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Abstract: Peripheral venous hypertension has emerged as a prominent characteristic of venous
disease (VD). This disease causes lower limb edema due to impaired blood transport in the veins. The
phlebotonic drugs in use showed moderate evidence for reducing edema slightly in the lower legs and
little or no difference in the quality of life. To enhance the probability of favorable experimental results,
a virtual screening procedure was employed to identify molecules with potential therapeutic activity
in VD. Compounds obtained from multiple databases, namely AC Discovery, NuBBE, BIOFACQUIM,
and InflamNat, were compared with reference compounds. The examination of structural similarity,
targets, and signaling pathways in venous diseases allows for the identification of compounds with
potential usefulness in VD. The computational tools employed were rcdk and chemminer from R-Studio
and Cytoscape. An extended fingerprint analysis allowed us to obtain 1846 from 41,655 compounds
compiled. Only 229 compounds showed pharmacological targets in the PubChem server, of which
84 molecules interacted with the VD network. Because of their descriptors and multi-target capacity,
only 18 molecules of 84 were identified as potential candidates for experimental evaluation. We opted
to evaluate the berberine compound because of its affordability, and extensive literature support. The
experiment showed the proposed activity in an acute venous hypertension model.

Keywords: phlebotonics; treatment; venous; hypertension; berberine; VD; chemoinformatics; semi-
synthetic; natural products

1. Introduction

Venous disease (VD) is defined as a condition in which the veins cannot transport
blood unidirectionally to the heart with a flow adapted to the needs of tissue drainage,
temperature regulation, and hemodynamic reserve, regardless of their position and activity.
The first manifestation of VD is increased venous pressure (venous hypertension or high
blood pressure in the veins) with or without reflux [1]. In the United States, it affects over
25 million adults and over 6 million have advanced disease. The total cost of medical care is
estimated at more than USD 3 billion per year [2]. In Latin America, it is estimated that the
prevalence of VD is 68.11% [3], and in Mexico, the incidence rate in 2022 was 142.27/100,000
inhabitants [4].

The treatments of choice for VD are surgery, sclerotherapy, and mechanical com-
pression. However, pharmacological treatment with drugs referred to as phlebotonics is
frequently used due to their easy administration. In the Anatomical Therapeutic Chemical
(ATC) system, phlebotonics are categorized as vasoprotective agents, specifically within
the group of capillary stabilizing agents (ATC 2022) [5]. Most of these agents are derived
from natural flavonoids extracted from plants [6].

Although phlebotonics are known as vasoactive drugs, their mechanism of action is not
scientifically well established despite the lack of studies examining their pharmacological
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and clinical properties. These drugs have been found to impact macrocirculation, such as
enhancing venous tone [7], as well as microcirculatory parameters such as capillary hyper-
permeability [8]. Controversy exists regarding the clinical relevance of the efficacy and
benefit–risk balance of phlebotonics. A meta-analysis study suggests a slight reduction in
leg swelling, but it may not significantly affect quality of life or ulcer healing. Phlebotonics
probably increase adverse events such as gastrointestinal disorders [6]. The therapeutic
benefits of phlebotonics may not be fully realized in the VD because of their limitations
and mechanisms of action.

Computer-aided drug design (CADD) is a discipline that uses a range of chemical-
molecular and quantum methodologies. CADD allows us to investigate, develop, and syn-
thesize medicinal chemical compounds [9]. One computational approach used in computer-
aided drug design involves the application of chemoinformatics. This discipline specifically
concentrates on extracting, processing, and extrapolating significant data from chemical
structures [9]. Chemoinformatics is used to compare drugs, natural products (NPs), and
semi-synthetic molecules (SMSs) to find potential candidates for pre-clinical research.

CADD has been promoted by various disciplines, such as chemoinformatics and
network pharmacology, which were employed in the present investigation to find new
drugs for VD treatment. CADD has proven to be effective in finding new candidates from
NPs and SMSs that succeed better and have fewer side effects [10].

We tested a candidate found through virtual screening to address increased venous
pressure, which is the first manifestation of VD. This evaluation was performed in a rat
model of acute venous hypertension.

2. Results
2.1. Creation of a Reference Compounds Dataset

During the first phase of our research, MEDLINE, EMBASE, and Scopus servers en-
abled us to generate a dataset of reference compounds with phlebotonic, anti-inflammatory,
and antioxidant properties. We found 145 reference compounds. Osiris DataWarrior soft-
ware V5.2.1 and SwissADME server were used to determine their one-dimensional (1D) and
two-dimensional (2D) molecular descriptors. Through the use of hierarchical clustering (K-
means) and principal component analysis (PCA) via RStudio, an analysis was conducted on
the molecular descriptors to determine the most significant reference compounds obtained
from the literature (Figure 1). Supplementary Figure S1 contains the PCA results. The molec-
ular descriptors include Fragments, Rotatable Bonds, Veber #violations, Molecular Flexibility,
Fraction Csp3 Stereo Centers, sp3-Atoms, Saturated Rings, Non-Aromatic Rings, Molecular
Complexity, MR, Total Surface Area, #Heavy atoms, Non-H Atoms, Molweight, Monoiso-
topic Mass, Total Molweight, Synthetic Accessibility, Hetero-Rings, Small Rings, Rings
Closures, H-Donors, Polar Surface Area, TPSA, H-Acceptors, Non-C/H Atoms, Electronega-
tive Atoms, and Muegge #violations. Cluster one showed the greatest similarity between
the following 23 molecules: escin, crocin, echinomycin, cyclosporine A, amphotericin B,
everolimus, rapamycin, chetomin, astragaloside IV, 20(R)-ginsenoside Rh2, epigallocatechin
3-gallate, troxerutin, O-(beta-hydroxyethyl)-rutoside, salvianolic acid B, keracyanin chloride,
rutin, hidrosmin, diosmin, hesperidin, linarin, isorhoifolin, naringin, and betanin. Because
of their great similarity in their molecular descriptors, these compounds are marked in green
(Figure 1). The outstanding compounds were classified as reference compounds for the
rest of the study and comprise various chemical families, such as saponins, carotenoids,
cyclic peptides, macrolides, and alkaloids. Many flavonoids, including flavonoid glycosides,
flavones, flavanols (catechins), flavonols, and anthocyanins, are present. Escin, diosmin, and
hesperidin are used as first-line treatments for VD [11]. Table 1 presents a summary of the
characteristics of the compounds in cluster one, including their activity and K-means coeffi-
cient. Escin, crocin, echinomycin, astragaloside IV, epigallocatechin 3-gallate, cyclosporin A,
chetomin, and troxerutin were the most similar because of their high K-means coefficient.
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Figure 1. Hierarchical structural clustering of the previously reported reference compounds. Heatmap
of hierarchical clustering was generated using the complexheatmap package in R-Studio separated by
K-means. The histogram at the top represents the frequency distribution of each molecular descriptor
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(blue). Density plots at the top represent the distribution of each molecular descriptor (purple). Each
compound is shown as a violin plot on the right, displaying its molecular descriptors’ distribution.
On the right side, the boxplots show how the numerical data from molecular descriptors is spread
out among reference compounds, the comparison circles display whether or not the mean values are
significantly different from each other. As seen in the dendrogram at the left of the figure, there are
two main clusters; we focus on the first framed in red lines because of its similarity coefficient.

Table 1. Main characteristics of the molecules of cluster one.

Reference
Compounds IUPAC Name PubChem

CID
Pharmacological

Activity
K-Means

Coefficient References

Escin

(2S,3S,4S,5R,6R)-6-[[(4S,6bS,8R,9R)-9-
acetyloxy-8-hydroxy-4,8a-

bis(hydroxymethyl)-4,6a,6b,11,11,14b-
hexamethyl-10-[(E)-2-methylbut-2-

enoyl]oxy-1,2,3,4a,5,6,7,8,9,10,
12,12a,14,14a-tetradecahydropicen-3-

yl]oxy]-4-hydroxy-3-
[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-

(hydroxymethyl)oxan-2-yl]oxy-5-
[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-
(hydroxymethyl)oxan-2-yl]oxyoxane-

2-carboxylic acid

6476031
Anti-edematous,

anti-inflammatory, and
venotonic agent

2.03 [12]

Crocin

bis[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-
6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-

6-(hydroxymethyl)oxan-2-
yl]oxymethyl]oxan-2-yl]

(2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-
tetramethylhexadeca-2,4,6,8,10,12,14-

heptaenedioate

5281233
Inhibitor inhibits
STAT3 activation
induced by IL-6

1.50 [13]

