Determination of Volatile Organic Compounds and Endogenous Extracts and Study of Expression Patterns of TPS and BSMT in the Flowers of Seven Lilium Cultivars
Abstract
:1. Introduction
2. Results
2.1. Determination Results of VOCs in Flowers of Seven Lily Cultivars
2.2. Comparison of Extraction Effects of Eight Solvents on Endogenous Extracts in Lily
2.3. Determination Results of Endogenous Extracts in Flowers of Seven Lily Cultivars
2.4. The Results of Linear Regression Analysis between Emission Ratios and Boiling Points of Compounds in Four Lily Cultivars
2.5. The Results of qRT-PCR and Correlation Analysis of TPS and BSMT Genes in Seven Lily Cultivars
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Instruments and Reagents
4.3. Collection and Determination of Lily Flower Scents
4.4. Extraction and Determination of Endogenous Extracts from Lily Flowers
4.5. Extraction of Total RNA and Synthesis of cDNA
4.6. Gene Expression Analysis of TPS and BSMT
4.7. Statistical Analysis and Picture Drawing
5. Conclusions
- (1)
- Forty-five kinds of VOCs were detected in the petals of seven lily cultivars. The main VOCs were monoterpenoids (β-ocimene, linalool, 1,8-cineole) and phenylpropanoids/benzenoids (methyl benzoate);
- (2)
- Dichloromethane was the most suitable for extracting the endogenous extracts from the petals of Lilium ‘Viviana’ among the eight commonly used organic solvents;
- (3)
- When using dichloromethane as the solvent, eighteen kinds of endogenous extracts were detected in the petals of seven lily cultivars;
- (4)
- All linear correlations were negative and significant between the emission ratios and boiling points of VOCs in the petals of the four lily cultivars;
- (5)
- TPS was highly expressed in ‘Viviana’, ‘Pink News’ and ‘Palazzo’, and BSMT was highly expressed in ‘Pink News’ and ‘Palazzo’ in the petals of the seven lily cultivars. Almost all correlations were strong and positive between the expression levels of TPS and the contents of monoterpenoids (linalool, β-ocimene and linalool + β-ocimene), and there were no correlations between the expression levels of BSMT and the contents of methyl benzoate in the seven cultivars.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lim, K.B.; Gonzalez, R.B.; Zhou, S.J.; Ramanna, M.S.; Tuyl, J.M. Interspecific hybridization in Lily (Lilium): Taxonomic and commercial aspects of using species hybrids in breeding. Floric. Ornam. Plant Biotechnol. Adv. Top. Issues 2007, 5, 138–145. [Google Scholar]
- Du, F.; Wu, Y.; Zhang, L.; Li, X.W.; Zhao, X.Y.; Wang, W.H.; Gao, Z.S.; Xia, Y.P. De Novo Assembled Transcriptome Analysis and SSR Marker Development of a Mixture of Six Tissues from Lilium Oriental Hybrid ‘Sorbonne’. Plant Mol. Biol. Report. 2014, 33, 281–293. [Google Scholar] [CrossRef]
- Van Tuyl, J.M.; Arens, P.; Shahin, A.; Marasek-Ciołakowska, A.; Barba-Gonzalez, R.; Kim, H.T.; Lim, K.-B. Chapter 20 Lilium. In Ornamental Crops; Handbook of Plant Breeding; Springer: Cham, Switzerland, 2018; pp. 481–512. [Google Scholar]
