Photoelectrocatalytic Processes of TiO2 Film: The Dominating Factors for the Degradation of Methyl Orange and the Understanding of Mechanism
Abstract
:1. Introduction
2. Results
2.1. Structure, Morphology, and Optimal Properties of TiO2 Films
2.2. Photoelectrochemical Properties of TiO2 Photoelectrodes
2.3. PEC Degradation of MO by TiO2 Photoelectrodes
2.4. The Contrast of PEC and PC Degradation of MO
2.5. The Roles of ROSs and Electric Charge of Electrodes
3. Materials and Methods
3.1. Materials
3.2. The Preparation of TiO2 Film Photoelectrodes and TiO2 Powder
3.3. Characterization of TiO2 Films
3.4. Detection of •OH,•O2− and H2O2
3.5. PC and PEC Experiments of TiO2 Photoelectrodes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pereira, J.C. Environmental issues and international relations, a new global (dis)orderthe role of International Relations in promoting a concerted international system. Rev. Bras. Política Int. 2015, 58, 191–209. [Google Scholar] [CrossRef]
- Yahya, R.; Shah, A.; Kokab, T.; Ullah, N.; Hakeem, M.K.; Hayat, M.; Haleem, A.; Shah, I. Electrochemical Sensor for Detection and Degradation Studies of Ethyl Violet Dye. ACS Omega 2022, 7, 34154–34165. [Google Scholar] [CrossRef] [PubMed]
- Hayat, M.; Shah, A.; Hakeem, M.K.; Irfan, M.; Haleem, A.; Khan, S.B.; Shah, I. A designed miniature sensor for the trace level detection and degradation studies of the toxic dye Rhodamine B. RSC Adv. 2022, 12, 15658–15669. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Carey, J.H.; Lawrence, J.; Tosine, H.M. Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions. Bull. Environ. Contam. Toxicol. 1976, 16, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Pruden, A.L.; Ollis, D.F. Photoassisted heterogeneous catalysis: The degradation of trichloroethylene in water. J. Catal. 1983, 82, 404–417. [Google Scholar] [CrossRef]
- Tanaka, K.; Kato, H.; Kikuchi, T.; Yagishita, A. High flux VUV beamline for photochemical processing study at Photon Factory (abstract). Rev. Sci. Instrum. 1989, 60, 2252. [Google Scholar] [CrossRef]
- Gerischer, H.; Heller, A. Photocatalytic Oxidation of Organic Molecules at TiO2 Particles by Sunlight in Aerated Water. J. Electrochem. Soc. 1992, 139, 113–118. [Google Scholar] [CrossRef]
- Nosaka, Y. Water Photo-Oxidation over TiO2-History and Reaction Mechanism. Catalysts 2022, 12, 1557. [Google Scholar] [CrossRef]
- Alaydaroos, A.H.; Sydorenko, J.; Palanisamy, S.; Chiesa, M.; Al Hajri, E. Efficient photoelectrocatalytic degradation of amoxicillin using nano-TiO2 photoanode thin films: A comparative study with photocatalytic and electrocatalytic methods. Chemosphere 2023, 339, 139629. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, X.; Han, Y.; Zhang, X.; Shen, F.; Deng, S.; Xiao, H.; Yang, X.; Yang, G.; Peng, H. Photoelectrocatalytic degradation of recalcitrant organic pollutants using TiO2 film electrodes: An overview. Chemosphere 2012, 88, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Y.; Liu, P.; Han, Y.; Yao, X.; Zou, J.; Cheng, H.; Zhao, H. Anatase TiO2 crystal facet growth: Mechanistic role of hydrofluoric acid and photoelectrocatalytic activity. ACS Appl. Mater. Interfaces 2011, 3, 2472–2478. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Li, X.; Wang, Y.; Quan, X.; Chen, G. Evaluation of bias potential enhanced photocatalytic degradation of 4-chlorophenol with TiO2 nanotube fabricated by anodic oxidation method. Chem. Eng. J. 2009, 146, 30–35. [Google Scholar] [CrossRef]
