budnikov, A.S.; Krylov, I.B.; Lastovko, A.V.; Dolotov, R.A.; Shevchenko, M.I.; Terent’ev, A.O. The Diacetyliminoxyl Radical in Oxidative Functionalization of Alkenes. Org. Biomol. Chem. 2023, 21, 7758–7766. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, J.G.; Bannwarth, C.; Hansen, A.; Grimme, S. B97-3c: A Revised Low-Cost Variant of the B97-D Density Functional Method. J. Chem. Phys. 2018, 148, 064104. [Google Scholar] [CrossRef]
- Brauer, V.S.; Rezende, C.P.; Pessoni, A.M.; De Paula, R.G.; Rangappa, K.S.; Nayaka, S.C.; Gupta, V.K.; Almeida, F. Antifungal Agents in Agriculture: Friends and Foes of Public Health. Biomolecules 2019, 9, 521. [Google Scholar] [CrossRef]
- Oerke, E.-C. Crop Losses to Pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Fisher, M.C.; Henk, D.A.; Briggs, C.J.; Brownstein, J.S.; Madoff, L.C.; McCraw, S.L.; Gurr, S.J. Emerging Fungal Threats to Animal, Plant and Ecosystem Health. Nature 2012, 484, 186–194. [Google Scholar] [CrossRef]
- Tleuova, A.B.; Wielogorska, E.; Talluri, V.S.S.L.P.; Štěpánek, F.; Elliott, C.T.; Grigoriev, D.O. Recent Advances and Remaining Barriers to Producing Novel Formulations of Fungicides for Safe and Sustainable Agriculture. J. Control. Release 2020, 326, 468–481. [Google Scholar] [CrossRef]
- Xu, J. Assessing Global Fungal Threats to Humans. mLife 2022, 1, 223–240. [Google Scholar] [CrossRef]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef]
- Richard, J.L. Some Major Mycotoxins and Their Mycotoxicoses—An Overview. Int. J. Food Microbiol. 2007, 119, 3–10. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, X.; Li, J. Updating Techniques on Controlling Mycotoxins—A Review. Food Control 2018, 89, 123–132. [Google Scholar] [CrossRef]
- De Ruyck, K.; De Boevre, M.; Huybrechts, I.; De Saeger, S. Dietary Mycotoxins, Co-Exposure, and Carcinogenesis in Humans: Short Review. Mutat. Res. Rev. Mutat. Res. 2015, 766, 32–41. [Google Scholar] [CrossRef]
- Ingenbleek, L.; Sulyok, M.; Adegboye, A.; Hossou, S.E.; Koné, A.Z.; Oyedele, A.D.; Kisito, C.S.K.J.; Dembélé, Y.K.; Eyangoh, S.; Verger, P.; et al. Regional Sub-Saharan Africa Total Diet Study in Benin, Cameroon, Mali and Nigeria Reveals the Presence of 164 Mycotoxins and Other Secondary Metabolites in Foods. Toxins 2019, 11, 54. [Google Scholar] [CrossRef]
- Strosnider, H.; Azziz-Baumgartner, E.; Banziger, M.; Bhat, R.V.; Breiman, R.; Brune, M.-N.; DeCock, K.; Dilley, A.; Groopman, J.; Hell, K.; et al. Workgroup Report: Public Health Strategies for Reducing Aflatoxin Exposure in Developing Countries. Environ. Health Perspect. 2006, 114, 1898–1903. [Google Scholar] [CrossRef]
- Cooper, J.; Dobson, H. The Benefits of Pesticides to Mankind and the Environment. Crop Prot. 2007, 26, 1337–1348. [Google Scholar] [CrossRef]
- Thind, T.S. New Insights into Fungicide Resistance: A Growing Challenge in Crop Protection. Indian Phytopathol. 2022, 75, 927–939. [Google Scholar] [CrossRef]