Echinomycin

N-[2,4,12,15,17,25-hexamethyl-27-
methylsulfanyl-3,6,10,13,16,19,23,26-

octaoxo-11,24-di(propan-2-yl)-20-
(quinoxaline-2-carbonylamino)-9,22-

dioxa-28-thia-2,5,12,15,18,25-
hexazabicyclo[12.12.3]nonacosan-7-

yl]quinoxaline-2-carboxamide

3197 Anti-cancer agent and
inhibitor of HIF 1.39 [14]

Cyclosporin A

(3S,6S,9S,12R,15S,18S,21S,24S,30S,33S)-
30-ethyl-33-[(E,1R,2R)-1-hydroxy-2-

methylhex-4-enyl]-
1,4,7,10,12,15,19,25,28-nonamethyl-
6,9,18,24-tetrakis(2-methylpropyl)-

3,21-di(propan-2-yl)-
1,4,7,10,13,16,19,22,25,28,31-
undecazacyclotritriacontane-
2,5,8,11,14,17,20,23,26,29,32-

undecone

5284373

Immunosuppressant
agent and inhibitor of

TCR signaling via
NFAT-independent

1.20 [15]

Amphotericin B

(1R,3S,5R,6R,9R,11R,15S,16R,17R,
18S,19E,21E,23E,25E,27E,29E,31E,

33R,35S,36R,37S)-33-
[(2R,3S,4S,5S,6R)-4-amino-3,5-

dihydroxy-6-methyloxan-2-yl]oxy-
1,3,5,6,9,11,17,37-octahydroxy-

15,16,18-trimethyl-13-oxo-14,39-
dioxabicyclo[33.3.1]nonatriaconta-
19,21,23,25,27,29,31-heptaene-36-

carboxylic acid

5280965

Antibiotic agent for
the treatment of

life-threatening fungal
infections and

modulator of the
immune system

0.97 [16]
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Table 1. Cont.

Reference
Compounds IUPAC Name PubChem

CID
Pharmacological

Activity
K-Means

Coefficient References

Everolimus

(1R,9S,12S,15R,16E,18R,19R,21R,
23S,24E,26E,28E,30S,32S,35R)-1,18-
dihydroxy-12-[(2R)-1-[(1S,3R,4R)-4-

(2-hydroxyethoxy)-3-
methoxycyclohexyl]propan-2-yl]-

19,30-dimethoxy-15,17,21,23,29,35-
hexamethyl-11,36-dioxa-4-

azatricyclo[30.3.1.04,9]hexatriaconta-
16,24,26,28-tetraene-2,3,10,14,20-

pentone

6442177 Anticancer agent and
mTOR inhibitor 0.99 [17]

Rapamycin

(1R,9S,12S,15R,16E,18R,19R,21R,
23S,24E,26E,28E,30S,32S,35R)-1,18-
dihydroxy-12-[(2R)-1-[(1S,3R,4R)-4-

hydroxy-3-
methoxycyclohexyl]propan-2-yl]-

19,30-dimethoxy-15,17,21,23,29,35-
hexamethyl-11,36-dioxa-4-

azatricyclo[30.3.1.04,9]hexatriaconta-
16,24,26,28-tetraene-2,3,10,14,20-

pentone

5284616

Inhibitor of mTOR
complex 1 (mTORC1),
which phosphorylates
substrates including
S6 kinase 1 (S6K1),

eIF4E-binding protein
1 (4E-BP1),

transcription factor EB
(TFEB), unc-51-like

autophagy-activating
kinase 1 (Ulk1), and

growth factor
receptor-bound

protein 10 (GRB-10)

0.91 [18]

Chetomin

14-(hydroxymethyl)-3-[3-[[4-
(hydroxymethyl)-5,7-dimethyl-6,8-

dioxo-2,3-dithia-5,7-
diazabicyclo[2.2.2]octan-1-

yl]methyl]indol-1-yl]-18-methyl-
15,16-dithia-10,12,18-

triazapentacyclo[12.2.2.01,12.03,11.04,9]
octadeca-4,6,8-triene-13,17-dione

10417379

Inhibitor of
HIF-1α/p300

interaction, and
antitumor agent

1.16 [19]

Astragaloside IV

(2R,3R,4S,5S,6R)-2-
[[(1S,3R,6S,8R,9S,11S,12S,14S,15R,16R)-

14-hydroxy-15-[(2R,5S)-5-(2-
hydroxypropan-2-yl)-2-

methyloxolan-2-yl]-7,7,12,16-
tetramethyl-6-[(2S,3R,4S,5R)-3,4,5-

trihydroxyoxan-2-yl]oxy-9-
pentacyclo[9.7.0.01,3.03,8.012,16]

octadecanyl]oxy]-6-
(hydroxymethyl)oxane-3,4,5-triol

13943297

Anti-inflammatory
agent and inhibitor of
NF-kappaB activation

and adhesion
molecule expression

1.29 [20]

20(R)-
ginsenoside Rh2

(2R,3R,4S,5S,6R)-2-
[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-

12-hydroxy-17-[(2R)-2-hydroxy-6-
methylhept-5-en-2-yl]-4,4,8,10,14-

pentamethyl-
2,3,5,6,7,9,11,12,13,15,16,17-

dodecahydro-1H-
cyclopenta[a]phenanthren-3-yl]oxy]-
6-(hydroxymethyl)oxane-3,4,5-triol

54580480 Antitumoral agent 0.63 [21]
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Table 1. Cont.

Reference
Compounds IUPAC Name PubChem

CID
Pharmacological

Activity
K-Means

Coefficient References

Epigallocatechin
3-gallate

(2S,3S,4S,5R,6S)-6-[2,6-dihydroxy-4-
[[(2R,3R)-5-hydroxy-7-

[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-
(hydroxymethyl)oxan-2-yl]oxy-2-

(3,4,5-trihydroxyphenyl)-3,4-
dihydro-2H-chromen-3-

yl]oxycarbonyl]phenoxy]-3,4,5-
trihydroxyoxane-2-carboxylic acid

102025303

Anti-carcinogen,
anti-tumorigenesis,
anti-proliferation,

anti-angiogenesis, and
antioxidant agent, cell

death inductor

1.27 [22]

Troxerutin

2-[3,4-bis(2-hydroxyethoxy)phenyl]-
5-hydroxy-7-(2-hydroxyethoxy)-3-

[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-
[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-
6-methyloxan-2-yl]oxymethyl]oxan-

2-yl]oxychromen-4-one

5486699 Radioprotective and
antioxidant agent 1.12 [23]

O-(beta-
hydroxyethyl)-

rutoside

2-(3,4-dihydroxyphenyl)-5-hydroxy-
7-(2-hydroxyethoxy)-3-

[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-
[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-
6-methyloxan-2-yl]oxymethyl]oxan-

2-yl]oxychromen-4-one

9852585

An agent used as a
treatment for disorders

of the venous and
microcirculatory

systems

0.95 [24]

Salvianolic acid
B

(2R)-2-[(E)-3-[(2S,3S)-3-[(1R)-1-
carboxy-2-(3,4-

dihydroxyphenyl)ethoxy]carbonyl-2-
(3,4-dihydroxyphenyl)-7-hydroxy-

2,3-dihydro-1-benzofuran-4-yl]prop-
2-enoyl]oxy-3-(3,4-

dihydroxyphenyl)propanoic acid

6451084 Anti-inflammatory
and antioxidant agent 0.98 [25]

Keracyanin
chloride

(2R,3R,4R,5R,6S)-2-
[[(2R,3S,4S,5R,6S)-6-[2-(3,4-

dihydroxyphenyl)-5,7-
dihydroxychromenylium-3-yl]oxy-

3,4,5-trihydroxyoxan-2-yl]methoxy]-
6-methyloxane-3,4,5-triol chloride

29231 Anti-inflammatory
and antioxidant agent 0.85 [26]

Rutin

2-(3,4-dihydroxyphenyl)-5,7-
dihydroxy-3-[(2S,3R,4S,5S,6R)-3,4,5-

trihydroxy-6-[[(2R,3R,4R,5R,6S)-
3,4,5-trihydroxy-6-methyloxan-2-

yl]oxymethyl]oxan-2-yl]oxychromen-
4-one

5280805

Anticancer,
antidiabetic,

antimicrobial,
anticoagulant,
antioxidant,

cytoprotective,
vasoprotective,

anticarcinogenic,
neuroprotective and

cardioprotective agent

0.85 [27]

Hidrosmin

5-(2-hydroxyethoxy)-2-(3-hydroxy-4-
methoxyphenyl)-7-[(2S,3R,4S,5S,6R)-

3,4,5-trihydroxy-6-
[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-
6-methyloxan-2-yl]oxymethyl]oxan-

2-yl]oxychromen-4-one

3087722
Venoactive agent and

post-thrombotic
syndrome protector

0.88 [28]
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Table 1. Cont.

