Activation of Peracetic Acid by CoFe2O4 for Efficient Degradation of Ofloxacin: Reactive Species and Mechanism
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of CoFe2O4
2.2. Performances of OFX Degradation by CoFe2O4-Activated PAA Oxidation
2.2.1. Degradation of OFX by the System of CoFe2O4/PAA
2.2.2. Influence of Reaction Factors
2.2.3. Influence of Water Matrix
2.3. Reusability and Stability of the CoFe2O4
2.4. Applicability of CoFe2O4/PAA System
2.5. Identification and Analysis of Reactive Species
2.6. Activation Mechanism
2.7. Degradation Pathway and Toxicity Assessment
3. Materials and Methods
3.1. Chemicals
3.2. Degradation Experiments
3.3. Analytical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dan, A.; Zhang, X.M.; Dai, Y.V.; Chen, C.X.; Yang, Y. Occurrence and removal of quinolone, tetracycline, and macrolide antibiotics from urban wastewater in constructed wetlands. J. Clean. Prod. 2020, 252, 119677. [Google Scholar]
- Oberoi, A.S.; Jia, Y.; Zhang, H.; Khanal, S.K.; Lu, H. Insights into the fate and removal of antibiotics in engineered biological treatment systems: A critical review. Environ. Sci. Technol. 2019, 53, 7234–7264. [Google Scholar] [CrossRef] [PubMed]
- Zainab, S.M.; Junaid, M.; Xu, N.; Malik, R.N. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks. Water Res. 2020, 187, 116455. [Google Scholar] [CrossRef] [PubMed]
- Hoang Quoc, A.; Thi Phuong Quynh, L.; Nhu Da, L.; Lu, X.X.; Thi Thuy, D.; Garnier, J.; Rochelle-Newall, E.; Zhang, S.; Neung-Hwan, O.; Oeurng, C.; et al. Antibiotics in surface water of East and Southeast Asian countries: A focused review on contamination status, pollution sources, potential risks, and future perspectives. Sci. Total Environ. 2021, 764, 142856. [Google Scholar]
- Yang, C.D.; Wu, T.Y. A comprehensive review on quinolone contamination in environments: Current research progress. Environ. Sci. Pollut. Res. 2023, 30, 48778–48792. [Google Scholar] [CrossRef]
- Jiao, S.J.; Zheng, S.R.; Yin, D.Q.; Wang, L.H.; Chen, L.Y. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria. Chemosphere 2008, 73, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Boxall, A.B.A.; Fogg, L.A.; Blackwell, P.A.; Blackwell, P.; Kay, P.; Pemberton, E.J.; Croxford, A. Veterinary Medicines in the Environment. In Reviews of Environmental Contamination and Toxicology; Springer: New York, NY, USA, 2004; pp. 1–91. [Google Scholar]
- Yuan, Q.B.; Qu, S.Y.; Li, R.; Huo, Z.Y.; Gao, Y.; Luo, Y. Degradation of antibiotics by electrochemical advanced oxidation processes (EAOPs): Performance, mechanisms, and perspectives. Sci. Total Environ. 2023, 856, 159092. [Google Scholar] [CrossRef]
- Anjali, R.; Shanthakumar, S. Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes. J. Environ. Manag. 2019, 246, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wu, Y.A.; Zheng, H.S.; Li, H.B.; Zheng, Y.J.; Nan, J.; Ma, J.; Nagarajan, D.; Chang, J.S. Antibiotics degradation by advanced oxidation process (AOPs): Recent advances in ecotoxicity and antibiotic-resistance genes induction of degradation products. Chemosphere 2023, 311, 136977. [Google Scholar] [CrossRef]
- Wang, J.L.; Zhuan, R. Degradation of antibiotics by advanced oxidation processes: An overview. Sci. Total Environ. 2020, 701, 135023. [Google Scholar] [CrossRef]
