Facile Synthesis of Nd2Fe14B Hard Magnetic Particles with Microwave-Assisted Hydrothermal Method
Abstract
:1. Introduction
2. Results and Discussion
2.1. Formation of a Nd-Fe-B Precursor
- when NaOH is excess, H3BO3 + NaOH → Na[B(OH)4]
- when NaOH is insufficient, H3BO3 + NaOH → Na2B4O7.
Fe2O3 + Nd(OH)3 + Na[B(OH)4] + H2O
2.2. Nd-Fe-B Oxides
2.3. Reduction–Diffusion-Based Nd2Fe14B Phase Formation
3. Experimental Section
3.1. Synthesis of Nd-Fe-B Precursors
3.2. Synthesis of Nd-Fe-B Oxides
3.3. Reduction-Diffusion Synthesis of Nd-Fe-B
3.4. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Z.; He, J.; Zhou, Q.; Huang, Y.; Jiang, Q. Development of non-rare earth grain boundary modification techniques for Nd-Fe-B permanent magnets. J. Mater. Sci. Technol. 2022, 98, 51–61. [Google Scholar] [CrossRef]
- Coey, J.M.D. Perspective and prospects for rare earth permanent magnets. Engineering 2020, 6, 119–131. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, Y.; Li, J.; Wang, R. Ultrafine nanocrystalline NdFeB prepared by cryomilling with HDDR process. J. Alloys Compd. 2018, 750, 401–408. [Google Scholar] [CrossRef]
- Kim, T.-H.; Kang, M.-C.; Lee, J.-G.; Kwon, H.-W.; Kim, D.S.; Yang, C.-W. Crystallographic alignment of Fe2B and Nd2Fe14B for texture memory in hydrogenation–disproportionation–desorption–recombination-processed Nd-Fe-B powders. J. Alloys Compd. 2018, 732, 32–42. [Google Scholar] [CrossRef]
- Kim, C.W.; Kang, Y.S. Preparation of hard phase Nd-Fe-B nanoparticles by coprecipitation method. Solid State Phenom. 2007, 121–123, 279–282. [Google Scholar] [CrossRef]
- Parmar, H.; Xiao, T.; Chaudhary, V.; Zhong, Y.; Ramanujan, R.V. High energy product chemically synthesized exchange coupled Nd2Fe14B/alpha-Fe magnetic powders. Nanoscale 2017, 9, 13956–13966. [Google Scholar] [CrossRef] [PubMed]
- Yonekura, H.; Wakayama, H. Relationship between Nd content and magnetic properties of Nd2Fe14B/Nd nanocomposites chemically synthesized using self-assembled block copolymer templates. Mater. Sci. Eng. B 2019, 244, 38–42. [Google Scholar] [CrossRef]
- Galkin, V.; Kuchi, R.; Kim, S.; Jeong, J.-R.; Kim, T.-h.; Baek, Y.-k.; Kim, D. Nd-Fe-B particles with reduced oxygen content and enhanced magnetic properties prepared through reduction-diffusion and novel washing process. J. Magn. Magn. Mater. 2023, 578, 170832. [Google Scholar] [CrossRef]
- Rahimi, H.; Ghasemi, A.; Mozaffarinia, R. Coercivity Mechanism in Nd-Fe-B Nanoparticles synthesized by reduction-diffusion process. J. Supercond. Nov. Magn. 2016, 29, 2099–2107. [Google Scholar] [CrossRef]
- Rahimi, H.; Ghasemi, A.; Mozaffarinia, R. Controlling of saturation of magnetization of Nd-Fe-B nanoparticles fabricated by chemical method. J. Supercond. Nov. Magn. 2016, 30, 475–481. [Google Scholar] [CrossRef]
- Deheri, P.K.; Swaminathan, V.; Bhame, S.D.; Liu, Z.; Ramanujan, R.V. Sol−Gel based chemical synthesis of Nd2Fe14B hard magnetic nanoparticles. Chem. Mater. 2010, 22, 6509–6517. [Google Scholar] [CrossRef]
