Virtual Screening and ADMET Prediction to Uncover the Potency of Flavonoids from Genus Erythrina as Antibacterial Agent through Inhibition of Bacterial ATPase DNA Gyrase B
Abstract
:1. Introduction
2. Results
2.1. Structure-Based Virtual Screening
2.2. Toxicity Screening
2.3. Pharmacokinetics
3. Discussion
3.1. Structure-Based Virtual Screening
3.2. Toxicity Prediction
3.3. Pharmacokinetics Prediction
3.3.1. Absorption
3.3.2. Distribution
3.3.3. Metabolism
3.3.4. Excretion
4. Materials and Methods
4.1. Flavonoids Structure Preparation
4.2. Protein Preparation
4.3. Molecular Docking Validation
4.4. Virtual Screening
4.5. ADMET Prediction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saha, M.; Sarkar, A. Review on Multiple Facets of Drug Resistance: A Rising Challenge in the 21st Century. J. Xenobiot. 2021, 11, 197–214. [Google Scholar] [CrossRef] [PubMed]
- Uddin, T.M.; Chakraborty, A.J.; Khusro, A.; Zidan, B.R.M.; Mitra, S.; Emran, T.B.; Dhama, K.; Ripon, M.K.H.; Gajdács, M.; Sahibzada, M.U.K.; et al. Antibiotic Resistance in Microbes: History, Mechanisms, Therapeutic Strategies and Future Prospects. J. Infect. Public Health 2021, 14, 1750–1766. [Google Scholar] [CrossRef] [PubMed]
- Chinemerem Nwobodo, D.; Ugwu, M.C.; Oliseloke Anie, C.; Al-Ouqaili, M.T.S.; Chinedu Ikem, J.; Victor Chigozie, U.; Saki, M. Antibiotic Resistance: The Challenges and Some Emerging Strategies for Tackling a Global Menace. J. Clin. Lab. Anal. 2022, 36, e24655. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.L. Mechanism of Action and Target Identification: A Matter of Timing in Drug Discovery. iScience 2020, 23, 101487. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, Z.; Fang, L.; Lv, Y.; Du, G. Advances of the Target-Based and Phenotypic Screenings and Strategies in Drug Discovery. Int. J. Drug Discov. Pharmacol. 2022, 1, 2. [Google Scholar] [CrossRef]
- Tomašič, T.; Zubrienė, A.; Skok, Ž.; Martini, R.; Pajk, S.; Sosič, I.; Ilaš, J.; Matulis, D.; Bryant, S.D. Selective Dna Gyrase Inhibitors: Multi-Target in Silico Profiling with 3d-Pharmacophores. Pharmaceuticals 2021, 14, 789. [Google Scholar] [CrossRef]
- Spencer, A.C.; Panda, S.S. DNA Gyrase as a Target for Quinolones. Biomedicines 2023, 11, 371. [Google Scholar] [CrossRef]
- Durcik, M.; Tomašič, T.; Zidar, N.; Zega, A.; Kikelj, D.; Mašič, L.P.; Ilaš, J. ATP-Competitive DNA Gyrase and Topoisomerase IV Inhibitors as Antibacterial Agents. Expert Opin. Ther. Pat. 2019, 29, 171–180. [Google Scholar] [CrossRef]
- O’Dea, M.H.; Tamura, J.K.; Gellert, M. Mutations in the B subunit of Escherichia coli DNA gyrase that affect ATP-dependent reactions. J. Biol. Chem 1996, 271, 9723–9729. [Google Scholar] [CrossRef]
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef]
- Verma, K.; Mahalapbutr, P.; Suriya, U.; Somboon, T.; Aiebchun, T.; Shi, L.; Maitarad, P.; Rungrotmongkol, T. In Silico Screening of DNA Gyrase B Potent Flavonoids for the Treatment of Clostridium Difficile Infection from PhytoHub Database. Braz. Arch. Biol. Technol. 2021, 64, 1–18. [Google Scholar] [CrossRef]
- Plaper, A.; Golob, M.; Hafner, I.; Oblak, M.; Solmajer, T.; Jerala, R. Characterization of Quercetin Binding Site on DNA Gyrase. Biochem. Biophys. Res. Commun. 2003, 306, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, N.M.; Al-Sayed, E.; El-Shazly, M.; Singab, A.N. Comprehensive Review on Flavonoids Biological Activities of Erythrina Plant Species. Ind. Crop. Prod. 2018, 123, 500–538. [Google Scholar] [CrossRef]
- Son, N.T.; Elshamy, A.I. Flavonoids and Other Non-Alkaloidal Constituents of Genus Erythrina: Phytochemical Review. Comb. Chem. High Throughput Screen. 2020, 24, 20–58. [Google Scholar] [CrossRef]
- Sadgrove, N.J.; Oliveira, T.B.; Khumalo, G.P.; van Vuuren, S.F.; van Wyk, B.E. Antimicrobial Isoflavones and Derivatives from Erythrina (Fabaceae): Structure Activity Perspective (SAR & QSAR) on Experimental and Mined Values against Staphylococcus Aureus. Antibiotics 2020, 9, 223. [Google Scholar] [CrossRef]