- Luukkonen, T.; Pehkonen, S.O. Peracids in water treatment: A critical review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1–39. [Google Scholar] [CrossRef]
- Du, P.H.; Liu, W.; Cao, H.B.; Zhao, H.; Huang, C.H. Oxidation of amino acids by peracetic acid: Reaction kinetics, pathways and theoretical calculations. Water Res. X. 2018, 1, 100002. [Google Scholar] [CrossRef]
- Henao, L.D.; Turolla, A.; Antonelli, M. Disinfection by-products formation and ecotoxicological effects of effluents treated with peracetic acid: A review. Chemosphere 2018, 213, 25–40. [Google Scholar] [CrossRef]
- Cai, M.; Sun, P.; Zhang, L.; Huang, C.-H. UV/Peracetic acid for degradation of pharmaceuticals and reactive species evaluation. Environ. Sci. Technol. 2017, 51, 14217–14224, Erratum in Environ. Sci. Technol. 2020, 54, 627. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, J.; Xiong, B.; Bai, F.; Wang, S.; Wan, Y.; Zhang, L.; Xie, P.; Wiesner, M.R. Application of cobalt/peracetic acid to degrade sulfamethoxazole at neutral condition: Efficiency and mechanisms. Environ. Sci. Technol. 2020, 54, 464–475. [Google Scholar] [CrossRef] [PubMed]
- Ao, X.-w.; Eloranta, J.; Huang, C.-H.; Santoro, D.; Sun, W.-j.; Lu, Z.-d.; Li, C. Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: A review. Water Res. 2021, 188, 116479. [Google Scholar] [CrossRef]
- Shen, P.; Hou, K.; Chen, F.; Pi, Z.; He, L.; Chen, S.; Li, X.; Yang, Q. Ultra-rapid and long-lasting activation of peracetic acid by Cu-Co spinel oxides for eliminating organic contamination: Role of radical and non-radical catalytic oxidation. Chem. Eng. J. 2023, 463, 142344. [Google Scholar] [CrossRef]
- Kim, J.; Du, P.; Liu, W.; Luo, C.; Zhao, H.; Huang, C.-H. Cobalt/Peracetic acid: Advanced oxidation of aromatic organic compounds by acetylperoxyl radicals. Environ. Sci. Technol. 2020, 54, 5268–5278. [Google Scholar] [CrossRef]
- Zhang, L.L.; Chen, J.B.; Zheng, T.L.; Xu, Y.; Liu, T.C.; Yin, W.J.; Zhang, Y.L.; Zhou, X.F. Co-Mn spinel oxides trigger peracetic acid activation for ultrafast degradation of sulfonamide antibiotics: Unveiling critical role of Mn species in boosting Co activity. Water Res. 2023, 229, 119462. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H.; Liu, Y.; Fu, Y. Effective degradation of sulfamethoxazole with Fe2+-zeolite/peracetic acid. Sep. Purif. Technol. 2020, 233, 115973. [Google Scholar] [CrossRef]
- Rokhina, E.V.; Makarova, K.; Lahtinen, M.; Golovina, E.A.; Van As, H.; Virkutyte, J. Ultrasound-assisted MnO2 catalyzed homolysis of peracetic acid for phenol degradation: The assessment of process chemistry and kinetics. Chem. Eng. J. 2013, 221, 476–486. [Google Scholar] [CrossRef]
- Hu, P.D.; Long, M.C. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications. Appl. Catal. B Environ. 2016, 181, 103–117. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Cheng, Y.; Cao, L.; Bai, F.; Yue, S.; Xie, P.; Ma, J. Molybdenum disulfide (MoS2): A novel activator of peracetic acid for the degradation of sulfonamide antibiotics. Water Res. 2021, 201, 117291. [Google Scholar] [CrossRef]
- Liu, P.; Yao, Z.; Zhou, J.; Yang, Z.; Kong, L.B. Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C. 2016, 4, 9738–9749. [Google Scholar] [CrossRef]