Reference
Compounds IUPAC Name PubChem

CID
Pharmacological

Activity
K-Means

Coefficient References

Diosmin

5-hydroxy-2-(3-hydroxy-4-
methoxyphenyl)-7-[(2S,3R,4S,5S,6R)-

3,4,5-trihydroxy-6-
[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-
6-methyloxan-2-yl]oxymethyl]oxan-

2-yl]oxychromen-4-one

5281613

Agent for treatment of
chronic venous

insufficiency and
varicose veins, with

antioxidant, anticancer
activities

0.82 [29,30]

Hesperidin

(2S)-5-hydroxy-2-(3-hydroxy-4-
methoxyphenyl)-7-[(2S,3R,4S,5S,6R)-

3,4,5-trihydroxy-6-
[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-
6-methyloxan-2-yl]oxymethyl]oxan-
2-yl]oxy-2,3-dihydrochromen-4-one

53477767

Antioxidant,
neuroprotective, and

anti-inflammatory
agent

0.82 [31]

Linarin

5-hydroxy-2-(4-methoxyphenyl)-7-
[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-
[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-
6-methyloxan-2-yl]oxymethyl]oxan-

2-yl]oxychromen-4-one

5317025
Antioxidant and

anti-inflammatory
agents

0.76 [32]

Isorhoifolin

5-hydroxy-2-(4-hydroxyphenyl)-7-
[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-
[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-
6-methyloxan-2-yl]oxymethyl]oxan-

2-yl]oxychromen-4-one

9851181 Antioxidant agent 0.75 [33]

Naringin

(2S)-7-[(2S,3R,4S,5S,6R)-4,5-
dihydroxy-6-(hydroxymethyl)-3-

[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-
methyloxan-2-yl]oxyoxan-2-yl]oxy-5-

hydroxy-2-(4-hydroxyphenyl)-2,3-
dihydrochromen-4-one

442428

Antioxidant,
antitumor, antiviral,

antibacterial,
anti-inflammatory,

anti-adipogenic, and
cardioprotective agent

0.72 [34]

Betanin

1-[(2E)-2-(2,6-dicarboxy-2,3-dihydro-
1H-pyridin-4-ylidene)ethylidene]-6-
hydroxy-5-[(2S,3R,4S,5S,6R)-3,4,5-

trihydroxy-6-(hydroxymethyl)oxan-
2-yl]oxy-2,3-dihydroindol-1-ium-2-

carboxylate

12300103
Antioxidant and

anti-inflammatory
agents

0.46 [35]

2.2. Selection of Drug-like NPs and SMSs Based on QED

We searched candidates compounds with potential usefulness in VD from NP and SMSs
molecules collected from several databases. At the end of the search, 41,655 molecules derived
from InflamNat (657 molecules), BIOFACQUIM (422 molecules), NuBBE (155 molecules),
and AC Discovery (7320 NP molecules and 33,063 SMS molecules) were obtained. The
molecular descriptors of 41,655 molecules and 145 reference molecules were analyzed to
examine their distribution regarding the QED (Quantitative Estimate of Druglikeness)
index. These results are shown in Figures 2 and 3, where it is observed that the values of
molecular descriptors for NPs, SMSs, and reference compounds are distributed within a
similar range. This tendency in the distribution is attributed to the fact that most reference
compounds are derived from natural sources.
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Figure 2. Distribution of molecular descriptors for reference compounds, NP molecules and SMS
molecules: molecular weight (Da), Ghose–Crippen–Viswanadhan octanol–water partition coefficient
(AlogP), the number of H-acceptors (HBA), the number of H-donors (HBD), the number of rotatable
bonds, total polar surface area (TPSA), aromatic bound count, and quantitative estimation of drug-
likeness (QED). Vertical lines represent the frequency values, while horizontal lines represent the
intervals of the data. The x-axis shows the calculated values for each compound and descriptor, while
the y-axis shows the frequency of those values. The number of molecules is presented as NPs and
SMSs (n = 41,655) and reference compounds (n = 145).

At the end of QED analysis, molecules with a score greater than 0.5 were considered
drug-like by their potential use of being administered orally. From 41,655 molecules,
27,868 molecules passed the rule (QED > 0.5), of which 2964 were NP molecules (10.1%) and
24,904 were SMS molecules (96.51%). The total number of molecules that violated the rule
(QED 0.5) was 12,670 molecules (4511 were NP molecules and 8159 were SMS molecules).
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Figure 3. Boxplots showing the distribution and summary statistics of the molecular descriptors
of reference compounds, NP molecules and SMS molecules: molecular weight range (Da), Ghose–
Crippen–Viswanadhan octanol–water partition co-efficient (AlogP), the number of H-acceptors
(HBA), the number of H-donors (HBD), the number of rotatable bonds, total polar surface area (TPSA),
aromatic bound count of phlebotonic compounds and NPs. The horizontal axis displays calculated
values for compounds and molecular descriptors, and the vertical axis shows their frequency. Dots
represent outliers. The number of molecules is presented as NPs and SMSs (n = 41,655) and reference
compounds (n = 145).

To analyze and remove compounds that have non-desirable effects, we used the Osiris
Data Warrior software V5.2.1. This analysis identified 26,530 molecules (1626 NP molecules
and 24,904 SMS molecules) free from potential tumorigenic and deleterious functions,
including in the reproductive system. The chemical space of our molecules obtained using
three-dimensional principal component analysis (3D-PCA) allowed us to identify drug-like
NPs and SMSs that were similar to our reference compounds. At the end of the analysis,
1953 similar molecules (1293 NPs and 660 SMSs) were identified by their chemical space
(Figure 4).
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2.3. Selection of NPs and SMSs Structurally Similar to Reference Compounds

To further analyze the obtained result via 3D-PCA, we performed a fingerprint analy-
sis. Of the 1953 drug-like molecules obtained via 3D-PCA, 1846 were found in PubChem
because this server contains various types of structure searches in 2D, which are important
for fingerprint analysis. To achieve this aim, a comparison was made between the chemical
structure of 1846 drug-like molecules and the 23 reference compounds obtained from clus-
ter 1. Figure 5 presents an illustrative example of fingerprint analysis using the reference
compound diosmin. The elbow method shows that the optimal number of clusters for
clusterization is three (Figure 5A). Figure 5B shows the comparison of fingerprints between
the 1846 drug-like molecules and the reference compounds through the Tanimoto coeffi-
cient and Ward’s method clustering. Figure 5C,D illustrate the Dunn index and silhouette
coefficient (Sc), which confirm the clusters obtained using Ward’s method for the 1846
drug-like molecules. The number of drug-like molecules similar to each one from the 23
reference compounds is shown in Table 2. The highest Sc value is found in the cluster
that contains the phlebotonic reference compound. This result suggests a strong similarity
between 1846 drug-like molecules and 23 reference compounds. Finally, the mean of the Sc
of the clusterization performed with the 23 reference compounds was 0.35. Supplementary
Figure S2 shows the complete analysis for each of the 23 reference compounds. Supplemen-
tary Materials show the clusters of those compounds that were structurally similar to the
reference compounds. This information is shown in these sections since it is difficult to
present it clearly in Figure 5 because of the large amount of data.
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Figure 5. Steps of the selection of compounds with potential usefulness in VD. Comparison of 1846
drug-like NPs and SMSs with the reference compound diosmin. (A) The dashed line signs the suitable
number of clusters determined using the Elbow method. (B) Clusterization of Ward’s method; the
reference cluster is shaped in red, and the reference molecule is identified as 1. (C) Cluster plot using
K-means shows the same molecules in the reference cluster marked in blue. (D) Silhouette cluster
representation to corroborate the last clusterization methods. * means the matrix of distances used in
clustering using Ward’s method in subfigure B.

Table 2. Number of drug-like molecules obtained using fingerprint analysis of each reference
compound.

Reference Compounds No. of Compounds
with Structural Similarity Silhouette Coefficient (Sc)

Escin 468 0.5

Crocin 468 0.5

Echinomycin 764 0.35

Cyclosporin A 468 0.5

Amphotericin B 468 0.5

Everolimus 468 0.5

Rapamycin 468 0.5

Chetomin 764 0.35
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Table 2. Cont.

