Effect of Surface Pt Doping on the Reactivity of Au(111) Surfaces towards Methanol Dehydrogenation: A First-Principles Density Functional Theory Investigation
Abstract
:1. Introduction
2. Computational Details
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DFT | Density functional theory |
GGA | Generalized gradient approximation |
PW-91 | Perdew–Wang exchange correlation potential |
BFGS | Broyden–Fletcher–Goldfarb–Shanno |
CI-NEB | Climbing image nudged elastic band method |
PDOS | Partial density of states |
References
- Dijksman, A.; Marino-González, A.; Mairata i Payeras, A.; Arends, I.W.C.E.; Sheldon, R.A. Efficient and Selective Aerobic Oxidation of Alcohols into Aldehydes and Ketones Using Ruthenium/TEMPO as the Catalytic System. J. Am. Chem. Soc. 2001, 123, 6826–6833. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, C.; Li, H.; Zhao, X.; Song, L.; Li, X. An Overview of Selective Oxidation of Alcohols: Catalysts, Oxidants and Reaction Mechanisms. Catal. Surv. Asia 2016, 20, 13–22. [Google Scholar] [CrossRef]
- Wang, B.; Tao, L.; Cheng, Y.; Yang, F.; Jin, Y.; Zhou, C.; Yu, H.; Yang, Y. Electrocatalytic Oxidation of Small Molecule Alcohols over Pt, Pd, and Au Catalysts: The Effect of Alcohol’s Hydrogen Bond Donation Ability and Molecular Structure Properties. Catalysts 2019, 9, 387. [Google Scholar] [CrossRef]
- Cheng, Z.; Fine, N.A.; Lo, C.S. Platinum Nanoclusters Exhibit Enhanced Catalytic Activity for Methane Dehydrogenation. Top. Catal. 2012, 55, 345–352. [Google Scholar] [CrossRef]
- Zhang, J.; She, Y. Mechanism of methanol decomposition on the Pd/WC(0001) surface unveiled by first-principles calculations. Front. Chem. Sci. Eng. 2020, 14, 1052–1064. [Google Scholar] [CrossRef]
- Li, Z.; Xu, J.; Gu, X.; Wang, K.; Wang, W.; Zhang, X.; Zhang, Z.; Ding, Y. Selective Gas-Phase Oxidation of Alcohols over Nanoporous Silver. ChemCatChem 2013, 5, 1705–1708. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, Y.; Yu, Y. The mechanism of methanol dehydrogenation on the PdAu(1 0 0) surface: A DFT study. Appl. Surf. Sci. 2020, 510, 145434. [Google Scholar] [CrossRef]
- Zhu, X.; Guo, Q.; Sun, Y.; Chen, S.; Wang, J.Q.; Wu, M.; Fu, W.; Tang, Y.; Duan, X.; Chen, D.; et al. Optimising surface d charge of AuPd nanoalloy catalysts for enhanced catalytic activity. Nat. Commun. 2019, 10, 1428. [Google Scholar] [CrossRef]
- Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C. Chem. Lett. 1987, 16, 405–408. [Google Scholar] [CrossRef]
- Schade, O.; Dolcet, P.; Nefedov, A.; Huang, X.; Saraçi, E.; Wöll, C.; Grunwaldt, J.D. The influence of the gold particle size on the catalytic oxidation of 5-(Hydroxymethyl)furfural. Catalysts 2020, 10, 342. [Google Scholar] [CrossRef]
- Rucinska, E.; Pattisson, S.; Miedziak, P.J.; Brett, G.L.; Morgan, D.J.; Sankar, M.; Hutchings, G.J. Cinnamyl Alcohol Oxidation Using Supported Bimetallic Au–Pd Nanoparticles: An Optimization of Metal Ratio and Investigation of the Deactivation Mechanism Under Autoxidation Conditions. Top. Catal. 2020, 63, 99–112. [Google Scholar] [CrossRef]
- Shang, F.; Chu, Q.; Yang, H.; Yu, H.; Diao, T.; Wang, P.; Liu, H.; Wang, M. Double Catalyst-Catalyzed: An Environmentally Friendly Sustainable Process to Produce Methallyl Alcohol. Catal. Lett. 2020, 150, 2660–2673. [Google Scholar] [CrossRef]
- Darby, M.T.; Sykes, E.C.H.; Michaelides, A.; Stamatakis, M. Carbon Monoxide Poisoning Resistance and Structural Stability of Single Atom Alloys. Top. Catal. 2018, 61, 428–438. [Google Scholar] [CrossRef]
- Chang, C.R.; Yang, X.F.; Long, B.; Li, J. A water-promoted mechanism of alcohol oxidation on a Au(111) surface: Understanding the catalytic behavior of bulk gold. ACS Catal. 2013, 3, 1693–1699. [Google Scholar] [CrossRef]