- Abbas, F.; Ke, Y.G.; Zhou, Y.W.; Ashraf, U.; Li, X.Y.; Yu, Y.Y.; Yue, Y.C.; Ahmad, K.W.; Yu, R.C.; Fan, Y.P. Molecular cloning, characterization and expression analysis of LoTPS2 and LoTPS4 involved in floral scent formation in oriental hybrid Lilium variety ‘Siberia’. Phytochemistry 2020, 173, 112294. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, J.T.; Tollsten, L.; Bergström, L.G. Floral scents—A checklist of volatile compounds isolated by head-space techniques. Phytochemistry 1993, 33, 253–280. [Google Scholar] [CrossRef]
- Dudareva, N.; Pichersky, E. Biochemical and molecular genetic aspects of floral scents. Plant Physiol. 2000, 122, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.C.; Duan, G.Y.; Li, D.D.; Wu, J.; Liu, X.T.; Hong, B.; Yi, M.F.; Zhang, Z. Two-dimensional analysis provides molecular insight into flower scent of Lilium ‘Siberia’. Sci. Rep. 2018, 8, 5352. [Google Scholar] [CrossRef] [PubMed]
- Vega, C.d.; Herrera, C.M.; Dötterl, S. Floral volatiles play a key role in specialized ant pollination. Perspect. Plant Ecol. Evol. Syst. 2014, 16, 32–42. [Google Scholar] [CrossRef]
- Yuan, Y.; Sun, Y.; Zhao, Y.C.; Liu, C.G.; Chen, X.L.; Li, F.T.; Bao, J.Z. Identification of Floral Scent Profiles in Bearded Irises. Molecules 2019, 24, 1773. [Google Scholar] [CrossRef]
- Kong, Y.; Sun, M.; Pan, H.T.; Zhang, Q.X. Composition and Emission Rhythm of Floral Scent Volatiles from Eight Lily Cut Flowers. J. Am. Soc. Hortic. Sci. 2012, 137, 376–382. [Google Scholar] [CrossRef]
- Kong, Y.; Bai, J.R.; Lang, L.X.; Bao, F.; Dou, X.Y.; Wang, H.; Shang, H.Z. Variation in Floral Scent Compositions of Different Lily Hybrid Groups. J. Am. Soc. Hortic. Sci. 2017, 142, 175–183. [Google Scholar] [CrossRef]
- Hu, Z.H.; Zhang, H.X.; Leng, P.S.; Zhao, J.; Wang, W.H.; Wang, S.D. The emission of floral scent from Lilium ‘siberia’ in response to light intensity and temperature. Acta Physiol. Plant. 2013, 35, 1691–1700. [Google Scholar] [CrossRef]
- Abbas, F.; Ke, Y.G.; Yu, R.C.; Fan, Y.P. Functional characterization and expression analysis of two terpene synthases involved in floral scent formation in Lilium ‘Siberia’. Planta 2019, 249, 71–93. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.X.; Guo, Y.H.; Shi, X.J.; Yang, Y.J.; Chen, J.T.; Zhang, Q.X.; Sun, M. Overexpression of LiTPS2 from a cultivar of lily (Lilium ‘Siberia’) enhances the monoterpenoids content in tobacco flowers. Plant Physiol. Biochem. 2020, 151, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Y.; Ma, B.; Li, Y.Y.; Han, M.Z.; Wu, J.; Zhou, X.F.; Tian, J.; Wang, W.H.; Leng, P.S.; Hu, Z.H. Transcriptome analysis identifies key gene LiMYB305 involved in monoterpene biosynthesis in Lilium ‘Siberia’. Front. Plant Sci. 2022, 13, 1021576. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.H.; Guo, Z.Y.; Zhong, J.; Liang, Y.L.; Feng, Y.; Zhang, P.; Zhang, Q.X.; Sun, M. Positive regulatory role of R2R3 MYBs in terpene biosynthesis in Lilium ‘Siberia’. Hortic. Plant J. 2023, 9, 1024–1038. [Google Scholar] [CrossRef]