- Umetsu, N.; Shirai, Y. Development of Novel Pesticides in the 21st Century. J. Pestic. Sci. 2020, 45, 54–74. [Google Scholar] [CrossRef]
- Sparks, T.C.; Bryant, R.J. Crop Protection Compounds—Trends and Perspective. Pest Manag. Sci. 2021, 77, 3608–3616. [Google Scholar] [CrossRef]
- Jeschke, P. Progress of Modern Agricultural Chemistry and Future Prospects: Progress of Modern Agricultural Chemistry and Future Prospects. Pest Manag. Sci. 2016, 72, 433–455. [Google Scholar] [CrossRef]
- Blokhina, S.V.; Sharapova, A.V.; Ol’khovich, M.V.; Doroshenko, I.A.; Levshin, I.B.; Perlovich, G.L. Synthesis and Antifungal Activity of New Hybrids Thiazolo[4,5-d]Pyrimidines with (1H-1,2,4)Triazole. Bioorg. Med. Chem. Lett. 2021, 40, 127944. [Google Scholar] [CrossRef]
- Yang, Y.-D.; He, Y.-H.; Ma, K.-Y.; Li, H.; Zhang, Z.-J.; Sun, Y.; Wang, Y.-L.; Hu, G.-F.; Wang, R.-X.; Liu, Y.-Q. Design and Discovery of Novel Antifungal Quinoline Derivatives with Acylhydrazide as a Promising Pharmacophore. J. Agric. Food Chem. 2021, 69, 8347–8357. [Google Scholar] [CrossRef]
- Xia, D.; Cheng, X.; Liu, X.; Zhang, C.; Wang, Y.; Liu, Q.; Zeng, Q.; Huang, N.; Cheng, Y.; Lv, X. Discovery of Novel Pyrazole Carboxylate Derivatives Containing Thiazole as Potential Fungicides. J. Agric. Food Chem. 2021, 69, 8358–8365. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Gao, W.; Liu, X.; Lv, Y.; Hao, Z.; Tang, L.; Li, K.; Zhao, B.; Fan, Z. Design, Synthesis, and Evaluation of Novel Isothiazole-Purines as a Pyruvate Kinase-Based Fungicidal Lead Compound. J. Agric. Food Chem. 2021, 69, 9461–9471. [Google Scholar] [CrossRef]
- Long, Z.-Q.; Yang, L.-L.; Zhang, J.-R.; Liu, S.-T.; Xie, J.; Wang, P.-Y.; Zhu, J.-J.; Shao, W.-B.; Liu, L.-W.; Yang, S. Fabrication of Versatile Pyrazole Hydrazide Derivatives Bearing a 1,3,4-Oxadiazole Core as Multipurpose Agricultural Chemicals against Plant Fungal, Oomycete, and Bacterial Diseases. J. Agric. Food Chem. 2021, 69, 8380–8393. [Google Scholar] [CrossRef]
- Obydennov, K.L.; Kalinina, T.A.; Galieva, N.A.; Beryozkina, T.V.; Zhang, Y.; Fan, Z.; Glukhareva, T.V.; Bakulev, V.A. Synthesis, Fungicidal Activity, and Molecular Docking of 2-Acylamino and 2-Thioacylamino Derivatives of 1 H-Benzo[d]Imidazoles as Anti-Tubulin Agents. J. Agric. Food Chem. 2021, 69, 12048–12062. [Google Scholar] [CrossRef]
- Budnikov, A.S.; Lopat’eva, E.R.; Krylov, I.B.; Segida, O.O.; Lastovko, A.V.; Ilovaisky, A.I.; Nikishin, G.I.; Glinushkin, A.P.; Terent’ev, A.O. 4-Nitropyrazolin-5-Ones as Readily Available Fungicides of the Novel Structural Type for Crop Protection: Atom-Efficient Scalable Synthesis and Key Structural Features Responsible for Activity. J. Agric. Food Chem. 2022, 70, 4572–4581. [Google Scholar] [CrossRef]
- Budnikov, A.S.; Krylov, I.B.; Lastovko, A.V.; Paveliev, S.A.; Romanenko, A.R.; Nikishin, G.I.; Terent’ev, A.O. Stable and Reactive Diacetyliminoxyl Radical in Oxidative C–O Coupling with β-Dicarbonyl Compounds and Their Complexes. Org. Biomol. Chem. 2021, 19, 7581–7586. [Google Scholar] [CrossRef]