- Yi, W.; Yuan, W.; Meng, Y.; Zou, S.; Zhou, Y.; Hong, W.; Che, J.; Hao, M.; Ye, B.; Xiao, L.; et al. A Rational Solid-State Synthesis of Supported Au–Ni Bimetallic Nanoparticles with Enhanced Activity for Gas-Phase Selective Oxidation of Alcohols. ACS Appl. Mater. Interfaces 2017, 9, 31853–31860. [Google Scholar] [CrossRef]
- Behravesh, E.; Melander, M.M.; Wärnå, J.; Salmi, T.; Honkala, K.; Murzin, D.Y. Oxidative dehydrogenation of ethanol on gold: Combination of kinetic experiments and computation approach to unravel the reaction mechanism. J. Catal. 2021, 394, 193–205. [Google Scholar] [CrossRef]
- Itaciara, I.E.; de Sousa, S.A.; Laíse, L.N.; Oliveira, J.M.; Castro, K.P.; Costa, J.C.; de Moura, E.M.; de Moura, C.V.; Garcia, M.A. Au-Pd Selectivity-switchable Alcohol-oxidation Catalyst: Controlling the Duality of the Mechanism using a Multivariate Approach. ChemCatChem 2019, 11, 3022–3034. [Google Scholar] [CrossRef]
- Zhao, L.; Akdim, O.; Huang, X.; Wang, K.; Douthwaite, M.; Pattisson, S.; Lewis, R.J.; Lin, R.; Yao, B.; Morgan, D.J.; et al. Insights into the Effect of Metal Ratio on Cooperative Redox Enhancement Effects over Au- and Pd-Mediated Alcohol Oxidation. ACS Catal. 2023, 13, 2892–2903. [Google Scholar] [CrossRef]
- Li, H.; Henkelman, G. Dehydrogenation Selectivity of Ethanol on Close-Packed Transition Metal Surfaces: A Computational Study of Monometallic, Pd/Au, and Rh/Au Catalysts. J. Phys. Chem. C 2017, 121, 27504–27510. [Google Scholar] [CrossRef]
- Villa, A.; Wang, D.; Veith, G.M.; Prati, L. Bismuth as a modifier of Au–Pd catalyst: Enhancing selectivity in alcohol oxidation by suppressing parallel reaction. J. Catal. 2012, 292, 73–80. [Google Scholar] [CrossRef]
- Zhong, W.; Liang, J.; Hu, W.; Cao, X.; Jia, C.; Jiang, J. The O, OH and OOH-assisted selective coupling of methanol on Au-Ag(111). Phys. Chem. Chem. Phys. 2016, 18, 9969–9978. [Google Scholar] [CrossRef]
- Nagy, G.; Gál, T.; Srankó, D.; Sáfrán, G.; Maróti, B.; Sajó, I.; Schmidt, F.P.; Beck, A. Selective aerobic oxidation of benzyl alcohol on alumina supported Au-Ru and Au-Ir catalysts. Mol. Catal. 2020, 492, 110917. [Google Scholar] [CrossRef]
- Salciccioli, M.; Yu, W.; Barteau, M.A.; Chen, J.G.; Vlachos, D.G. Differentiation of O-H and C-H bond scission mechanisms of ethylene glycol on Pt and Ni/Pt using theory and isotopic labeling experiments. J. Am. Chem. Soc. 2011, 133, 7996–8004. [Google Scholar] [CrossRef] [PubMed]
- Tenney, A.S.; Shah, S.I.; Yan, H.; Cagg, A.B.; Levine, M.S.; Rahman, T.S.; Chen, A.D. Methanol Reaction on Pt-Au Clusters on TiO2(110): Methoxy- Induced Diffusion of Pt. J. Phys. Chem. C 2013, 117, 26998–27006. [Google Scholar] [CrossRef]
- Stepanova, L.N.; Belskaya, O.B.; Trenikhin, M.V.; Leont’eva, N.N.; Gulyaeva, T.I.; Likholobov, V.A. Effect of Pt(Au)/MgAlOx catalysts composition on their properties in the propane dehydrogenation. Catal. Today 2021, 378, 96–105. [Google Scholar] [CrossRef]
- Wang, J.; Voss, M.R.; Busse, H.; Koel, B.E. Chemisorbed Oxygen on Au(111) Produced by a Novel Route: Reaction in Condensed Films of NO2+H2O. J. Phys. Chem. B 1998, 102, 4693–4696. [Google Scholar] [CrossRef]
- Wang, T.; Sha, J.; Sabbe, M.; Sautet, P.; Pera-Titus, M.; Michel, C. Identification of active catalysts for the acceptorless dehydrogenation of alcohols to carbonyls. Nat. Commun. 2021, 12, 5100. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Wang, L. Vinyl alcohol formation via catalytic β-dehydrogenation of ethanol on Ir(100). Chem. Phys. Impact 2021, 3, 100040. [Google Scholar] [CrossRef]
- Xu, B.; Haubrich, J.; Baker, T.A.; Kaxiras, E.; Friend, C.M. Theoretical Study of O-Assisted Selective Coupling of Methanol on Au(111). J. Phys. Chem. C 2011, 115, 3703–3708. [Google Scholar] [CrossRef]