- Feng, Y.; Guo, Z.Y.; Zhong, J.; Liang, Y.L.; Zhang, P.; Sun, M. The LibHLH22 and LibHLH63 from Lilium ‘Siberia’ Can Positively Regulate Volatile Terpenoid Biosynthesis. Horticulturae 2023, 9, 459. [Google Scholar] [CrossRef]
- Wang, H.; Sun, M.; Li, L.L.; Xie, X.H.; Zhang, Q.X. Cloning and characterization of a benzoic acid/salicylic acid carboxyl methyltransferase gene involved in floral scent production from lily (Lilium ‘Yelloween’). Genet Mol. Res. 2015, 14, 14510–14521. [Google Scholar] [CrossRef]
- Kondo, M.; Oyama-Okubo, N.; Ando, T.; Marchesi, E.; Nakayama, M. Floral scent diversity is differently expressed in emitted and endogenous components in Petunia axillaris lines. Ann. Bot. 2006, 98, 1253–1259. [Google Scholar] [CrossRef]
- Barman, M.; Mitra, A. Temporal relationship between emitted and endogenous floral scent volatiles in summer- and winter-blooming Jasminum species. Physiol. Plant 2019, 166, 946–959. [Google Scholar] [CrossRef]
- Wang, X.Q.; Wu, Y.Y.; Zhu, H.H.; Zhang, H.Y.; Xu, J.; Fu, Q.; Bao, M.Z.; Zhang, J. Headspace Volatiles and Endogenous Extracts of Prunus mume Cultivars with Different Aroma Types. Molecules 2021, 26, 7256. [Google Scholar] [CrossRef]
- Morinaga, S.I.; Kumano, Y.; Ota, A.; Yamaoka, R.; Sakai, S. Day–night fluctuations in floral scent and their effects on reproductive success in Lilium auratum. Popul. Ecol. 2008, 51, 187–195. [Google Scholar] [CrossRef]
- Kessler, D.; Diezel, C.; Clark, D.G.; Colquhoun, T.A.; Baldwin, I.T. Petunia flowers solve the defence/apparency dilemma of pollinator attraction by deploying complex floral blends. Ecol. Lett. 2012, 16, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Du, F.; Wang, T.; Fan, J.M.; Liu, Z.Z.; Zong, J.X.; Fan, W.X.; Han, Y.H.; Grierson, D. Volatile composition and classification of Lilium flower aroma types and identification, polymorphisms, and alternative splicing of their monoterpene synthase genes. Hortic. Res. 2019, 6, 110. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.S.; Schwieterman, M.L.; Kim, J.Y.; Cho, K.H.; Clark, D.G.; Colquhoun, T.A. Lilium floral fragrance: A biochemical and genetic resource for aroma and flavor. Phytochemistry 2016, 122, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Zuker, A.; Tzfira, T.; Ben-Meir, H.; Ovadis, M.; Shklarman, E.; Itzhaki, H.; Forkmann, G.; Martens, S.; Neta-Sharir, I.; Weiss, D.; et al. Modification of flower color and fragrance by antisense suppression of the flavanone 3-hydroxylase gene. Mol. Breed. 2002, 9, 33–41. [Google Scholar] [CrossRef]
- Hao, R.J.; Du, D.L.; Wang, T.; Yang, W.R.; Wang, J.; Zhang, Q.X. A comparative analysis of characteristic floral scent compounds in Prunus mume and related species. Biosci. Biotechnol. Biochem. 2014, 78, 1640–1647. [Google Scholar] [CrossRef]
- Hao, R.J.; Zhang, Q.X.; Yang, W.R.; Wang, J.; Pan, H.T.; Cheng, T.R. Study on the Difference in Characteristic Scent between Prunus mume and its Interspecific Hybrids. J. Nucl. Agric. Sci. 2014, 28, 808–816. (In Chinese) [Google Scholar]