- Deheri, P.K.; Shukla, S.; Ramanujan, R.V. The reaction mechanism of formation of chemically synthesized Nd2Fe14B hard magnetic nanoparticles. J. Solid State Chem. 2012, 186, 224–230. [Google Scholar] [CrossRef]
- Bhame, S.D.; Swaminathan, V.; Deheri, P.K.; Ramanujan, R.V. Exchange coupled Nd2Fe14B/α-Fe nanocomposite by novel autocombustion-reduction diffusion synthesis. Adv. Sci. Lett. 2010, 3, 174–179. [Google Scholar] [CrossRef]
- Swaminathan, V.; Deheri, P.K.; Bhame, S.D.; Ramanujan, R.V. Novel microwave assisted chemical synthesis of Nd2Fe14B hard magnetic nanoparticles. Nanoscale 2013, 5, 2718–2725. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Yang, C.; Hou, Y. Controllable Nd2Fe14B/alpha-Fe nanocomposites: Chemical synthesis and magnetic properties. Nanoscale 2014, 6, 10638–10642. [Google Scholar] [CrossRef]
- Yonekura, H.; Wakayama, H. Magnetic properties of hard magnetic nanoparticles of Nd2Fe14B synthesized using self-assembled block copolymers. Intermetallics 2017, 85, 125–129. [Google Scholar] [CrossRef]
- Chaudhary, V.; Zhong, Y.; Parmar, H.; Tan, X.; Ramanujan, R.V. Mechanochemically processed Nd-Fe-Co-Cr-B nanoparticles with high coercivity and reduced spin reorientation transition temperature. Chemphyschem 2018, 19, 2370–2379. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, M. Hydrothermal synthesis of Nd-Fe-B nanoparticles with enhanced magnetic properties by Nd Content tunning and Dy doping. J. Supercond. Nov. Magn. 2021, 34, 987–994. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, M.G. Preparation of high-performance Nd-Fe-B magnetic powder by hydrothermal method assisted via ball milling. J. Solid State Chem. 2022, 305, 122659. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Xu, H.; Cong, L.; Li, C.; Xi, J.; Wu, Q.; Liu, W.; Lu, Q.; Yue, M. Microwave-assisted chemical synthesis of SmCo5 magnetic particles with high coercivity. J. Magn. Magn. Mater. 2023, 579, 170855. [Google Scholar] [CrossRef]
- Chai, H.; Li, Y.; Luo, Y.; Debliquy, M.; Zhang, C. Investigation on isopropanol sensing properties of LnFeO3(Ln = Nd, Dy, Er) perovskite materials synthesized by microwave-assisted hydrothermal method. Appl. Surf. Sci. 2022, 601, 154292. [Google Scholar] [CrossRef]
- Mirzaei, A.; Neri, G. Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review. Sens. Actuators B Chem. 2016, 237, 749–775. [Google Scholar] [CrossRef]
- Farmer, V.C. The Infrared Spectra of Minerals, 1st ed.; Science Press: Beijing, China, 1982. [Google Scholar]
- Yusov, A.B.; Budantseva, N.A.; Nikonov, M.V.; Charushnikova, I.A.; Shirokova, I.B.; Fedoseev, A.M. Interaction of aluminum with Am(III) and certain REE(III) ions in alkaline solutions. Radiochemistry 2001, 43, 379–383. [Google Scholar] [CrossRef]
- Wang, X.; Andrews, L. Infrared spectra of M(OH)1,2,3 (M = Mn, Fe, Co, Ni) molecules in solid argon and the character of first row transition metal hydroxide bonding. J. Phys. Chem. A 2006, 110, 10035–10045. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, M. Study on synthesis and magnetic properties of Nd2Fe14B nanoparticles prepared by hydrothermal method. J. Magn. Magn. Mater. 2020, 507, 166841. [Google Scholar] [CrossRef]