Reference Compounds No. of Compounds
with Structural Similarity Silhouette Coefficient (Sc)

Astragaloside IV 418 0.5

20(R)-ginsenoside Rh2 418 0.5

Epigallocatechin 3-gallate 614 0.23

Troxerutin 614 0.23

O-(beta-hydroxyethyl)-rutoside 614 0.23

Salvianolic acid B 614 0.23

Keracyanin chloride 764 0.35

Rutin 614 0.23

Hidrosmin 614 0.23

Diosmin 614 0.23

Hesperidin 614 0.23

Linarin 614 0.23

Isorhoifolin 614 0.23

Naringin 614 0.23

Betanin 468 0.5

2.4. Network Analysis to Obtain the Best Molecules with Potential Usefulness in VD through
Their Multi-Target Capacity

An important requirement for the construction of structural networks is that analyzed
molecules interact with pharmacological targets. From the 1846 molecules obtained from
fingerprint analysis, only 229 showed pharmacological targets on the PubChem server.
To enhance compound interaction with the VD networks, a macro instruction was used
to match all the involved genes. At the end of the macro, only 84 out of 229 molecules
interacted directly with the genes involved in the VD networks (Table 3). A compound–
target network studied the interactions between the genes and molecules with potential
usefulness in VD. Our compound–target network (Figure 6) for VD comprised 1430 nodes
and 2232 edges. At the end of the network analysis, 23 molecules were identified with
the best multi-target capacity. However, only 18 molecules have the largest number of
targets involved in more than one pathway of the VD network. So, we identified these 18
molecules with a multi-target and multi-pathway capacity (Figure 6).

Table 3. Drug-like molecules obtained using fingerprint analysis, their number of pharmacological
targets, and their interaction with the VD network.

Compounds Type

No. of Compounds
Obtained for

Fingerprint Analysis
(Total n = 1846)

No. of Compounds
with Targets

(Total n = 229)

No. of Compounds
that Interact with
the VD Network

NPs 1293 203 84

SMSs 552 26 0
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Figure 6. Network of compounds with potential usefulness in VD and their biological targets.
The compound–target network was generated with the organic layout of Cytoscape software, 3.8.2
version [20]. The network was constructed with VD pathways using colored nodes for compounds or
targets and edges for their relationships.

The 18 potential phlebotonic molecules are represented in Figure 6 as yellow nodes
and their pharmacological targets as orange nodes. These potential candidates are (E)-3-
phenyl-N-(2-phenylethyl)prop-2-enamide; 3-hydroxy-1-(4-hydroxyphenyl)propan-1-one; 2-
(4-methoxyphenyl)-2,3-dihydrochromen-4-one; 5-hydroxy-7-methoxy-3-(4-methoxyphenyl)
chromen-4-one; 7-hydroxy-2-phenylchromen-4-one; 5,7-dihydroxy-2-(4-methoxyphenyl)
chromen-4-one; 2-hydroxy-6-(4-hydroxy-2-methoxy-6-methoxycarbonylphenoxy)-4-methyl-
benzoic acid; 16,17-dimethoxy-5,7-dioxa-13-azoniapentacyclo[11.8.0.02,10.04,8.015,20]henicosa-
1(13),2,4(8),9,14,16,18,20-octaene chloride; 5,7-dihydroxy-3-(4-methoxyphenyl)chromen-4-
one; (E)-N-[(4-hydroxy-3-methoxyphenyl)methyl]-8-methylnon-6-enamide; (E)-1-(2,4-dihy-
droxy-6-methoxyphenyl)-3-phenylprop-2-en-1-one; 5,7-dihydroxy-2-phenylchromen-4-one;
7-hydroxy-3-(4-methoxyphenyl)chromen-4-one; 9-methoxy-2,2-dimethyl-6H-pyrano[3,2-
c]quinolin-5-one; (2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one; 1-
[(3,4-dimethoxyphenyl)methyl]-6,7-dimethoxyisoquinoline;hydrochloride; 3-(4-hydroxy-
phenyl)-1-(2,4,6-trihydroxyphenyl)propan-1-one; and (2Z)-2-[(3,4-dihydroxyphenyl)methy-
lidene]-6-hydroxy-1-benzofuran-3-one. Table 4 summarizes the characteristics of com-
pounds with potential usefulness in VD derived from the compound–target network.
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Table 4. Main characteristics of the best candidate compounds with usefulness in VD obtained via the multi-target capacity.

Compounds IUPAC Name Structure Source Pharmacological Activity Number of
Targets References

N-Phenethylcinnamamide
CID 795855

(E)-3-phenyl-N-(2-
phenylethyl)prop-2-enamide
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Table 4. Cont.

Compounds IUPAC Name Structure Source Pharmacological Activity Number of
Targets References

7-hydroxyflavone
CID 5281894

7-hydroxy-2-phenylchromen-
4-one
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Table 4. Cont.

Compounds IUPAC Name Structure Source Pharmacological Activity Number of
Targets References

Berberine chloride
CID 12456

16,17-dimethoxy-5,7-dioxa-13-
azoniapentacyclo[11.8.0.02,10.

04,8.015,20]henicosa-
1(13),2,4(8),9,14,16,18,20-

octaene chloride
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Biochanin A
CID 5280373

5,7-dihydroxy-3-(4-
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Capsaicin
CID 1548943

(E)-N-[(4-hydroxy-3-
methoxyphenyl)methyl]-8-

methylnon-6-enamide
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Table 4. Cont.

Compounds IUPAC Name Structure Source Pharmacological Activity Number of
Targets References

Cardamonin
CID 641785

(E)-1-(2,4-dihydroxy-6-
methoxyphenyl)-3-

phenylprop-2-en-1-one
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Piper dilatatum, Piper hispidum, 
Polygonum ferrugineum, Polyg-
onum lapathifolium, Polygonum 

persicaria, Populus fremontii, 
Populus × euramericana, a hy-

brid between Populus deltoides 
and Populus nigra, Syzygium 

samarangense, Vitex leptobotrys, 
and Woodsia scopulina. 

Anti-inflammatory, antineo-
plastic, and antioxidant agent 

4 [50] 

Alpinia blepharocalyx,
Alpinia gagnepainii,

Alpinia conchigera, Alpinia
hainanensis, Alpinia
malaccensis, Alpinia

mutica, Alpinia pricei,
Alpinia rafflesiana, Alpinia

speciosa, Amomum
subulatum, Artemisia

absinthium, Boesenbergia
pandurata, Boesenbergia

rotunda, Carya cathayensis,
Cedrelopsis grevei,

Combretum apiculatum,
Comptonia peregrina,

Desmos cochinchinensis,
Elettaria cardamomum,
Helichrysum forskahlii,
Kaempferia parviflora,
Morella pensylvanica,
Piper dilatatum, Piper
hispidum, Polygonum

ferrugineum, Polygonum
lapathifolium, Polygonum

persicaria, Populus
fremontii, Populus ×

euramericana, a hybrid
between Populus deltoides

and Populus nigra,
Syzygium samarangense,

Vitex leptobotrys, and
Woodsia scopulina.

Anti-inflammatory,
antineoplastic, and
antioxidant agent

4 [50]
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Table 4. Cont.

Compounds IUPAC Name Structure Source Pharmacological Activity Number of
Targets References

Chrysin
CID 5281607

5,7-dihydroxy-2-
phenylchromen-4-one
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Table 4. Cont.

Compounds IUPAC Name Structure Source Pharmacological Activity Number of
Targets References

Naringenin
CID 439246

(2S)-5,7-dihydroxy-2-(4-
hydroxyphenyl)-2,3-

dihydrochromen-4-one
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rus, antidiabetic, anti-Edwardsi-
ellosis, anti-hyperlipidemic, anti-
inflammatory, antimicrobial, an-
tioxidant, antiplatelet, anti-stroke 

damage, cardioprotective, 
chronic kidney disease, expecto-
rant, eye-protective, fertility, im-
munomodulatory, laxative, hepa-

toprotective, pregnancy, radio-
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Papaverine hydrochloride 
CID 6084 

1-[(3,4-dimethoxyphenyl)me-
thyl]-6,7-dimethoxyisoquino-

line;hydrochloride 
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poppy) 

Vasodilator agent 4 [54] 

Phloretin 
CID 4788 

3-(4-hydroxyphenyl)-1-(2,4,6-
trihydroxyphenyl)propan-1-

one 
 

Apple 

Antioxidative, anti-inflamma-
tory, anti-microbial, anti-allergic, 
anticarcinogenic, anti-thrombotic, 

and hepatoprotective agent 

4 [55] 

Citrus fruits, bergamot,
tomatoes, and other

fruits

Anti-Hepatitis C virus,
antiaging, anti-Alzheimer,
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anti-Chikungunya virus,

anticonvulsant, anti-dengue
virus, antidiabetic,

anti-Edwardsiellosis,
anti-hyperlipidemic,
anti-inflammatory,

antimicrobial, antioxidant,
antiplatelet, anti-stroke

damage, cardioprotective,
chronic kidney disease,

expectorant, eye-protective,
fertility, immunomodulatory,

laxative, hepatoprotective,
pregnancy, radioprotective,

and weight-loss agent

4 [34]
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Compounds IUPAC Name Structure Source Pharmacological Activity Number of
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anti-inflammatory,
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anticarcinogenic,

anti-thrombotic, and
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4 [55]

Sulfuretin
CID 5281295

(2Z)-2-[(3,4-
dihydroxyphenyl)methylidene]-

6-hydroxy-1-benzofuran-3-
one
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2.5. Selection of Berberine for Experimental Validation

Once we found the most promising candidates with potential usefulness in the
VD (18 compounds), we selected the following seven compounds as the most suit-
able to be tested experimentally: 5-hydroxy-7-methoxy-3-(4-methoxyphenyl)chromen-4-
one; 5,7-dihydroxy-2-(4-methoxyphenyl)chromen-4-one; 16,17-dimethoxy-5,7-dioxa-13-
azoniapentacyclo[11.8.0.02,10.04,8.015,20]henicosa-1(13),2,4(8),9,14,16,18,20-octaene chloride;
5,7-dihydroxy-3-(4-methoxyphenyl)chromen-4-one; 5,7-dihydroxy-2-phenylchromen-4-
one; 7-hydroxy-3-(4-methoxyphenyl)chromen-4-one; and (2Z)-2-[(3,4-dihydroxyphenyl)
methylidene]-6-hydroxy-1-benzofuran-3-one. Because of the availability, accessibility, ad-
ministration, and literature background, 16,17-dimethoxy-5,7-dioxa-13-azoniapentacyclo
henicosa-1(13),2,4(8),9,14,16,18,20-octaene chloride, commonly known as berberine, was
selected to be evaluated in a model of acute venous hypertension [57–59].