- Xu, H.; Zeng, X. Synthesis of Diaryl-Azo Derivatives as Potential Antifungal Agents. Bioorg. Med. Chem. Lett. 2010, 20, 4193–4195. [Google Scholar] [CrossRef]
- Lv, M.; Ma, J.; Li, Q.; Xu, H. Discovery of Benzotriazole-Azo-Phenol/Aniline Derivatives as Antifungal Agents. Bioorg. Med. Chem. Lett. 2018, 28, 181–187. [Google Scholar] [CrossRef]
- Lizard, G.; Latruffe, N.; Vervandier-Fasseur, D. Aza- and Azo-Stilbenes: Bio-Isosteric Analogs of Resveratrol. Molecules 2020, 25, 605. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, H.; Trah, S. Azo Oxime Ethers and Their Use as Fungicides. WO/1993/016986, 2 September 1993. [Google Scholar]
- Andleeb, H.; Tehseen, Y.; Ali Shah, S.J.; Khan, I.; Iqbal, J.; Hameed, S. Identification of Novel Pyrazole–Rhodanine Hybrid Scaffolds as Potent Inhibitors of Aldose Reductase: Design, Synthesis, Biological Evaluation and Molecular Docking Analysis. RSC Adv. 2016, 6, 77688–77700. [Google Scholar] [CrossRef]
- Chen, Z.; Li, H.; Dong, W.; Miao, M.; Ren, H. I2-Catalyzed Oxidative Coupling Reactions of Hydrazones and Amines and the Application in the Synthesis of 1,3,5-Trisubstituted 1,2,4-Triazoles. Org. Lett. 2016, 18, 1334–1337. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Nguyen, H.D.; Lv, L.; Chen, S.; Li, Z. Chemo-, Stereo- and Regioselective Fluoroallylation/Annulation of Hydrazones with Gem -Difluorocyclopropanes via Tunable Palladium/NHC Catalysis. Angew. Chem. Int. Ed. 2023, 62, e202303271. [Google Scholar] [CrossRef]
- Su, Y.-M.; Hou, Y.; Yin, F.; Xu, Y.-M.; Li, Y.; Zheng, X.; Wang, X.-S. Visible Light-Mediated C–H Difluoromethylation of Electron-Rich Heteroarenes. Org. Lett. 2014, 16, 2958–2961. [Google Scholar] [CrossRef]
- Yang, X.-L.; Peng, X.-X.; Chen, F.; Han, B. TEMPO-Mediated Aza-Diels–Alder Reaction: Synthesis of Tetrahydropyridazines Using Ketohydrazones and Olefins. Org. Lett. 2016, 18, 2070–2073. [Google Scholar] [CrossRef]
- Zhang, G.; Miao, J.; Zhao, Y.; Ge, H. Copper-Catalyzed Aerobic Dehydrogenative Cyclization of N-Methyl-N-Phenylhydrazones: Synthesis of Cinnolines. Angew. Chem. Int. Ed. 2012, 51, 8318–8321. [Google Scholar] [CrossRef]
- Kašpar, M.; Hamplová, V.; Novotná, V.; Pacherová, O. The Effect of the Alkyl Chain Length on the Mesomorphic Properties of New Lactic Acid Derivatives. Liq. Cryst. 2014, 41, 1179–1187. [Google Scholar] [CrossRef]
- Katagiri, T.; Ota, S.; Ohira, T.; Yamao, T.; Hotta, S. Synthesis of Thiophene/Phenylene Co-Oligomers. V. Functionalization at Molecular Terminals toward Optoelectronic Device Applications. J. Heterocycl. Chem. 2007, 44, 853–862. [Google Scholar] [CrossRef]
- Trofimov, B.A.; Schmidt, E.Y.; Zorina, N.V.; Ivanova, E.V.; Ushakov, I.A. Transition-Metal-Free Superbase-Promoted Stereoselective α-Vinylation of Ketones with Arylacetylenes: A General Strategy for Synthesis of β,γ-Unsaturated Ketones. J. Org. Chem. 2012, 77, 6880–6886. [Google Scholar] [CrossRef] [PubMed]