- Li, L.; Jiang, L.; Yang, L.; Li, J.; Lu, N.; Qu, J. Optimization of Degradation Kinetics towards O-CP in H3PW12O40/TiO2 Photoelectrocatalytic System. Sustainability 2019, 11, 3551. [Google Scholar] [CrossRef]
- Xiaoli, Y.; Huixiang, S.; Dahui, W. Photoelectrocatalytic degradation of phenol using a TiO2/Ni thin-film electrode. Korean J. Chem. Eng. 2003, 20, 679–684. [Google Scholar] [CrossRef]
- Selcuk, H.; Sene, J.J.; Anderson, M.A. Photoelectrocatalytichumic acid degradation kinetics and effect of pH, applied potential and inorganic ions. J. Chem. Technol. Biotechnol. 2003, 78, 979–984. [Google Scholar] [CrossRef]
- Li, Z.; Luo, L.; Li, M.; Chen, W.; Liu, Y.; Yang, J.; Xu, S.M.; Zhou, H.; Ma, L.; Xu, M.; et al. Photoelectrocatalytic C-H halogenation over an oxygen vacancy-rich TiO2 photoanode. Nat. Commun. 2021, 12, 6698. [Google Scholar] [CrossRef] [PubMed]
- Farooq, U.; Ahmad, T.; Naaz, F.; Islam, S.U. Review on Metals and Metal Oxides in Sustainable Energy Production: Progress and Perspectives. Energy Fuels 2023, 37, 1577–1632. [Google Scholar] [CrossRef]
- Pattnaik, A.; Sahu, J.N.; Poonia, A.K.; Ghosh, P. Current perspective of nano-engineered metal oxide based photocatalysts in advanced oxidation processes for degradation of organic pollutants in wastewater. Chem. Eng. Res. Des. 2023, 190, 667–686. [Google Scholar] [CrossRef]
- Ge, S.; Sang, D.; Zou, L.; Yao, Y.; Zhou, C.; Fu, H.; Xi, H.; Fan, J.; Meng, L.; Wang, C. A Review on the Progress of Optoelectronic Devices Based on TiO2 Thin Films and Nanomaterials. Nanomaterials 2023, 13, 1141. [Google Scholar] [CrossRef]
- Jiao, M.; Zhao, X.; He, X.; Wang, G.; Zhang, W.; Rong, Q.; Nguyen, D. High-Performance MEMS Oxygen Sensors Based on Au/TiO2 Films. Chemosensors 2023, 11, 476. [Google Scholar] [CrossRef]
- Kavan, L.; Tétreault, N.; Moehl, T.; Grätzel, M. Electrochemical Characterization of TiO2 Blocking Layers for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2014, 118, 16408–16418. [Google Scholar] [CrossRef]
- Hitchman, M.L.; Tian, F. Studies of TiO2 thin films prepared by chemical vapour deposition for photocatalytic and photoelectrocatalytic degradation of 4-chlorophenol. J. Electroanal. Chem. 2002, 538–539, 165–172. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, M.; Rodríguez-Gutiérrez, I.; Vega-Poot, A.; García-Rodríguez, R.; Rodríguez-Gattorno, G.; Oskam, G. Charge transfer and recombination kinetics at WO3 for photoelectrochemical water oxidation. Electrochim. Acta 2017, 258, 900–908. [Google Scholar] [CrossRef]
- Todinova, A.; Idigoras, J.; Salado, M.; Kazim, S.; Anta, J.A. Universal Features of Electron Dynamics in Solar Cells with TiO2 Contact: From Dye Solar Cells to Perovskite Solar Cells. J. Phys. Chem. Lett. 2015, 6, 3923–3930. [Google Scholar] [CrossRef] [PubMed]
- Gomes, W.P.; Vanmaekelbergh, D. Impedance spectroscopy at semiconductor electrodes: Review and recent developments. Electrochim. Acta 1996, 41, 967–973. [Google Scholar] [CrossRef]
- Song, X.M.; Wu, J.M.; Yan, M. Photocatalytic and photoelectrocatalytic degradation of aqueous Rhodamine B by low-temperature deposited anatase thin films. Mater. Chem. Phys. 2008, 112, 510–515. [Google Scholar] [CrossRef]