2.6. Effects of Ligation of the Veins on the Venous Pressure of the Left Hind Limb

Peripheral acute venous hypertension was induced in anesthetized rats by ligation of
the right hind limb (RHL). After 15 min of stabilization, the mean arterial pressure (MAP),
heart rate (HR), and venous pressure (VP) readings were taken. Figure 7 illustrates the
comparison of VP values of the right hind limb (RHL) and left hind limb (LHL) before and
after the ligation of the LHL veins. There were no significant differences in the baseline
MAP and HR values before and after ligation (Table 5). In contrast, the ligation of four
veins (superficial epigastric, proximal caudal, medial proximal geniculate, and popliteal)
in the LHL increased the VP significantly both for rats that will be administered with
berberine from a baseline of 11.42 mm Hg to 28.28 mm Hg (Figure 7A) and β-escin baseline
of 11.4 mm Hg to 31.48 mm Hg (Figure 7B).
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Figure 7. Effects of venous ligation on venous pressure (VP) of hind limbs before the administration 
of berberine (A) or β-escin (B). The abscissa corresponds to the limb where the registration is carried 
out and is the right hind limb (RHL) or sham control group and left hind limbs before (LHLB) and 
after (LHLA) venous ligation. In both treatments, the ordinates display VP variations highlighting 
the significant difference between control (RHL) and LHLB versus the group with venous hyperten-
sion (LHLA); the bars represent the mean ± SEM (standard error of the mean) of six experiments * 
(p < 0.05 ANOVA post hoc Dunnett’s test). ns = no significant differences. 

Figure 7. Effects of venous ligation on venous pressure (VP) of hind limbs before the administration
of berberine (A) or β-escin (B). The abscissa corresponds to the limb where the registration is carried
out and is the right hind limb (RHL) or sham control group and left hind limbs before (LHLB) and
after (LHLA) venous ligation. In both treatments, the ordinates display VP variations highlighting the
significant difference between control (RHL) and LHLB versus the group with venous hypertension
(LHLA); the bars represent the mean ± SEM (standard error of the mean) of six experiments * (p < 0.05
ANOVA post hoc Dunnett’s test). ns = no significant differences.
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Table 5. Baseline values of MAP and HR were recorded before (LHLB) and after (LHLA) venous
ligation in anesthetized rats for the experiments of berberine and β-escin.

Limbs

Treatment

Berberine β-Escin

MAP (mm Hg) HR (Beats/min) MAP (mm Hg) HR (Beats/min)

LHLB 120.8 ± 6.0 414.8 ± 13.4 101.6 ± 14.9 361.3 ± 29.3
LHLA 121.9 ± 6.47 410.0 ± 16.3 95.4 ± 4.2 363.8 ± 32.6

2.7. Effects of Berberine, and β-Escin on MAP, HR, and VP of the Anesthetized Rat

Successive injections of berberine (0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1 mg/kg, i.v.) and
β-escin (0.56, 1, 17, 31, 56, and 10 mg/kg) were administered independently in anesthetized
rats with venous ligation in the LHL. The last doses of berberine reduce the MAP with an in-
crease, probably with a reflecting increase in HR (Figure 8A). In contrast, the administration
of β-escin significantly reduces the HR and MAP with a higher dose than that employed in
the experiments performed with berberine (Figure 8B). The administration of increased
berberine doses resulted in a significant reduction in acute venous hypertension induced by
the ligation of different veins in the LHL (Figure 9A). A similar effect but of lesser intensity
was produced by the administration of increasing doses of β-escin (Figure 9B). The VP of
the RHL used as a control does not show significant differences with the administration of
berberine or β-escin. Scheme 1 summarizes the steps followed in this work.
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Figure 8. Effect of increased berberine (A) and β-escin (B) doses on the MAP and HR of rats under
anesthesia. Abscissae correspond to increased doses of the treatment; ordinates show changes in
MAP or HR. The symbols represent the mean ± SEM of eight experiments using berberine and six
using β-escin.
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Figure 9. Effect of increased berberine (A) and β-escin (B) doses on the venous pressure (VP) of rats
under anesthesia. Abscissae correspond to increased doses of the treatments. * indicates a significant
difference between the control (RHL) and the values of VP of the limb with venous hypertension
(LHLA) (p < 0.05 Student’s test for paired samples). The symbols represent the mean ± SEM (standard
error of the mean) of eight experiments using berberine and six using β-escin.
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Scheme 1. The workflow of the method for identifying compounds with potential usefulness in VD.
(A) Phase 1: Creating a phlebotonic reference dataset from MEDLINE, EMBASE, and Scopus databases
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from the information obtained up to March 2023. The complexheatmap (K-means) in R-Studio was
used to cluster the reference compounds based on their molecular descriptors. (B) Phase 2: Selecting
drug-like NPs and SMSs from multiple datasets based on the Quantitative Estimate of Drug-likeness
(QED). The molecules were searched on the PubChem server to obtain their structural information.
Data filtering of NPs and SMSs to obtain drug-like molecules by QED was searched for the reported
targets in PubChem. (C) Phase 3: Using the Tanimoto coefficient and Ward’s clustering method to
identify compounds with potential usefulness in VD by comparing fingerprints of drug-like NPs,
SMSs, and reference compounds. (D) Phase 4: Using Cytoscape software version 3.8 to identify the
best candidates with potential usefulness in VD through network analysis. (E) Phase 5: Experimental
evaluation of NPs and SMSs in an in vivo model of acute venous hypertension.

3. Discussion

Drug discovery from natural products has a long and successful history. Natural
product research through computer-aided drug design techniques has been broadly suc-
cessful, particularly when we explore natural products’ chemical space to identify bioactive
compounds, with an emphasis on drug discovery [60]. In this study, we employed the appli-
cation of chemoinformatics and network pharmacology techniques to identify compounds
that potentially exhibit usefulness in VD. The selection of natural products as the basis of
our investigation was motivated by the prevalence of natural-origin compounds called
phlebotonics in VD treatment, which have strong associations with important signaling
pathways [61–68].

In this study, we found 145 compounds reported with usefulness in the VD in three
databases: MEDLINE, EMBASE, and Scopus. After clustering analysis, we discovered
three groups with similar molecular descriptors. The main cluster of similar drugs involved
in VD includes escin, crocin, echinomycin, cyclosporin A, amphotericin B, everolimus,
rapamycin, chetomin, astragaloside IV, 20(R)-ginsenoside Rh2, epigallocatechin 3-gallate,
troxerutin, O-(beta-hydroxyethyl)-rutoside, salvianolic acid B, keracyanin chloride, rutin,
hidrosmine, diosmine, hesperidin, linarin, isorhoifolin, naringin, and betanin. The cluster
that contained the most representative reference compounds was corroborated by the
PCA analysis.

Our dataset shows a strong clustering tendency in flavonoid-related molecular descrip-
tors. Flavonoids provide many health benefits, such as protecting against cardiovascular
diseases, allergies, diabetes, inflammation, and oxidative damage [11].