- Bao, F.; Ding, A.Q.; Zhang, T.X.; Luo, L.; Wang, J.; Cheng, T.R.; Zhang, Q.X. Expansion of PmBEAT genes in the Prunus mume genome induces characteristic floral scent production. Hortic. Res. 2019, 6, 24. [Google Scholar] [CrossRef]
- Hao, R.J.; Yang, S.T.; Zhang, Z.Q.; Zhang, Y.J.; Chang, J.; Qiu, C. Identification and specific expression patterns in flower organs of ABCG genes related to floral scent from Prunus mume. Sci. Hortic. 2021, 288, 110218. [Google Scholar] [CrossRef]
- Hao, R.J.; Chang, J.; Qiu, C.; Yang, S.T. An Identification and Expression Analysis of the ABCG Genes Related to Benzaldehyde Transportation among Three Prunus Species. Horticulturae 2022, 8, 475. [Google Scholar] [CrossRef]
- Muravnik, L.E.; Mosina, A.A.; Zaporozhets, N.L.; Bhattacharya, R.; Saha, S.; Ghissing, U.; Mitra, A. Glandular trichomes of the flowers and leaves in Millingtonia hortensis (Bignoniaceae). Planta 2021, 253, 13. [Google Scholar] [CrossRef] [PubMed]
- Kutty, N.N.; Ghissing, U.; Mitra, A. Revealing floral metabolite network in tuberose that underpins scent volatiles synthesis, storage and emission. Plant Mol. Biol. 2021, 106, 533–554. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.P.; Suneja, P.; Mohan, J.; Singh, M.C. Gas chromatographic evaluation of floral extract of two single and double type cultivars of tuberose (Polianthes tuberosa Linn.). Progress. Hortic. 2009, 41, 145–147. [Google Scholar]
- Oyama-Okubo, N.; Ando, T.; Watanabe, N.; Marchesi, E.; Uchida, K.; Nakayama, M. Emission mechanism of floral scent in Petunia axillaris. Biosci. Biotechnol. Biochem. 2005, 69, 773–777. [Google Scholar] [CrossRef]
- Sagae, M.; Oyama-Okubo, N.; Ando, T.; Marchesi, E.; Nakayama, M. Effect of temperature on the floral scent emission and endogenous volatile profile of Petunia axillaris. Biosci. Biotechnol. Biochem. 2008, 72, 110–115. [Google Scholar] [CrossRef]
- Chang, Y.L.; Huang, L.M.; Kuo, X.Z.; Chen, Y.Y.; Lin, S.T.; Jeng, M.F.; Yeh, H.H.; Tsai, W.C.; Chen, H.H. PbABCG1 and PbABCG2 transporters are required for the emission of floral monoterpenes in Phalaenopsis bellina. Plant J. 2023, 114, 279–292. [Google Scholar] [CrossRef]
- Sun, H.N. Identification and Preliminary Study in Synthesis Mechanism of Volatile Organic Compounds in Chrysanthemum and Wild Relatives. Ph.D. Thesis, Nanjing Agricultural University, Nanjing, China, 2015; pp. 15–26. (In Chinese). [Google Scholar]
- Zeng, X.L. Research of TPS and CCD function analysis and their influence on petal color and scent in Osmanthus fragrans Lour. Ph.D. Thesis, Huangzhong Agricultural University, Wuhan, China, 2016; pp. 58–68. (In Chinese). [Google Scholar]
- Adebesin, F.; Widhalm, J.R.; Boachon, B.; Lefevre, F.; Pierman, B.; Lynch, J.H.; Alam, I.; Junqueira, B.; Benke, R.; Ray, S.; et al. Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter. Science 2017, 356, 1386–1388. [Google Scholar] [CrossRef]