- Yang, H.; Yang, X.; Lin, J.; Yang, F.; He, Y.; Lin, Q. Effect of Cd2+ substitution on structural–magnetic and dielectric properties of Ni–Cu–Zn spinel ferrite nanomaterials by Sol–Gel. Molecules 2023, 28, 6110. [Google Scholar] [CrossRef] [PubMed]
- Yalçıner, F.; Çevik, E.; Şenel, M.; Baykal, A. Development of an amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto nickel ferrite nanoparticle-chitosan composite. Nanomicro Lett. 2011, 3, 91–98. [Google Scholar] [CrossRef]
- Su, S.N.; Guo, W.L.; Leng, Y.Q.; Yi, C.L.; Ma, Z.M. Heterogeneous activation of Oxone by CoxFe3-xO4 nanocatalysts for degradation of rhodamine B. J. Hazard. Mater. 2013, 244, 736–742. [Google Scholar] [CrossRef]
- Ren, Y.; Lin, L.; Ma, J.; Yang, J.; Feng, J.; Fan, Z. Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M=Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water. Appl. Catal. B Environ. 2015, 165, 572–578. [Google Scholar] [CrossRef]
- Wang, J.W.; Xiong, B.; Miao, L.; Wang, S.L.; Xie, P.C.; Wang, Z.P.; Ma, J. Applying a novel advanced oxidation process of activated peracetic acid by CoFe2O4 to efficiently degrade sulfamethoxazole. Appl. Catal. B Environ. 2021, 280, 119422. [Google Scholar] [CrossRef]
- Zhou, G.; Fu, Y.; Zhou, R.; Zhang, L.; Zhang, L.; Deng, J.; Liu, Y. Efficient degradation of organic contaminants by magnetic cobalt ferrite combined with peracetic acid. Process Saf. Environ. Prot. 2022, 160, 376–384. [Google Scholar] [CrossRef]
- Dong, J.; Xu, W.; Liu, S.; Gong, Y.; Yang, T.; Du, L.; Chen, Q.; Tan, X.; Liu, Y. Lignin-derived biochar to support CoFe2O4: Effective activation of peracetic acid for sulfamethoxazole degradation. Chem. Eng. J. 2022, 430, 132868. [Google Scholar] [CrossRef]
- Niu, P.; Li, C.H.; Wang, D.Q.; Jia, C.X.; Zhao, J.; Liu, Z.M.; Zhang, X.L.; Geng, L.L. Electronic modulation of fiber-shaped-CoFe2O4 via Mg doping for improved PMS activation and sustainable degradation of organic pollutants. Appl. Surf. Sci. 2022, 605, 154732. [Google Scholar] [CrossRef]
- Zheng, C.; Wu, J.Y.; Zhang, Y.J.; Yang, Q.; Yang, Y.C. Walnut shell loaded with cobalt ferrite as efficient peroxymonosulfate activator to degrade ofloxacin. Water Air Soil Pollut. 2023, 234, 305. [Google Scholar] [CrossRef]
- Kim, J.; Zhang, T.Q.; Liu, W.; Du, P.H.; Dobson, J.T.; Huang, C.H. Advanced oxidation process with peracetic acid and Fe(II) for contaminant degradation. Environ. Sci. Technol. 2019, 53, 13312–13322. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, X.; Li, H.; Qian, J.; Pan, B. New insights into the activation of peracetic acid by Co(II): Role of Co(II)-peracetic acid complex as the dominant intermediate oxidant. ACS ES&T Engg. 2021, 1, 1432–1440. [Google Scholar]
- Wu, W.; Tian, D.; Liu, T.C.; Chen, J.B.; Huang, T.Y.; Zhou, X.F.; Zhang, Y.L. Degradation of organic compounds by peracetic acid activated with Co3O4: A novel advanced oxidation process and organic radical contribution. Chem. Eng. J. 2020, 394, 124938. [Google Scholar] [CrossRef]
- Shah, A.D.; Liu, Z.Q.; Salhi, E.; Hofer, T.; von Gunten, U. Peracetic acid oxidation of saline waters in the absence and presence of H2O2: Secondary oxidant and disinfection byproduct formation. Environ. Sci. Technol. 2015, 49, 1698–1705. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Cai, M.; Liu, Y.; Zhang, L.; Feng, L. Effects of water matrices on the degradation of naproxen by reactive radicals in the UV/peracetic acid process. Water Res. 2019, 150, 153–161. [Google Scholar] [CrossRef]