Interestingly, all of them have different action mechanisms with potential usefulness in
VD. For instance, escin is the active component of Aesculus hippocastanum, the horse chest-
nut, which has been used in traditional medicine for centuries and is currently used to treat
hemorrhoids, varicose veins, hematoma, and venous congestion; this compound has shown
anti-edematous, anti-inflammatory and venotonic activity. Its chemical structure contains a
trisaccharide linked to the 3-OH residue, such as glucose, xylose, and galactose. Moreover,
esterified domains in the C21 and C22 with an organic acid such as angelic, tiglinic, or
acetic acid are also present [12]. Crocin, a water-soluble carotenoid, has been reported to
demonstrate strong antioxidant activity against reactive oxygen species. Its mechanism
is defined by the NF-κB pathway and NF-κBp65 translocation. This translocation inhibits
the secretion of pro-inflammatory cytokines. Echinomycin is a cyclic peptide with antibac-
terial activity from the quinoxaline family produced by a strain of Streptomyces echinatus.
This compound inhibits a factor involved in the signaling pathways in varicose veins,
hypoxia-inducible factor-1 (HIF-1) [69]. Cyclosporine A is a cyclic non-ribosomal peptide of
eleven amino acids. This peptide has been reported to have both immunosuppressive and
mitochondrial inhibition activity. These characteristics have been given to Cyclosporine A
to be used as a treatment for inflammatory pathologies, for instance, coronary artery disease
(CAD), and acute myocardial infarction (AMI). Also, the pro-inflammatory genes IL-1β,
IL-6, and tumor necrosis factor (TNF)-α have been targeted by this cyclic non-ribosomal
peptide [70], which is also involved in VD [61]. Amphotericin B, a polyene antifungal
with reported antibiotic activity, down-regulates the upregulation of inflammatory-related



Molecules 2023, 28, 7937 25 of 36

genes such as IL-6 and IL-8, reported in TNF-α-stimulated gingival epithelial cells with the
involvement of p38 MAP kinase and ERK [71]. Both interleukins are targeted in the process
of VD. Rapamycin and everolimus, which are mammalian targets of rapamycin (mTOR)
inhibitors, have been reported to have significant anti-inflammatory activity. Their mecha-
nism is comprised of avoiding the release of IL-8 and vascular endothelial growth factor
(VEGF), allowing the preservation of the anti-inflammatory cytokine interleukin-1 receptor
antagonist (IL-1RA). Pre-incubation with everolimus has shown a significative potent effect
in TNF-α-treated neutrophils, which play a role in VD. This pre-incubation reduces the
release of VEGF, IL-8, and IL-1RA [72]. Chetomin is an HIF-1α/p300 interaction inhibitor, a
factor involved in VD [19]. The astragaloside IV (AS-IV), a 3-O-beta-D-xylopyranosyl-6-O-
beta-D-glucopyranosylcycloastragenol extracted from the Chinese medical herb Astragalus
membranaceous (Fisch), which has been reported to have in vivo anti-inflammatory activity,
has been shown to inhibit the TNFalpha-induced specific mRNA levels for E-selectin and
VCAM-1 [20]. 20(R)-ginsenoside Rh2, a minor stereoisomer of ginsenoside Rh2, has been
reported to be an outstanding phlebotonic reference drug because of its several activities
involved in VD such as matrix metalloproteinase inhibitory, anti-inflammatory, and anti-
oxidative activity [73]. Epigallocatechin-3-gallate (EGCG) is a type of catechin found in
green tea with reported anti-inflammatory and antioxidant properties [22], while troxerutin,
is a flavonoid with radioprotective, antioxidant, and other diverse pharmacological activi-
ties [23]. O-(beta-hydroxyethyl)-rutosides (HR) is employed to treat chronic venous disease,
as well as the indications of chronic venous insufficiency (VD), varicose veins, and deep
venous disease [74]. Salvianolic acid B has been proposed to be an excellent drug candidate
for the treatment and prevention of cardiovascular diseases [75]. Keracyanin chloride has
been reported to reduce the expression of endothelial inflammatory antigens [26]. Rutin,
hidrosmin, diosmin, hesperidin, and linarin have been used as pharmacological treatments
for VD [6]. Linarin is a component of a micronized purified flavonoid fraction (MPFF)
called Daflon. MPFF mainly contains diosmin (90%) and other active flavonoids like hes-
peridin, diosmetin, linarin, and isorhoifolin. It is used to treat inflammation and chronic
venous insufficiency [76]. Naringenin is a flavonoid belonging to the flavanones subclass.
It is widely distributed in several citrus fruits, bergamot, tomatoes, and other fruits. Several
biological activities have been ascribed to this phytochemical, among them antioxidant
and anti-inflammatory activity [34]. Betanin is widely found in red beet and is the most
common beta cyanin pigment that acts as a stimulator of antioxidant defense mechanisms,
has considerable free-radical scavenger activity, and is an anti-inflammatory agent [35].

Lipinski’s rule of five is commonly employed to assess the drug-likeness of a com-
pound. Nevertheless, the rule does not extend to substrates of biological transporters or
natural products [77]. According to research [77], 16% of approved oral drugs do not adhere
to at least one of Lipinski’s criteria, while 6% fail to meet two or more. Because of this
rationale, we opt to substitute Lipinski’s rule of five with the Quantitative Estimation of
Druglikeness (QED) as the benchmark for assessing the drug-likeness of NP and SMSs [77].
This estimation enabled us to enhance our acquisition of NPs and SMSs that could poten-
tially serve as drug candidates. Within this context, the QED displayed greater leniency in
the selection criteria. QED allowed us to avoid bias and enrich our selection of NPs and
SMSs, obtaining a more realistic and graded result. In reality, many approvals violate the
criteria of this rule [77]. The molecular descriptors’ distribution showed resemblance in
both datasets, even with the presence of molecules of different characteristics, encompass-
ing both natural and synthetic products, in the phlebotonic dataset. Consequently, these
data suggest that natural products could serve as a dependable resource for drug discovery.

Although there are many clustering methods, only some are used in practice; two
were used in this study: hierarchical grouping and the K-means. They have been used
successfully in fingerprint analysis [78]. Within the scope of this study, the utilization of
fingerprint analysis facilitated the acquisition of 1846 molecules because they resemble
reference molecules found in cluster 1. This finding suggests that the physicochemical
characteristics of these 1846 compounds exhibit a higher level of structural similarity to
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reference compounds. Various clustering methods were utilized to validate these analyzes.
The establishment of a compound–target network facilitated the identification of com-
pounds with potential usefulness in VD based on their therapeutic targets. The collected
data aided us in confirming that the similarity in chemical structure can lead to similar
biological functions. This is clear as certain NPs exhibited targets associated with various
pathways related to VD, including the inflammatory response pathway, cellular response
to hypoxia, PI3K-AKT-NFKB pathway, ion channel transport, Il-18 signaling pathway,
VEGF-VEGFR-2, senescence-associated secretory phenotype (SASP), oxidative stress, and
intrinsic pathways for apoptosis. However, few SMSs from the AC discovery database had
reported targets in PubChem and none were related to VD pathways. Hence, it is crucial to
conduct additional bioassays to identify more drug targets and document them in these
databases. It is crucial to consider compounds that may not have direct associations with
VD targets to prevent them from being disregarded, as some of these compounds might
display phlebotonic activity because of structural similarities with compounds identified in
cluster one of phlebotonics.

Through this study, compounds with a multi-target capacity were identified, which
had been previously selected based on fingerprints. Thus, the development of multi-target
drugs is essential as a promising strategy to address complex, multifactorial disorders [79],
including VD [61]. Through the analysis of the structure and functionality of multi-target
molecules, this study has identified three compounds that exhibit an enhanced likelihood of
selectively acting on VD. These new molecules open a pre-clinic study field of great interest
considering the knowledge regarding the NPs that must be confirmed in preclinical studies.

Traditional Chinese medicine has been widely used for the treatment of various dis-
eases, obtaining great relevance within clinical applications. VDs that affect the vasculature
of the heart, cerebrovascular disease, atherosclerosis, and diabetic complications have
harmed the quality of life of patients and present an increase in the burden of health care
services. Berberine, an isoquinoline alkaloid from Rhizoma coptidis, has wide application in
traditional Chinese medicine because of its antibacterial and anti-inflammatory properties.
With this background, a greater number of studies have been generated that have allowed
us to identify several cellular and molecular targets for berberine, indicating its poten-
tial as an alternative therapeutic strategy for vascular diseases, in addition to providing
novel evidence supporting the potential therapeutic use of berberine to combat VD. Cur-
rently, berberine displays remarkable anti-inflammatory, antioxidant, antiapoptotic, and
anti-autophagic activity through the regulation of multiple signaling pathways, including
AMP-activated protein kinase (AMPK), nuclear factor κB (NF-κB), mitogen-regulatory
Silent Information System Activated Protein Kinase 1 (SIRT-1), Hypoxia-Inducible Factor
1α (HIF-1α), Phosphoinositide Vascular Endothelial Growth Factor 3-Kinase (PI3K), Protein
Kinase B (Akt), Janus Kinase 2 (JAK-2), Ca2+ channels and endoplasmic reticulum stress, in
addition to modulating Na+, Ca2+ concentration and lipid metabolism in vascular smooth
muscle cells [47]. All these actions increase the possibility of obtaining therapeutic activity
in venous activity because of its similarity with the structure of tested phlebotonic drugs
and its multi-target ability as a protector in various vascular according to recent in vitro
and in vivo experimental reports.