- Fu, X.Q.; Shi, P.; He, Q.; Shen, Q.; Tang, Y.L.; Pan, Q.F.; Ma, Y.N.; Yan, T.X.; Chen, M.H.; Hao, X.L.; et al. AaPDR3, a PDR Transporter 3, Is Involved in Sesquiterpene beta-Caryophyllene Transport in Artemisia annua. Front. Plant Sci. 2017, 8, 723. [Google Scholar] [CrossRef]
- Dudareva, N.; Murfitt, L.M.; Mann, C.J.; Gorenstein, N.; Kolosova, N.; Kish, C.M.; Bonham, C.; Wood, K. Developmental Regulation of Methyl Benzoate Biosynthesis and Emission in Snapdragon Flowers. Plant Cell 2000, 12, 949–961. [Google Scholar] [CrossRef]
- Zhao, N.; Guan, J.; Ferrer, J.L.; Engle, N.; Chern, M.; Ronald, P.; Tschaplinski, T.J.; Chen, F. Biosynthesis and emission of insect-induced methyl salicylate and methyl benzoate from rice. Plant Physiol. Biochem. 2010, 48, 279–287. [Google Scholar] [CrossRef]
- Yue, Y.C.; Wang, L.; Yu, R.C.; Chen, F.; He, J.L.; Li, X.Y.; Yu, Y.Y.; Fan, Y.P. Coordinated and High-Level Expression of Biosynthetic Pathway Genes Is Responsible for the Production of a Major Floral Scent Compound Methyl Benzoate in Hedychium coronarium. Front. Plant Sci. 2021, 12, 650582. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.C.; Wang, L.; Li, M.Y.; Liu, F.; Yin, J.L.; Huang, L.J.; Zhou, B.; Li, X.Y.; Yu, Y.Y.; Chen, F.; et al. A BAHD acyltransferase contributes to the biosynthesis of both ethyl benzoate and methyl benzoate in the flowers of Lilium oriental hybrid ‘Siberia’. Front. Plant Sci. 2023, 14, 1275960. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.X.; Sun, M.; Guo, Y.H.; Shi, X.J.; Yang, Y.J.; Chen, J.T.; Zheng, T.C.; Han, Y.; Bao, F.; Ahmad, S. Overexpression of LiDXS and LiDXR from Lily (Lilium ‘Siberia’) Enhances the Terpenoid Content in Tobacco Flowers. Front. Plant Sci. 2018, 9, 909. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.J.; Yu, C.; Cheng, B.X.; Wan, H.H.; Luo, L.; Pan, H.T.; Zhang, Q.X. Volatile compound analysis and aroma evaluation of tea-scented roses in China. Ind. Crops Prod. 2020, 155, 112735. [Google Scholar] [CrossRef]
- Vandendool, H.; Kratz, P.D. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas-Liquid Partition Chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Liang, Y.; Yuan, S.X.; Feng, H.Y.; Xu, L.F.; Yuan, Y.Y.; Liu, C.; Ming, J. Cloning and Expression Analysis of Actin Gene (lilyActin) from Lily. Acta Hortic. Sin. 2013, 40, 1318–1326. (In Chinese) [Google Scholar]
No. | Compounds | CAS | Mea RI | Lite RI | Compound Content ng·g−1·h−1 (Mean ± SE) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Viv | PiN | Tib | Pal | Treb | Tres | AvS | |||||
terpenoid | |||||||||||
V008 | α-pinene | 80-56-8 | 938 | 939 | - | 439.14 ± 114.23 | - | 267.08 ± 48.39 | - | - | - |
V009 | β-myrcene | 123-35-3 | 989 | 988 | 3398.10 ± 1045.07 | - | - | - | - | - | - |
V010 | β-pinene | 127-91-3 | 989 | 989 | - | 2060.84 ± 536.45 | 922.60 ± 100.48 | 806.04 ± 172.36 | 337.00 ± 110.80 | 148.45 ± 10.27 | - |
V011 | 3-carene | 13466-78-9 | 1006 | 1009 | 2980.53 ± 753.06 | 385.21 ± 72.61 | - | 133.40 ± 27.86 | 363.68 ± 103.96 | - | - |