- Zanoni, M.V.B.; Sene, J.J.; Anderson, M.A. Photoelectrocatalytic degradation of Remazol Brilliant Orange 3R on titanium dioxide thin-film electrodes. J. Photochem. Photobiol. A Chem. 2003, 157, 55–63. [Google Scholar] [CrossRef]
- Brugnera, M.F.; Rajeshwar, K.; Cardoso, J.C.; Zanoni, M.V. Bisphenol A removal from wastewater using self-organized TiO2 nanotubular array electrodes. Chemosphere 2010, 78, 569–575. [Google Scholar] [CrossRef]
- Selcuk, H.; Sene, J.J.; Zanoni, M.V.; Sarikaya, H.Z.; Anderson, M.A. Behavior of bromide in the photoelectrocatalytic process and bromine generation using nanoporous titanium dioxide thin-film electrodes. Chemosphere 2004, 54, 969–974. [Google Scholar] [CrossRef]
- De Santana, H.; Temperini, M.L.A. Spectroelectrochemical study of iodide, iodate and periodate on a silver electrode in alkaline aqueous solution. J. Chem. Interfacial Electrochem. 1991, 316, 93–105. [Google Scholar] [CrossRef]
- Liu, H.; Cao, X.; Liu, G.; Wang, Y.; Zhang, N.; Li, T.; Tough, R. Photoelectrocatalytic degradation of triclosan on TiO2 nanotube arrays and toxicity change. Chemosphere 2013, 93, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Daghrir, R.; Drogui, P.; Ka, I.; El Khakani, M.A. Photoelectrocatalytic degradation of chlortetracycline using Ti/TiO2 nanostructured electrodes deposited by means of a Pulsed Laser Deposition process. J. Hazard. Mater. 2012, 199–200, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Fu, Y.; Wu, Y.; Zhang, Y.-N.; Zuo, T. Low-Cost Y-Doped TiO2 Nanosheets Film with Highly Reactive {001} Facets from CRT Waste and Enhanced Photocatalytic Removal of Cr(VI) and Methyl Orange. ACS Sustain. Chem. Eng. 2016, 4, 1794–1803. [Google Scholar] [CrossRef]
- Bai, J.; Liu, Y.; Li, J.; Zhou, B.; Zheng, Q.; Cai, W. A novel thin-layer photoelectrocatalytic (PEC) reactor with double-faced titania nanotube arrays electrode for effective degradation of tetracycline. Appl. Catal. B Environ. 2010, 98, 154–160. [Google Scholar] [CrossRef]
- Wu, L.; Li, F.; Xu, Y.; Zhang, J.W.; Zhang, D.; Li, G.; Li, H. Plasmon-induced photoelectrocatalytic activity of Au nanoparticles enhanced TiO2 nanotube arrays electrodes for environmental remediation. Appl. Catal. B Environ. 2015, 164, 217–224. [Google Scholar] [CrossRef]
- Conway, B.E. Advancer in Electrochemistry and Electrochemical Engineering. In Electrochemistry; Delahay, P., Ed.; Interscience Publishers, Inc.: Hoboken, NJ, USA, 1961. [Google Scholar]
- El Guibaly, F.; Colbow, K. Theory of photocurrent in semiconductor-electrolyte junction solar cells. J. Appl. Phys. 1982, 53, 1737–1740. [Google Scholar] [CrossRef]
- Khan, S.U.; Bockris, J.O.M. A Model for Electron Transfer at the Illuminated p-Type Semiconductor-Solution Interface. J. Phys. Chem. 1984, 88, 2504–2515. [Google Scholar] [CrossRef]
- Chandra, S.; Singh, S.L.; Khare, N. A theoretical model of a photoelectrochemical solar cell. J. Appl. Phys. 1986, 59, 1570–1577. [Google Scholar] [CrossRef]
- Hodes, G.; Howell, I.D.J.; Peter, L.M. Nanocrystalline Photoelectrochemical Cells A New Concept In Photovoltaic Cells. J. Electrochem. Soc. 1992, 139, 3136–3140. [Google Scholar] [CrossRef]
- Kambili, A.; Walker, A.B.; Qiu, F.L.; Fisher, A.C.; Savin, A.D.; Peter, L.M. Electron transport in the dye sensitized nanocrystalline cell. Phys. E Low-Dimens. Syst. Nanostruct. 2002, 14, 203–209. [Google Scholar] [CrossRef]
- Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Adv. Mater. 2019, 31, e1901997. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Cao, H.; Xu, L.; Fu, H.; Sun, S.; Xiao, Z.; Sun, C.; Long, X.; Xia, Y.; Wang, S. Design and preparation of highly active TiO2 photocatalysts by modulating their band structure. J. Colloid Interface Sci. 2023, 629, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef] [PubMed]
- Rincon, A. Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2 Implications in solar water disinfection. Appl. Catal. B Environ. 2004, 51, 283–302. [Google Scholar] [CrossRef]
- Fox, M.A. Photoinduced Electron Transfer in Organic Systems: Control of Back Electron Transfer. In Advances in Photochemistry; Volman, D.H., Hammond, G.S., Gollnick, K., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1986; Volume 13, pp. 238–305. [Google Scholar]
- Hu, Z.; Lyu, J.; Ge, M. Role of reactive oxygen species in the photocatalytic degradation of methyl orange and tetracycline by Ag3PO4 polyhedron modified with g-C3N4. Mater. Sci. Semicond. Process. 2020, 105, 104731. [Google Scholar] [CrossRef]
- Ishibashi, K.I.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Quantum yields of active oxidative species formed on TiO2 photocatalyst. J. Photochem. Photobiol. A Chem. 2000, 134, 139–142. [Google Scholar] [CrossRef]
- Sutherland, M.W.; Learmonth, B.A. The Tetrazolium Dyes MTS and XTT Provide New Quantitative Assays for Superoxide and Superoxide Disrnutase. Free. Radic. Res. 1997, 27, 283–289. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Niu, J.; Chen, Y. Mechanism of Photogenerated Reactive Oxygen Species and Correlation with the Antibacterial Properties of Engineered Metal-Oxide Nanoparticles. ACS Nano 2012, 6, 5164–5173. [Google Scholar] [CrossRef]
- Bader, H.; Sturzenegger, V.; Hoigné, J. Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N,N-diethyl-p-phenylenediamine (DPD). Water Res. 1988, 22, 1109–1115. [Google Scholar] [CrossRef]
- Wang, W.; Yu, Y.; An, T.; Li, G.; Yip, H.Y.; Yu, J.C.; Wong, P.K. Visible-light-driven photocatalytic inactivation of E. coli K-12 by bismuth vanadate nanotubes: Bactericidal performance and mechanism. Environ. Sci. Technol. 2012, 46, 4599–4606. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Y.; Ma, S.; Hong, X.; Long, J.; Wang, G. Photoelectrocatalytic Processes of TiO2 Film: The Dominating Factors for the Degradation of Methyl Orange and the Understanding of Mechanism. Molecules 2023, 28, 7967. https://doi.org/10.3390/molecules28247967
Xiong Y, Ma S, Hong X, Long J, Wang G. Photoelectrocatalytic Processes of TiO2 Film: The Dominating Factors for the Degradation of Methyl Orange and the Understanding of Mechanism. Molecules. 2023; 28(24):7967. https://doi.org/10.3390/molecules28247967
Chicago/Turabian StyleXiong, Yuhui, Sijie Ma, Xiaodong Hong, Jiapeng Long, and Guangjin Wang. 2023. "Photoelectrocatalytic Processes of TiO2 Film: The Dominating Factors for the Degradation of Methyl Orange and the Understanding of Mechanism" Molecules 28, no. 24: 7967. https://doi.org/10.3390/molecules28247967
APA StyleXiong, Y., Ma, S., Hong, X., Long, J., & Wang, G. (2023). Photoelectrocatalytic Processes of TiO2 Film: The Dominating Factors for the Degradation of Methyl Orange and the Understanding of Mechanism. Molecules, 28(24), 7967. https://doi.org/10.3390/molecules28247967