In our study, berberine was utilized due to its potential venous antihypertensive effect
and its ability to protect vascular endothelial cells, enhance vascular remodeling, and inhibit
inflammation, oxidative stress, autophagy, and apoptosis. The results of our experimental
model of peripheral venous hypertension confirm a significant venous antihypertensive
effect. However, the evaluation conducted so far focused on acute venous hypertension,
necessitating an assessment of a chronic hypertension model to determine the efficacy of
berberine in mitigating microcirculatory changes, safeguarding endothelial cells, reducing
inflammation, and preventing ischemia by enhancing endothelial function.

It is widely recognized that phlebotonic activity extends beyond the mere elevation
of venous wall tone. In the modern context, veno-active drugs should possess the ability
to stimulate lymphatic drainage and enhance microcirculation [80], employing various
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mechanisms [81–84]. Endothelial dysfunction holds significance within the venous system
as it may lead to a decrease in venodilation, resulting in an increase in venous tone and
a decrease in venous compliance. This, in turn, enhances the mean circulatory filling
pressure, leading to the maintenance or alteration of cardiac workload and contributing
to the development of cardiovascular diseases. Changes in vein function may manifest
early on, even before the onset of these diseases. However, is not yet fully understood if
the venous endothelium dysfunction is involved in these alterations, so further studies
are required [85]. This hypothesis may support our idea that berberine could be a more
efficient phlebotonic than β-escin, because berberine generates vasorelaxation, avoiding
endothelial damage and thus preventing the progression of VD. A similar process has been
reported during the treatment with the phlebotonic rutin [86]. Our discovery supports the
notion that berberine stimulates vasorelaxation mediated by the endothelium and enhances
vasodilation in VSMCs by partially reducing oxidative stress [87], so we expect that these
positive effects may present in the venous environment.

The effects of vasorelaxation may be involved because the targets of berberine found
in our compound–target network were the KCNH2 and NFE2L2 genes as the most relevant.
KCNH2 is a voltage-activated potassium channel found in cardiac muscle, nerve cells, and
microglia. This gene encodes the pore-forming subunit of a rapidly activating-delayed
rectifier potassium channel that plays an essential role in the final repolarization [88].
NFE2L2 is a transcription factor that shapes the antioxidant response in driving cancer
progression, metastasis, and resistance to therapy [89].

The use of virtual screening and network pharmacology allowed us, for the first time,
to find that berberine produces venous antihypertension activity. Our finding, coupled
with the background of berberine activities, makes it a better candidate with usefulness in
VD because it is a natural product with therapeutic potential in vascular diseases [47]. In
addition, it has been shown to improve other conditions that are associated with VD, such
as diabetes mellitus [47].

These experimental results belong only to an evaluation of one of many other candi-
dates found in this work, which will be tested in a model of chronic venous hypertension
that is currently under development.

4. Materials and Methods

To achieve the proposed aims, several were created:

4.1. In Silico Phase
4.1.1. Creation of a Reference Compound Dataset
Collection of Useful Compounds in VD

We created a dataset by reviewing literature from MEDLINE, EMBASE, and Scopus up
to March 2023, focusing on useful compounds in VD. The search descriptors in this work
were “venous disease”, “phlebotonics”, “venotonics”, “venous insufficiency treatment”,
“venous disease treatment”, “chronic venous disease”, and “pathways”.

Selection of Reference Compounds from the Dataset Based on Hierarchical Analysis and
Chemical Space Analysis

The molecular structure of each compound found in the literature (reference com-
pounds dataset) was translated into a Simplified Molecule Input Line Entry System
(SMILES) obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/) [90] (accessed
on 3 April 2023). Subsequently, the SwissADME server (http://www.swissadme.ch) [91]
(accessed on 10 April 2023) and Osiris Data Warrior software V5.2.1 were used to analyze
the physicochemical properties and molecular descriptors. Total Molweight, Molweight,
Monoisotopic Mass, cLogP, cLogS, H-Acceptors, H-Donors, Total Surface Area, Relative
PSA, Polar Surface Area, Druglikeness, Shape Index, Molecular Flexibility, Molecular
Complexity, Fragments, Non-H Atoms, Non-C/H Atoms, Electronegative Atoms, Stereo
Centers, Rotatable Bonds, Rings Closures, Aromatic Atoms, sp3-Atoms, Symmetric atoms,

https://pubchem.ncbi.nlm.nih.gov/
http://www.swissadme.ch
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Small Rings, Carbo-Rings, Hetero-Rings, Saturated Rings, Non-Aromatic Rings, Aromatic
Rings, #Heavy atoms, #Aromatic heavy atoms, Fraction Csp3, MR, TPSA, log Kp (cm/s),
Lipinski #violations, Ghose #violations, Veber #violations, Egan #violations, Muegge #vio-
lations, Bioavailability Score, and Synthetic Accessibility were the molecular descriptors
for this work [92].

By using the K-means algorithm and distance matrix, similarities in the molecular
descriptors of the reference compounds were identified. This analysis was performed
with the complexheatmap package [93] and R-studio version 3.4. PCA was used to analyze
the chemical space and data distribution to validate these results. PCA is defined as
an orthogonal linear transformation technique that can transform the data into a new
coordinate system. We utilized a two-dimensional system in our analysis [94]. Briefly,
the variance of the data maximized on the first coordinate was called the first principal
component. The second variance was maximized on the second coordinate; we used the
factoextra package with R-Studio version 3.4.

4.1.2. Drug-Likeness of NPs and SMSs from BIOFACQUIM, Inflamnat, NuBBE, and AC
Discovery Databases Was Determined Using the QED Index
Data Collection of NPs and SMSs

To obtain compounds with potential usefulness in VD, in this work, we used different
databases that contained both NPs and SMSs. NPs were obtained from databases like
InflamNat, BIOFACQUIM, NuBBE, and AC Discovery. SMS were only obtained from the
AC Discovery database.

We analyzed only the molecules that were available on that server.

Determination of the Drug-Likeness of NP and SMSs

To determine the drug-likeness of NP and SMS compounds, a drug-likeness estimator
based on the Quantitative Estimation of Drug-likeness (QED) was used. This one is
part of RDKit, a piece of open-source cheminformatics software (version 2023.03) [95]
(https://www.rdkit.org/docs/source/rdkit.Chem.QED.html (accessed on 10 April 2023)).
The QED is represented as an integrative score to evaluate the compounds’ preference to be
considered a hit [77]. This method quantifies the drug-likeness, considering the following
molecular descriptors: molecular weight (Da), Ghose–Crippen–Viswanadhan octanol–
water partition coefficient (AlogP), the number of H-acceptors (HBA), the number of H-
donors (HBD), the number of rotatable bonds, total polar surface area (TPSA), and aromatic
bound account. We analyzed the molecular descriptors of the reference compounds,
NPs, and SMSs to identify similar patterns in the datasets. A histogram and box plot
were accomplished to represent graphically this distribution. The score of QED uses the
molecular descriptors mentioned above. We selected the NPs and SMSs with high QED
scores (over 0.5).

Filtering of the NP and SMS Dataset

To eliminate NPs and SMSs with potential non-desirable effects, we identified the
functions related to tumorigenesis, reproduction, and other effects [96]. Osiris Datawar-
rior software V5.2.1 was employed to determine these potential non-desirable effects.
Because of the large number of drug-like molecules available, we used PCA to select
molecules that resembled phlebotonics in their chemical space. We utilized both two- and
three-dimensional systems in our analysis comparing the NPs and SMSs versus reference
compounds [94,97]. We used Osiris Datawarrior software V5.2.1 for the determination
of PCA. Only the molecules with similar chemical space to reference compounds were
considered for the next step of the work.

https://www.rdkit.org/docs/source/rdkit.Chem.QED.html
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4.1.3. The Selection of Compounds with Potential Usefulness in VD Based on Comparison
of the Fingerprints of the Drug-like NPs, SMSs, and Reference Compounds
Fingerprints of Drug-like NPs, SMSs, and Reference Compounds

We used fingerprint analysis to identify molecules similar to the reference compounds
present in our drug-like NPs in the SMS dataset. Molecular fingerprints are one of the
most common representations of chemical structures in chemoinformatics. They represent
chemical information in any chemical entity through binary vectors. Commonly, the binary
fingerprint is the representation of a chemical structure. The vector’s positions show the
presence (1) or absence (0) of predetermined features in the fingerprint design [98].They are
essential cheminformatic tools for virtual screening and mapping chemical space [99]. This
method was supplemented with clustering of chemical compounds by the similarity of
their molecular fingerprints to identify similar structures in an extensive set of similar data,
as previously reported [78]. Reference compounds were compared to drug-like molecules
using a fingerprint analysis. To achieve this structural comparison, we used ChemmineR
and rcdk in RStudio version 3.4 [78]. Because the molecular structures from all datasets
were aromatic compounds, the “extended” method is preferred. An extended number of
fingerprints with a default length of 1024 (number of bits) were used. The preferred analysis
gave us a higher level of detail in the structure analysis compared to the MACCS-type
fingerprints. By using the Tanimoto coefficient, we compared the similarity of NPs, SMSs,
and reference compounds through cluster analysis. Later, the molecules were classified
into three categories based on their distances using Ward’s clustering method, a widely
used algorithm in drug discovery. To confirm the clustering results, the Dunn index and
the silhouette coefficient were used [78]. The cluster, which had a reference compound,
was employed to search for compounds with potential usefulness in VD and generate a
compound–target network.