V014 | limonene | 138-86-3 | 1031 | 1031 | - | 726.55 ± 187.21 | - | 535.54 ± 85.79 | - | 59.98 ± 6.03 | - |
V015 | 1,8-cineole | 470-82-6 | 1039 | 1038 | - | 4323.14 ± 1097.69 | - | 4045.72 ± 926.27 | - | 249.70 ± 6.74 | - |
V016 | trans-β-ocimene | 3779-61-1 | 1039 | 1042 | 2404.50 ± 713.24 | - | 342.87 ± 60.09 | - | 203.32 ± 48.26 | - | - |
V017 | β-ocimene | 13877-91-3 | 1048 | 1048 | 13,229.08 ± 3292.51 | 6564.96 ± 1251.59 | 5192.03 ± 545.72 | 4451.70 ± 545.60 | 1993.95 ± 568.57 | - | - |
V018 | γ-terpinene | 99-85-4 | 1060 | 1062 | 949.32 ± 255.61 | 315.75 ± 79.27 | 259.78 ± 30.87 | 140.84 ± 46.44 | 119.78 ± 24.71 | - | - |
V019 | terpinolene | 586-62-9 | 1083 | 1088 | 920.11 ± 264.05 | 227.54 ± 58.21 | 168.90 ± 29.29 | 90.00 ± 22.50 | 97.89 ± 7.75 | - | - |
V021 | linalool | 78-70-6 | 1104 | 1103 | 4491.74 ± 1369.78 | 4114.53 ± 776.87 | - | - | - | - | - |
V022 | allo-ocimene | 673-84-7 | 1130 | 1129 | 4167.40 ± 1137.73 | 1501.23 ± 340.77 | 760.39 ± 89.50 | 545.98 ± 124.39 | 433.12 ± 118.28 | - | - |
V023 | cosmene | 460-01-5 | 1135 | 1130 | - | - | 148.97 ± 22.10 | 157.48 ± 18.35 | 81.58 ± 19.52 | - | - |
V024 | neo-allo-ocimene | 7216-56-0 | 1143 | 1131 | 4012.35 ± 1066.74 | 1340.63 ± 330.76 | 1013.28 ± 129.11 | 578.55 ± 179.21 | 473.62 ± 88.65 | - | - |
V029 | α-terpineol | 98-55-5 | 1203 | 1200 | - | 165.15 ± 4.81 | - | 131.53 ± 22.60 | - | 40.84 ± 6.95 | - |
V031 | geraniol | 106-24-1 | 1253 | 1255 | 51.28 ± 14.13 | 31.30 ± 4.02 | 9.61 ± 1.68 | 14.39 ± 0.52 | - | - | - |
V036 | β-caryophyllene | 87-44-5 | 1432 | 1420 | - | - | - | - | 617.07 ± 127.01 | - | - |
V037 | geranylacetone | 689-67-8 | 1451 | 1460 | 61.93 ± 11.52 | 67.03 ± 11.99 | 23.46 ± 1.39 | 43.26 ± 3.22 | 18.29 ± 1.24 | 7.70 ± 1.15 | 16.68 ± 3.39 |
V038 | cis-β-farnesene | 28973-97-9 | 1453 | 1458 | - | - | 6.05 ± 0.58 | 2.82 ± 0.40 | - | - | - |
V040 | α-caryophyllene | 6753-98-6 | 1471 | 1463 | - | - | - | - | 57.20 ± 13.77 | - | - |
V041 | β-ionone | 14901-07-6 | 1485 | 1486 | - | - | - | - | 13.63 ± 2.92 | - | - |
V042 | α-farnesene | 502-61-4 | 1506 | 1508 | - | - | - | 34.97 ± 8.83 | - | - | - |
V043 | farnesol | 4602-84-0 | 1720 | 1722 | - | - | 2.95 ± 0.47 | - | - | - | - |
phenylpropanoid/benzenoid compound | |||||||||||
V020 | methyl benzoate | 93-58-3 | 1099 | 1096 | 2099.60 ± 799.42 | 387.75 ± 53.65 | 1011.49 ± 212.38 | 5462.20 ± 464.29 | 1241.80 ± 203.36 | - | 937.92 ± 299.18 |
V025 | ethyl benzoate | 93-89-0 | 1176 | 1172 | 39.51 ± 21.23 | 140.69 ± 20.62 | 20.28 ± 0.87 | 62.63 ± 16.68 | 174.02 ± 22.50 | - | 48.63 ± 7.47 |
V026 | methyl phenylacetate | 101-41-7 | 1177 | 1177 | - | - | - | 19.74 ± 1.10 | - | - | - |
V027 | creosol | 93-51-6 | 1194 | 1193 | 429.85 ± 144.03 | 16.85 ± 3.43 | 89.84 ± 16.17 | 43.16 ± 10.47 | - | - | 25.87 ± 6.40 |
V028 | methyl salicylate | 119-36-8 | 1200 | 1198 | - | - | - | 40.72 ± 10.02 | - | - | - |
V030 | 4-methylveratrole | 494-99-5 | 1240 | 1230 | - | 206.17 ± 15.27 | - | - | - | - | - |