- Hussain, A.; Shah, S. MMENT>Computational study of complete methanol dehydrogenation on Au(100) and Au(310) surfaces: Dominant role of atomic oxygen. Surf. Sci. 2014, 620, 30–37. [Google Scholar] [CrossRef]
- Xu, X.N.; Ren, Y.P.; Li, C.F.; Song, L.I.; Qin, G.W. Thermodynamic assessment of Au–Pt system. Trans. Nonferrous Met. Soc. China 2012, 22, 1432–1436. [Google Scholar] [CrossRef]
- Yang, T.T.; Wang, A.; House, S.D.; Yang, J.; Lee, J.K.; Saidi, W.A. Computationally Guided Design to Accelerate Discovery of Doped β-Mo2C Catalysts toward Hydrogen Evolution Reaction. ACS Catal. 2022, 12, 11791–11800. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244. [Google Scholar] [CrossRef] [PubMed]
- Kokalj, A. Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput. Mater. Sci. 2003, 28, 155–168. [Google Scholar] [CrossRef]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895. [Google Scholar] [CrossRef]
- Davey, W.P. Precision Measurements of the Lattice Constants of Twelve Common Metals. Phys. Rev. 1925, 25, 753–761. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Henkelman, G.; Uberuaga, B.P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904. [Google Scholar] [CrossRef]
- Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter. 2009, 21, 084204. [Google Scholar] [CrossRef] [PubMed]
- Miao, B.; Wu, Z.P.; Zhang, M.; Chen, Y.; Wang, L. Role of Ni in Bimetallic PdNi Catalysts for Ethanol Oxidation Reaction. J. Phys. Chem. C 2018, 122, 22448–22459. [Google Scholar] [CrossRef]
- Li, H.; Shin, K.; Henkelman, G. Effects of ensembles, ligand, and strain on adsorbate binding to alloy surfaces. J. Chem. Phys. 2018, 149, 174705. [Google Scholar] [CrossRef]
- Li, H.; Chai, W.; Henkelman, G. Selectivity for ethanol partial oxidation: The unique chemistry of single-atom alloy catalysts on Au, Ag, and Cu(111). J. Mater. Chem. A 2019, 7, 23868–23877. [Google Scholar] [CrossRef]
Au(111) | 1 Pt/Au | 2 Pt/Au | 3 Pt/Au | Pt Overlayer | Pt Sublayer | |
---|---|---|---|---|---|---|
CH3OH | −0.11 (o) | −0.12 (fcc) | −0.13 (o) | −0.27 (o) | −0.38 (o) | −0.12 (o) |
CH3O | −1.75 (fcc) | −1.88 (o) | −1.87 (o) | −1.92 (o) | −2.24 (fcc) | −1.77 (fcc) |
OH | −2.66 (fcc) | −2.73 (o) | −2.80 (b) | −2.82 (b) | −2.65 (fcc) | −2.19 (fcc) |
O | −5.07 (fcc) | −5.24 (fcc) | −5.43 (fcc) | −5.40 (fcc) | −4.67 (fcc) | −3.46 (fcc) |
H | −3.18 (fcc) | −3.46 (b) | −3.74 (b) | −3.84 (hcp) | −3.04 (fcc) | −2.26 (fcc) |
Surface | E | E |
---|---|---|
Au(111) | 1.76 | 1.34 |
1 Pt/Au | 1.18 | 1.03 |
2 Pt/Au | 1.26 | 0.95 |
3 Pt/Au | 1.28 | 0.79 |
Pt overlayer | 0.79 | 0.08 |
Pt sublayer | 1.70 | 1.21 |
Pt(111) | 0.90 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demirtas, M.; Ustunel, H.; Toffoli, D. Effect of Surface Pt Doping on the Reactivity of Au(111) Surfaces towards Methanol Dehydrogenation: A First-Principles Density Functional Theory Investigation. Molecules 2023, 28, 7928. https://doi.org/10.3390/molecules28237928
Demirtas M, Ustunel H, Toffoli D. Effect of Surface Pt Doping on the Reactivity of Au(111) Surfaces towards Methanol Dehydrogenation: A First-Principles Density Functional Theory Investigation. Molecules. 2023; 28(23):7928. https://doi.org/10.3390/molecules28237928
Chicago/Turabian StyleDemirtas, Merve, Hande Ustunel, and Daniele Toffoli. 2023. "Effect of Surface Pt Doping on the Reactivity of Au(111) Surfaces towards Methanol Dehydrogenation: A First-Principles Density Functional Theory Investigation" Molecules 28, no. 23: 7928. https://doi.org/10.3390/molecules28237928
APA StyleDemirtas, M., Ustunel, H., & Toffoli, D. (2023). Effect of Surface Pt Doping on the Reactivity of Au(111) Surfaces towards Methanol Dehydrogenation: A First-Principles Density Functional Theory Investigation. Molecules, 28(23), 7928. https://doi.org/10.3390/molecules28237928