4.1.4. Selection of the Best Compounds with Potential Usefulness in VD through Their
Multi-Target Capacity
Target Search of the Compounds Obtained Using Fingerprint Analysis

The pharmacological networks were constructed by searching for the reported targets
of each drug-like compound in the PubChem server. Only drug-like molecules with
reported targets were considered for this phase of the study.

Compound–Target Network Generation

We used network pharmacology to select compounds with potential usefulness that
interact with VD networks. By linking drug-like compounds and their reported targets
with genes from VD-related pathways in Wikipathways, this network was formed. The
pathways used in this analysis were the inflammatory response pathway, cellular response
to hypoxia, PI3K-AKT-NFKB pathway, ion channel transport, IL-18 signaling pathway,
VEGF-VEGFR-2, senescence-associated secretory phenotype (SASP), oxidative stress, in-
trinsic pathways for apoptosis, and angiogenesis [61–68]. For more detail on the targets,
pharmacological functions, and genes data from the VD network, see the Supplemen-
tary materials.

Cytoscape software version 3.8.2 was used to construct the compound–target net-
work [100]. Only multi-target compounds participating in over three pathways were
considered as compounds with potential usefulness in VD.

Selection of the NPs and SMSs through Their Availability, Accessibility(cost), and Ease of
Administration

The best candidates with potential usefulness in VD obtained using network phar-
macology were evaluated in an in vivo model. We started with various criteria based on
their availability, accessibility, and administration. The information was collected from the
literature and commercial sites. The Scheme 1 shows a summary of the strategy followed
in this work.
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4.2. Experimental Phase
4.2.1. Materials

Berberine chloride (Sigma Aldrich Cat. B3251-10G) (St. Louis, MO, USA) was dis-
solved in normal saline-dimethyl sulfoxide (DMSO) (9:1). β-escin (Sigma Aldrich Cat.
E-1378 10G) was dissolved in phosphates buffer to a pH of 7. Urethane (Sigma Aldrich Cat.
U-2500 500G)/chloralose (Sigma Aldrich Cat. C-0128 500G) (1000/100 mg) was dissolved
in water.

4.2.2. Animals

Male Wistar rats weighing 300–350 g were used for all experiments. The animals
were maintained at room temperature (21–23 ◦C) on a 12 h light:12 h dark cycle and fed
with pellets food (5001 Rodent Laboratory Chow) ad libitum. Their care was in line with
Mexican standards [101,102] and international official guidelines [103]. The procedures
were approved by the Research Ethics Committee of the Faculty of Medicine, UNAM
(Project No. 008-CIC-2022).

4.2.3. Register of PAM, HR, and VP in Anesthetized Rats

Wistar rats were anesthetized with urethane/chloralose (1000/100 mg/kg i.p. 100 g/
0.2 mL). Using extreme care to prevent skin irritation, the limbs and throat were shaved.
Through vertical incisions, the veins of the thigh, such as the superficial epigastric, proximal
caudal, medial proximal geniculate, and popliteal [104], were surgically exposed and
subsequently dissected. These veins of the left hind limb were ligated with microvascular
clips (11 mm) (George. Tiemann Co., Long Island City, New York, NY, USA). The veins of
the right hind limb were not ligated (sham control group).

In all animals, PE 50 cannulas (BD IntramedicTM, Sparks, MD, USA) were inserted into
the right carotid artery, left jugular vein, and right and left femoral veins to measure medium
arterial pressure, heart rate, and venous pressure in both hind limbs, drug administration
and recording of the venous pressure, respectively. In the trachea, a PE 240 cannula was
inserted to facilitate spontaneous breathing. Model P231D pressure transducers (Gould-
Statham Instruments, Oxnard, CA, USA) were connected to the cannulas inserted in the
carotid artery and femoral vein to record MAP, HR, and PV [105,106]. The signal from the
transducer was electronically damped and recorded using a Model 79 Grass polygraph
(Grass Instrument, Quincy, MA, USA). HR was recorded through another channel from the
polygraph with a Grass 7P4 tachograph triggered by the pulse waves from the unfiltered
transducer signal, and the pressure change was transmitted to The software Lab-ViewTM
21 SP1 (National Instruments, Austin, TX, USA) via an interface NI USB-6009 multifunction
DAQ (National Instruments, USA). The animals’ temperature was regulated at 38 ◦C
through the utilization of a heating table connected to a regulation unit. All experiments
used an electronic thermometer to regulate the temperature probe control of the heating
table. The animals were stabilized for 15 min after the insertion of the cannula.

4.2.4. Dose–Response Curves of the Cardiovascular System to Berberine, and β-Escin

After 15 min of stabilization, MAP, HR, and VP readings were taken. Successive
injections independent of berberine (0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1 mg/kg, i.v., and
β-escin (0.56, 1, 17, 31, 56 and 10 mg/Kg) were administered. A time interval separated
each bolus injection to allow recovery of the stability of MAP, HR, and PV in both hind
limbs. The group comprised eight animals receiving berberine and six receiving β-escin
treatment. The obtained results were used to construct dose–response curves.

For more details, see the section before the Introduction. All the acronyms/initialisms/
abbreviations are deciphered within it.

5. Conclusions

Through our analysis of chemical structures and compound–target networks, we have
identified drug-like compounds with potential usefulness in VD. We identified 18 com-
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pounds with potential usefulness in VD. Only the following compounds have a previously
reported method for experimental use: 7-hydroxyflavone, acacetin, berberine chloride,
biochanin A, chrysin, formononetin, and sulfuretin. Berberine, our chosen candidate, sig-
nificantly reduced peripheral acute venous hypertension in anesthetized rats. This effect
shows the start of confirmation to our approach for discovering new drugs using virtual
screening and network pharmacology. Additional preclinical experiments are needed to de-
termine whether berberine is effective for treating chronic peripheral venous hypertension.

Our results show that testing the most promising candidates in future experiments
could lead to the discovery of new VD drugs. VD is a complex illness for which there is a
lack of experimental models.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28247937/s1, Figure S1: Principal component analysis
(PCA) scoreplot of the analyzed reference compounds useful in VD with respect to their molecu-
lar descriptors; Figure S2: Illustrative representation of the fingerprint analyzes of each reference
compound.
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Venous disease (VD); computer-aided drug design (CADD); natural products (NPs); semi-
synthetics (SMSs); Quantitative Estimate of Druglikeness (QED); micronized purified flavonoid
fraction (MPFF); three-dimensional principal component analysis (3D-PCA); principal component
analysis (PCA); one-dimensional (1D); two-dimensional (2D); IUPAC (International Union of Pure and
Applied Chemistry); venous pressure (VP); right hind limb (RHL); left hind limb (LHL); mean arterial
pressure (MAP); heart rate (HR); acute venous hypertension (AVH); molecular weight range (Da);
Ghose–Crippen–Viswanadhan octanol–water partition co-efficient (AlogP); number of H-acceptors
(HBA); number of H-donors (HBD); number of rotatable bonds, total polar surface area (TPSA;
standard error of the mean (SEM); analysis of variances (ANOVA); AMP-activated protein kinase
(AMPK); nuclear factor κB (NF-κB); Vascular Endothelial Growth Factor Receptor-2 (VEGF-VEGFR-2);
Senescence-Associated Secretory Phenotype (SASP); mitogen-regulatory Silent Information System
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Activated Protein Kinase 1 (SIRT-1); Hypoxia-Inducible Factor 1α (HIF-1α); Phosphoinositide Vas-
cular Endothelial Growth Factor 3-Kinase (PI3K); Protein Kinase B (Akt); Janus Kinase 2 (JAK -2);
vascular smooth muscle cells (VSMCs); potassium voltage-gated channel subfamily H member 2
(KCNH2); nuclear factor, erythroid 2-like 2 (NFE2L2); mammalian target of rapamycin (mTOR);
vascular endothelial growth factor (VEGF); interleukin-1 receptor antagonist (IL-1RA); silhouette
coefficient (Sc).
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