- Ghanbari, F.; Giannakis, S.; Lin, K.-Y.A.; Wu, J.; Madihi-Bidgoli, S. Acetaminophen degradation by a synergistic peracetic acid/UVC-LED/Fe(II) advanced oxidation process: Kinetic assessment, process feasibility and mechanistic considerations. Chemosphere 2021, 263, 128119. [Google Scholar] [CrossRef]
- Xu, A.; Li, X.; Ye, S.; Yin, G.; Zeng, Q. Catalyzed oxidative degradation of methylene blue by in situ generated cobalt (II)-bicarbonate complexes with hydrogen peroxide. Appl. Catal. B Environ. 2011, 102, 37–43. [Google Scholar] [CrossRef]
- Meng, L.; Dong, J.; Chen, J.; Li, L.; Huang, Q.; Lu, J. Activation of peracetic acid by spinel FeCo2O4 nanoparticles for the degradation of sulfamethoxazole. Chem. Eng. J. 2023, 456, 141084. [Google Scholar] [CrossRef]
- Li, S.; Yang, Y.; Zheng, H.; Zheng, Y.; He, C.-S.; Lai, B.; Ma, J.; Nan, J. Introduction of oxygen vacancy to manganese ferrite by Co substitution for enhanced peracetic acid activation and 1O2 dominated tetracycline hydrochloride degradation under microwave irradiation. Water Res. 2022, 225, 119176. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Long, J.; Huang, J.; Yu, G.; Wang, Y. Can the commonly used quenching method really evaluate the role of reactive oxygen species in pollutant abatement during catalytic ozonation? Water Res. 2022, 215, 118275. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.H.; He, C.S.; He, Y.L.; Yang, S.R.; Yu, S.Y.; Xiong, Z.K.; Du, Y.; Liu, Y.; Pan, Z.C.; Yao, G.; et al. Peracetic acid activation via the synergic effect of Co and Fe in CoFe-LDH for efficient degradation of pharmaceuticals in hospital wastewater. Water Res. 2023, 232, 119666. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Guo, W.; Jia, W.; Wang, H.; Si, Q.; Zhao, Q.; Luo, H.; Jiang, J.; Ren, N. Novel nonradical oxidation of sulfonamide antibiotics with Co(II)-doped g-C3N4-activated peracetic acid: Role of high-valent cobalt–oxo species. Environ. Sci. Technol. 2021, 55, 12640–12651. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Guo, W.; Jia, W.; Wang, H.; Zheng, S.; Si, Q.; Zhao, Q.; Luo, H.; Jiang, J.; Ren, N. Insights into the oxidation of organic contaminants by Co(II) activated peracetic acid: The overlooked role of high-valent cobalt-oxo species. Water Res. 2021, 201, 117313. [Google Scholar] [CrossRef]
- Chen, L.; Duan, J.; Du, P.; Sun, W.; Lai, B.; Liu, W. Accurate identification of radicals by in-situ electron paramagnetic resonance in ultraviolet-based homogenous advanced oxidation processes. Water Res. 2022, 221, 118747. [Google Scholar] [CrossRef]
- Du, P.; Wang, J.; Sun, G.; Chen, L.; Liu, W. Hydrogen atom abstraction mechanism for organic compound oxidation by acetylperoxyl radical in Co(II)/peracetic acid activation system. Water Res. 2022, 212, 118113. [Google Scholar] [CrossRef]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence excitation—emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef]