- Pünner, F.; Sohtome, Y.; Sodeoka, M. Solvent-Dependent Copper-Catalyzed Synthesis of Pyrazoles under Aerobic Conditions. Chem. Commun. 2016, 52, 14093–14096. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, O.D.; Sinclair, J.B. Basic Plant Pathology Methods; CRC Press: Boca Raton, FL, USA, 1985; ISBN 978-0-8493-5921-7. [Google Scholar]
- Xu, H.; Fan, L. Antifungal Agents. Part 4: Synthesis and Antifungal Activities of Novel Indole[1,2-c]-1,2,4-Benzotriazine Derivatives against Phytopathogenic Fungi in Vitro. Eur. J. Med. Chem. 2011, 46, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.K. Synthesis and Fungicidal Activity of Novel 3-(Substituted/Unsubstituted Phenylselenonyl)-1-Ribosyl/Deoxyribosyl-1 H -1,2,4-Triazole. J. Agric. Food Chem. 2012, 60, 5813–5818. [Google Scholar] [CrossRef] [PubMed]
- Itoh, H.; Kajino, H.; Tsukiyama, T.; Tobitsuka, J.; Ohta, H.; Takahi, Y.; Tsuda, M.; Takeshiba, H. Synthesis of Silicon-Containing Azole Derivatives with Magnesium Bromide Diethyl Etherate, and an Investigation of Their Fungicidal Activities. Bioorg. Med. Chem. 2002, 10, 4029–4034. [Google Scholar] [CrossRef]
- Popkov, S.V.; Kovalenko, L.V.; Bobylev, M.M.; Molchanov, O.Y.; Krimer, M.Z.; Tashchi, V.P.; Putsykin, Y.G. The Synthesis and Fungicidal Activity of 2-Substituted 1-Azol-1-Ylmethyl-6-Arylidenecyclohexanols. Pestic. Sci. 1997, 49, 125–129. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Neese, F. Software Update: The ORCA Program System—Version 5.0. WIREs Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminformatics 2012, 4, 17. [Google Scholar] [CrossRef]
- Bruker. APEX-III; Bruker AXS Inc.: Madison, WI, USA, 2019. [Google Scholar]
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of Silver and Molybdenum Microfocus X-Ray Sources for Single-Crystal Structure Determination. J. Appl. Crystallogr. 2015, 48, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
Run | Conditions | Yield 3aa, % a | Yield 1-H, % a |
---|---|---|---|
1 | 1 (2 mmol), 2aa (1 mmol), air | 85 (84) | 86 (82) |
2 | 1 (2 mmol), 2aa (1 mmol), Argon | 79 | 79 |
3 | 1 (3 mmol), 2aa (1 mmol), air | 95 | 96 |
4 | 1 (2 mmol), 2aa (2 mmol), air | 83 b | 85 b |
Compound | C, mg/L | Mycelium Growth Inhibition (%) | ||||||
---|---|---|---|---|---|---|---|---|
V. i. | R. s. | F. o. | F. m. | B. s. | S. s. | |||
1 | 3aa | 30 | 78 | 44 | 51 | 81 | 57 | 47 |
2 | 3ae | 30 | 64 | 32 | 55 | 56 | 52 | 18 |
3 | 3ag | 30 | 49 | 36 | 35 | 26 | 53 | 9 |
4 | 3aj | 30 | 29 | 42 | 23 | 20 | 24 | 15 |
5 | 3al | 30 | 11 | 41 | 6 | 18 | 17 | 8 |
6 | 3am | 30 | 8 | 34 | 29 | 24 | 26 | 16 |
7 | 3an | 30 | 18 | 22 | 3 | 4 | 10 | 6 |
8 | 3ba | 30 | 76 | 83 | 34 | 96 | 86 | 97 |
9 | 3bd | 30 | 38 | 34 | 16 | 21 | 18 | 23 |
10 | 3ca | 30 | 100 | 85 | 92 | 100 | 66 | 99 |