V032 | phenethyl acetate | 103-45-7 | 1257 | 1258 | - | - | - | 27.36 ± 3.13 | - | - | - |
V034 | eugenol | 97-53-0 | 1363 | 1356 | 20.75 ± 6.87 | 12.82 ± 1.23 | 25.17 ± 4.65 | 17.95 ± 1.59 | - | - | - |
V035 | butyl benzoate | 136-60-7 | 1380 | 1377 | 12.27 ± 3.97 | 10.96 ± 1.20 | - | 39.90 ± 4.76 | - | - | - |
V039 | isoeugenol | 97-54-1 | 1456 | 1460 | 95.86 ± 27.24 | 34.14 ± 3.51 | 40.11 ± 5.21 | 29.29 ± 2.87 | - | - | - |
V044 | benzyl benzoate | 120-51-4 | 1779 | 1775 | - | - | - | 2.56 ± 0.13 | - | - | - |
V045 | benzyl salicylate | 118-58-1 | 1883 | 1876 | - | - | - | 1.60 ± 0.45 | - | - | - |
alcohol | |||||||||||
V002 | 3-hexen-1-ol | 544-12-7 | 859 | 856 | 45.50 ± 10.75 | 31.06 ± 10.71 | 20.04 ± 3.25 | 21.18 ± 7.01 | - | - | - |
V004 | cis-2-hexen-1-ol | 928-94-9 | 872 | 872 | - | - | - | 90.43 ± 10.39 | - | - | - |
V005 | trans-2-hexen-1-ol | 928-95-0 | 872 | 874 | - | - | - | - | 453.50 ± 107.69 | - | - |
ether | |||||||||||
V006 | dibutyl ether | 142-96-1 | 884 | 888 | - | - | - | 60.17 ± 14.49 | - | 631.57 ± 101.67 | 1092.70 ± 206.84 |
aldehyde | |||||||||||
V001 | trans-2-hexanal | 6728-26-3 | 859 | 854 | - | - | - | - | 1667.71 ± 322.39 | 1790.20 ± 417.91 | 264.85 ± 53.70 |
ester | |||||||||||
V003 | methyl tiglate | 6622-76-0 | 874 | 876 | 631.37 ± 267.91 | 409.93 ± 112.67 | 392.34 ± 39.50 | - | - | - | 1153.48 ± 216.88 |
V007 | butyl acrylate | 141-32-2 | 893 | 902 | 239.05 ± 66.72 | 108.81 ± 12.84 | 178.67 ± 30.55 | 132.99 ± 15.07 | 402.46 ± 123.10 | 852.47 ± 262.69 | 2064.26 ± 377.97 |
V012 | trans-3-hexen-1-ol acetate | 3681-82-1 | 1008 | 1005 | - | - | 1870.83 ± 93.01 | - | - | - | - |
V013 | trans-2-hexenyl acetate | 2497-18-9 | 1014 | 1014 | - | - | - | - | - | 58.24 ± 14.13 | 109.76 ± 18.24 |
V033 | methyl decanoate | 110-42-9 | 1323 | 1324 | 71.43 ± 23.45 | 31.13 ± 4.34 | 28.71 ± 1.60 | 28.34 ± 7.55 | 26.52 ± 8.23 | 18.90 ± 0.51 | 18.85 ± 1.69 |
No. | Compounds | CAS | Mea RI | Lite RI | Compound Contents ng·g−1 (mean ± SE) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Viv | PiN | Tib | Pal | Treb | Tres | AvS | |||||
V015 | 1,8-cineole | 470-82-6 | 1039 | 1038 | - | 811.72 ± 13.10 | - | 1674.00 ± 40.68 | - | - | - |
V017 | β-ocimene | 13877-91-3 | 1048 | 1048 | 644.11 ± 0.90 | 308.60 ± 2.90 | 419.22 ± 12.22 | 578.65 ± 41.99 | - | - | - |
V020 | methyl benzoate | 93-58-3 | 1099 | 1096 | 344.58 ± 21.01 | 278.62 ± 45.41 | 70.75 ± 9.55 | 350.02 ± 9.74 | 231.37 ± 15.98 | - | 203.24 ± 12.66 |
V021 | linalool | 78-70-6 | 1104 | 1103 | 759.80 ± 23.19 | 2007.47 ± 50.59 | 72.58 ± 9.15 | 364.22 ± 16.46 | - | - | - |
V046 | benzoic acid | 65-85-0 | 1172 | 1170 | - | - | - | 834.96 ± 85.51 | - | - | - |
V025 | ethyl benzoate | 93-89-0 | 1176 | 1172 | 221.22 ± 9.04 | 56.86 ± 4.80 | 78.53 ± 22.78 | 519.41 ± 49.22 | 87.37 ± 16.31 | - | 92.71 ± 19.47 |
V027 | creosol | 93-51-6 | 1194 | 1193 | 1599.97 ± 24.99 | 175.03 ± 15.89 | 658.38 ± 13.41 | 381.68 ± 14.16 | - | - | 293.89 ± 21.30 |