- Chen, P.; Gou, Y.J.; Ni, J.M.; Liang, Y.M.; Yang, B.Q.; Jia, F.F.; Song, S.X. Efficient ofloxacin degradation with Co(II)-doped MoS2 nano-flowers as PMS activator under visible-light irradiation. Chem. Eng. J. 2020, 401, 125978. [Google Scholar] [CrossRef]
- Li, Y.C.; Wu, Y.H.; Jiang, H.S.; Wang, H. In situ stable growth of Bi2WO6 on natural hematite for efficient antibiotic wastewater purification by photocatalytic activation of peroxymonosulfate. Chem. Eng. J. 2022, 446, 136704. [Google Scholar] [CrossRef]
- Xie, Y.X.; Yu, Y.; Xie, H.D.; Huang, F.; Hughes, T.C. 3D-printed heterogeneous Cu2O monoliths: Reusable supports for antibiotic treatment of wastewater. J. Hazard. Mater. 2022, 436, 129170. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Xia, L.; Wang, Y.; Zhou, H.; Xie, X.; Zuo, G.; Wu, K. Magnetic Ag3PO4/CoFe2O4 Z-scheme heterojunction material for photocatalytic decomposition of ofloxacin. J. Mater. Sci. Mater. Electron. 2023, 34, 2090. [Google Scholar] [CrossRef]
- Singh, S.; Kaur, P.; Kumar, V.; Tikoo, K.B.; Singhal, S. Traversing the advantageous role of samarium doped spinel nanoferrites for photocatalytic removal of organic pollutants. J. Rare Earths. 2021, 39, 781–789. [Google Scholar] [CrossRef]
- Cao, X.Q.; Xiao, F.; Lyu, Z.W.; Xie, X.Y.; Zhang, Z.X.; Dong, X.; Wang, J.X.; Lyu, X.J.; Zhang, Y.Z.; Liang, Y. CuFe2O4 supported on montmorillonite to activate peroxymonosulfate for efficient ofloxacin degradation. J. Water Process. Eng. 2021, 44, 102359. [Google Scholar] [CrossRef]
- Dhiman, P.; Sharma, G.; Alodhayb, A.N.; Kumar, A.; Rana, G.; Sithole, T.; Alothman, Z.A. Constructing a visible-active CoFe2O4@Bi2O3/NiO nanoheterojunction as magnetically recoverable photocatalyst with boosted ofloxacin degradation efficiency. Molecules 2022, 27, 8234. [Google Scholar] [CrossRef]
- Nitansh; Kaur, P.; Garg, T.; Renu; Deepeka; Kumar, V.; Tikoo, K.; Kaushik, A.; Singhal, S. A fluorescent biomass derived cellulose/PANI/NiFe2O4 composite for the mitigation of toxic pollutants and Cr(VI) sensing from aqueous environment. J. Ind. Eng. Chem. 2023, 129, 456–473. [Google Scholar] [CrossRef]
- Qin, H.; Cheng, H.; Li, H.; Wang, Y. Degradation of ofloxacin, amoxicillin and tetracycline antibiotics using magnetic core–shell MnFe2O4@C-NH2 as a heterogeneous fenton catalyst. Chem. Eng. J. 2020, 396, 125304. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Lu, X.; Gao, J.; Chen, Y.; Pan, S. Activation of Peracetic Acid by CoFe2O4 for Efficient Degradation of Ofloxacin: Reactive Species and Mechanism. Molecules 2023, 28, 7906. https://doi.org/10.3390/molecules28237906
Li R, Lu X, Gao J, Chen Y, Pan S. Activation of Peracetic Acid by CoFe2O4 for Efficient Degradation of Ofloxacin: Reactive Species and Mechanism. Molecules. 2023; 28(23):7906. https://doi.org/10.3390/molecules28237906
Chicago/Turabian StyleLi, Rong, Xing Lu, Jinxiang Gao, Yifan Chen, and Shunlong Pan. 2023. "Activation of Peracetic Acid by CoFe2O4 for Efficient Degradation of Ofloxacin: Reactive Species and Mechanism" Molecules 28, no. 23: 7906. https://doi.org/10.3390/molecules28237906
APA StyleLi, R., Lu, X., Gao, J., Chen, Y., & Pan, S. (2023). Activation of Peracetic Acid by CoFe2O4 for Efficient Degradation of Ofloxacin: Reactive Species and Mechanism. Molecules, 28(23), 7906. https://doi.org/10.3390/molecules28237906