10 | 100 | 82 | 88 | 96 | 53 | 97 | ||
11 | 3cb | 30 | 16 | 54 | 27 | 48 | 65 | 16 |
12 | 3cc | 30 | 18 | 15 | 6 | 7 | 23 | 6 |
13 | 3cd | 30 | 100 | 69 | 78 | 96 | 55 | 86 |
10 | 71 | 60 | 77 | 92 | 47 | 62 | ||
14 | 3ce | 30 | 100 | 92 | 94 | 99 | 84 | 98 |
10 | 100 | 78 | 92 | 99 | 65 | 100 | ||
15 | 3cf | 30 | 98 | 58 | 88 | 98 | 61 | 97 |
10 | 77 | 71 | 77 | 96 | 35 | 81 | ||
16 | 3cg | 30 | 51 | 45 | 63 | 89 | 46 | 39 |
17 | 3da | 30 | 100 | 100 | 94 | 100 | 92 | 100 |
10 | 100 | 85 | 90 | 100 | 86 | 100 | ||
18 | 3db | 30 | 100 | 100 | 94 | 100 | 84 | 100 |
10 | 100 | 94 | 88 | 98 | 67 | 97 | ||
19 | 3dc | 30 | 100 | 98 | 90 | 97 | 70 | 94 |
10 | 100 | 78 | 94 | 98 | 75 | 100 | ||
20 | 3dd | 30 | 100 | 49 | 30 | 94 | 56 | 81 |
21 | 3de | 30 | 84 | 86 | 87 | 93 | 70 | 68 |
10 | 81 | 72 | 85 | 89 | 58 | 67 | ||
22 | AIBN | 30 | 6 | 19 | 0 | 14 | 21 | 2 |
23 | 4 | 30 | 8 | 53 | 18 | 27 | 47 | 11 |
24 | 5 | 30 | 60 | 100 | 55 | 65 | 55 | 17 |
25 | 6 | 30 | 0 | 17 | 3 | 14 | 8 | 3 |
26 | 7 | 30 | 10 | 8 | 21 | 37 | 62 | 19 |
27 | 8 | 30 | 6 | 28 | 5 | 16 | 21 | 6 |
28 | Triadimefon | 30 | 70 | 62 | 65 | 86 | 71 | 71 |
10 | 49 | 58 | 62 | 82 | 64 | 63 | ||
29 | Kresoxim-methyl | 10 | 100 | 100 | 65 | 64 | 58 | 54 |
EC50 (mg/L) | ||||||
---|---|---|---|---|---|---|
Compound | V. i. | R. s. | F. o. | F. m. | B. s. | S. s. |
3ca | 0.77 | 1.3 | 0.44 | 0.45 | 3.3 | 2.1 |
3da | 1.7 | 1.3 | 0.37 | 0.41 | 0.94 | 1.0 |
Reference compound (kresoxim-methyl) | 0.16 | 0.053 | 0.45 | 1.0 | 4.1 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budnikov, A.S.; Krylov, I.B.; Shevchenko, M.I.; Segida, O.O.; Lastovko, A.V.; Alekseenko, A.L.; Ilovaisky, A.I.; Nikishin, G.I.; Terent’ev, A.O. C–O Coupling of Hydrazones with Diacetyliminoxyl Radical Leading to Azo Oxime Ethers—Novel Antifungal Agents. Molecules 2023, 28, 7863. https://doi.org/10.3390/molecules28237863
Budnikov AS, Krylov IB, Shevchenko MI, Segida OO, Lastovko AV, Alekseenko AL, Ilovaisky AI, Nikishin GI, Terent’ev AO. C–O Coupling of Hydrazones with Diacetyliminoxyl Radical Leading to Azo Oxime Ethers—Novel Antifungal Agents. Molecules. 2023; 28(23):7863. https://doi.org/10.3390/molecules28237863
Chicago/Turabian StyleBudnikov, Alexander S., Igor B. Krylov, Mikhail I. Shevchenko, Oleg O. Segida, Andrey V. Lastovko, Anna L. Alekseenko, Alexey I. Ilovaisky, Gennady I. Nikishin, and Alexander O. Terent’ev. 2023. "C–O Coupling of Hydrazones with Diacetyliminoxyl Radical Leading to Azo Oxime Ethers—Novel Antifungal Agents" Molecules 28, no. 23: 7863. https://doi.org/10.3390/molecules28237863
APA StyleBudnikov, A. S., Krylov, I. B., Shevchenko, M. I., Segida, O. O., Lastovko, A. V., Alekseenko, A. L., Ilovaisky, A. I., Nikishin, G. I., & Terent’ev, A. O. (2023). C–O Coupling of Hydrazones with Diacetyliminoxyl Radical Leading to Azo Oxime Ethers—Novel Antifungal Agents. Molecules, 28(23), 7863. https://doi.org/10.3390/molecules28237863