V029 | α-terpineol | 98-55-5 | 1203 | 1200 | - | 358.13 ± 21.69 | - | 456.36 ± 20.24 | - | - | - |
V030 | 4-methylveratrole | 494-99-5 | 1240 | 1230 | - | 202.33 ± 31.16 | - | - | - | - | - |
V031 | geraniol | 106-24-1 | 1253 | 1255 | 282.28 ± 32.64 | - | - | - | - | - | - |
V047 | 2-methoxy-4-vinylphenol | 7786-61-0 | 1323 | 1324 | 1962.82 ± 119.96 | 1142.59 ± 24.06 | 1493.06 ± 94.50 | 781.76 ± 332.74 | - | 941.27 ± 239.37 | 9703.41 ± 1053.98 |
V034 | eugenol | 97-53-0 | 1363 | 1356 | 258.50 ± 11.52 | - | 155.01 ± 22.10 | 66.69 ± 4.42 | - | - | - |
V048 | isovanillin | 621-59-0 | 1413 | 1401 | - | - | 683.86 ± 60.84 | - | - | - | - |
V037 | geranylacetone | 689-67-8 | 1451 | 1460 | 523.81 ± 29.45 | 256.68 ± 42.15 | 210.38 ± 43.92 | 559.23 ± 28.23 | - | - | 251.32 ± 36.13 |
V039 | isoeugenol | 97-54-1 | 1456 | 1460 | 1809.00 ± 36.64 | 385.34 ± 16.81 | 2028.74 ± 60.16 | 689.01 ± 68.06 | - | - | - |
V043 | farnesol | 4602-84-0 | 1720 | 1722 | 821.28 ± 26.94 | 239.73 ± 35.69 | 2698.67 ± 6.82 | 563.89 ± 7.21 | - | - | 208.70 ± 13.68 |
V044 | benzyl benzoate | 120-51-4 | 1779 | 1775 | - | - | - | 701.87 ± 45.88 | - | - | - |
V045 | benzyl salicylate | 118-58-1 | 1883 | 1876 | - | - | - | 1048.62 ± 84.77 | - | - | - |
Cultivar | ‘Avalon Sunset’ | ‘Palazzo’ | ‘Pink News’ | ‘Tiber’ |
---|---|---|---|---|
Flower images | ||||
Abbreviation | AvS | Pal | PiN | Tib |
Classification | OA | OT | O | O |
Fragrance description | almost non-fragrant | richly fragrant | richly fragrant | richly fragrant |
Cultivar | ‘Trebbiano’ | ‘Tresor’ | ‘Viviana’ | |
Flower images | ||||
Abbreviation | Treb | Tres | Viv | |
Classification | LA | A | O | |
Fragrance description | lightly fragrant | almost non-fragrant | richly fragrant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Ma, X.; Zhang, Q.; Guo, Z.; Hao, J.; Zhang, Z.; Sun, M.; Liu, Y. Determination of Volatile Organic Compounds and Endogenous Extracts and Study of Expression Patterns of TPS and BSMT in the Flowers of Seven Lilium Cultivars. Molecules 2023, 28, 7938. https://doi.org/10.3390/molecules28247938
Zhang P, Ma X, Zhang Q, Guo Z, Hao J, Zhang Z, Sun M, Liu Y. Determination of Volatile Organic Compounds and Endogenous Extracts and Study of Expression Patterns of TPS and BSMT in the Flowers of Seven Lilium Cultivars. Molecules. 2023; 28(24):7938. https://doi.org/10.3390/molecules28247938
Chicago/Turabian StyleZhang, Peng, Xiaoou Ma, Qian Zhang, Ziyu Guo, Junyi Hao, Zhixuan Zhang, Ming Sun, and Yan Liu. 2023. "Determination of Volatile Organic Compounds and Endogenous Extracts and Study of Expression Patterns of TPS and BSMT in the Flowers of Seven Lilium Cultivars" Molecules 28, no. 24: 7938. https://doi.org/10.3390/molecules28247938
APA StyleZhang, P., Ma, X., Zhang, Q., Guo, Z., Hao, J., Zhang, Z., Sun, M., & Liu, Y. (2023). Determination of Volatile Organic Compounds and Endogenous Extracts and Study of Expression Patterns of TPS and BSMT in the Flowers of Seven Lilium Cultivars. Molecules, 28(24), 7938. https://doi.org/10.3390/molecules28247938