- Baseri, J.; Naghizadeh, R.; Rezaie, H.R.; Golestanifard, F.; Golmohammad, M. A comparative study on citrate sol-gel and combustion synthesis methods of CoAl2O4 spinel. Int. J. Appl. Ceram. Technol. 2020, 17, 2709–2715. [Google Scholar] [CrossRef]
- Boulanger, J.L.; Autissier, D. Crystallization and densification of plasma H.F synthetized boron powder. J. Phys. 1993, 3, C7-1305–C7-1309. [Google Scholar] [CrossRef]
- Rahimi, H.; Ghasemi, A.; Mozaffarinia, R.; Tavoosi, M. Magnetic properties and magnetization reversal mechanism of Nd-Fe-B nanoparticles synthesized by a sol-gel method. J. Magn. Magn. Mater. 2017, 444, 111–118. [Google Scholar] [CrossRef]
- Jadhav, A.P.; Hussain, A.; Lee, J.H.; Baek, Y.K.; Choi, C.J.; Kang, Y.S. One pot synthesis of hard phase Nd2Fe14B nanoparticles and Nd2Fe14B/α-Fe nanocomposite magnetic materials. New J. Chem. 2012, 36, 2405–2411. [Google Scholar] [CrossRef]
- Ma, H.X.; Kim, C.W.; Kim, D.S.; Jeong, J.H.; Kim, I.H.; Kang, Y.S. Preparation of Nd-Fe-B by nitrate-citrate auto-combustion followed by the reduction-diffusion process. Nanoscale 2015, 7, 8016–8022. [Google Scholar] [CrossRef]
- Guo, Y.; You, J.; Pei, W.; Qu, Y.; Zhao, D.; Yang, Z. Effect of (C2H5)3NBH3 content on microstructure and properties of Nd-Fe-B nanoparticles prepared by chemical and reduction-diffusion method. J. Alloys Compd. 2019, 777, 850–859. [Google Scholar] [CrossRef]
- Dehghan, R.; Seyyed Ebrahimi, S.A.; Lalegani, Z.; Hamawandi, B. Investigation of microstructure and magnetic properties of CH4 heat treated Sr-Hexaferrite powders during re-calcination Process. Magnetochemistry 2023, 9, 103. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, M.G.; Guo, J.D.; Zhang, B.H.; Xu, X.H. The reaction mechanism in the hydrothermal synthesis of Nd2Fe14B magnetic particles. J. Solid State Chem. 2021, 296, 122003. [Google Scholar] [CrossRef]
- Hussain, A.; Jadhav, A.P.; Baek, Y.K.; Choi, H.J.; Lee, J.Y.; Kang, S. One pot synthesis of exchange coupled Nd2Fe14B/ɑ-Fe by pechini type sol-gel method. J. Nanosci. Nanotechnol. 2013, 13, 7717–7722. [Google Scholar] [CrossRef]
- Zhang, J.S.; Wu, W.; Meng, F.S.; Ding, H.; Dong, J.L. Sol-gel-based chemical synthesis of NdFeB hard magnetic nanoparticle. Mod. Phys. Lett. B 2018, 32, 1–9. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Xu, X. Facile Synthesis of Nd2Fe14B Hard Magnetic Particles with Microwave-Assisted Hydrothermal Method. Molecules 2023, 28, 7918. https://doi.org/10.3390/molecules28237918
Wang L, Xu X. Facile Synthesis of Nd2Fe14B Hard Magnetic Particles with Microwave-Assisted Hydrothermal Method. Molecules. 2023; 28(23):7918. https://doi.org/10.3390/molecules28237918
Chicago/Turabian StyleWang, Ling, and Xiaofen Xu. 2023. "Facile Synthesis of Nd2Fe14B Hard Magnetic Particles with Microwave-Assisted Hydrothermal Method" Molecules 28, no. 23: 7918. https://doi.org/10.3390/molecules28237918
APA StyleWang, L., & Xu, X. (2023). Facile Synthesis of Nd2Fe14B Hard Magnetic Particles with Microwave-Assisted Hydrothermal Method. Molecules, 28(23), 7918. https://doi.org/10.3390/molecules28237918