- Tanaka, H.; Oh-Uchi, T.; Etoh, H.; Sako, M.; Asai, F. Isoflavonoids from Roots of Erythrina Zeyheri. Phytochemistry 2003, 64, 753–758. [Google Scholar] [CrossRef]
- Tanaka, H.; Hirata, M.; Etoh, H.; Sako, M.; Sato, M.; Murata, J.; Murata, H.; Darnaedi, D.; Fukai, T. Six New Constituents from the Roots of Erythrina Variegata. Chem. Biodivers. 2004, 1, 1101–1108. [Google Scholar] [CrossRef]
- Tanaka, H.; Sato, M.; Oh-Uchi, T.; Yamaguchi, R.; Etoh, H.; Shimizu, H.; Sako, M.; Takeuchi, H. Antibacterial Properties of a New Isoflavonoid from Erythrina Poeppigiana against Methicillin-Resistant Staphylococcus Aureus. Phytomedicine 2004, 11, 331–337. [Google Scholar] [CrossRef]
- Rukachaisirikul, T.; Innok, P.; Aroonrerk, N.; Boonamnuaylap, W.; Limrangsun, S.; Boonyon, C.; Woonjina, U.; Suksamrarn, A. Antibacterial Pterocarpans from Erythrina Subumbrans. J. Ethnopharmacol. 2007, 110, 171–175. [Google Scholar] [CrossRef]
- Schaduangrat, N.; Lampa, S.; Simeon, S.; Gleeson, M.P.; Spjuth, O.; Nantasenamat, C. Towards Reproducible Computational Drug Discovery. J. Cheminform. 2020, 12, 9. [Google Scholar]
- Cavasotto, C.N.; Scardino, V. Machine Learning Toxicity Prediction: Latest Advances by Toxicity End Point. ACS Omega 2022, 7, 47536–47546. [Google Scholar] [CrossRef]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An Integrated Online Platform for Accurate and Comprehensive Predictions of ADMET Properties. Nucleic Acids Res. 2021, 49, W5–W14. [Google Scholar] [CrossRef]
- Waller, D.G.; Sampson, A.P. Pharmacokinetics. In Medical Pharmacology and Therapeutics; Elsevier: Amsterdam, The Netherlands, 2018; pp. 33–62. [Google Scholar]
- Pantaleao, S.Q.; Fernandes, P.O.; Goncalves, J.E.; Maltarollo, V.G.; Honorio, K.M. Recent Advances in the Prediction of Pharmacokinetics Properties in Drug Design Studies: A Review. Chem. Med. Chem. 2022, 17, e202100542. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, S. In Silico ADME-Tox Modeling: Progress and Prospects. Expert Opin. Drug Metab. Toxicol. 2017, 13, 1147–1158. [Google Scholar] [CrossRef] [PubMed]
- Larsson, D.G.J.; Flach, C.F. Antibiotic Resistance in the Environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [PubMed]
- León-Buitimea, A.; Garza-Cárdenas, C.R.; Garza-Cervantes, J.A.; Lerma-Escalera, J.A.; Morones-Ramírez, J.R. The Demand for New Antibiotics: Antimicrobial Peptides, Nanoparticles, and Combinatorial Therapies as Future Strategies in Antibacterial Agent Design. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef]
- Lahlou, M. Screening of Natural Products for Drug Discovery. Expert Opin. Drug Discov. 2007, 2, 697–705. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Orhan, I.E.; Banach, M.; Rollinger, J.M.; Barreca, D.; Weckwerth, W.; Bauer, R.; Bayer, E.A.; et al. Natural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive Review of Antimicrobial Activities of Plant Flavonoids; Springer: Berlin/Heidelberg, Germany, 2019; Volume 18, ISBN 0123456789. [Google Scholar]
- Shamsudin, N.F.; Ahmed, Q.U.; Mahmood, S.; Shah, S.A.A.; Khatib, A.; Mukhtar, S.; Alsharif, M.A.; Parveen, H.; Zakaria, Z.A. Antibacterial Effects of Flavonoids and Their Structure-Activity Relationship Study: A Comparative Interpretation. Molecules 2022, 27, 1149. [Google Scholar] [CrossRef]
- Dwivedi, V.; Ayyagari, A.; Chandran, R.; Diwan, P.; Gupta, S.; Gupta, V. Repurposing Potential of Diminazene Aceturate as an Inhibitor of the E. Coli DNA Gyrase B. J. Biomed. Res. Environ. Sci. 2020, 1, 263–270. [Google Scholar] [CrossRef]
- Umar, H.I.; Josiah, S.S.; Saliu, T.P.; Jimoh, T.O.; Ajayi, A.; Danjuma, J.B. In-Silico Analysis of the Inhibition of the SARS-CoV-2 Main Protease by Some Active Compounds from Selected African Plants. J. Taibah Univ. Med. Sci. 2021, 16, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Nishinarizki, V.; Hardianto, A.; Gaffar, S.; Muchtaridi, M.; Herlina, T. Virtual Screening Campaigns and ADMET Evaluation to Unlock the Potency of Flavonoids from Erythrina as 3CLpro SARS-CoV-2 Inhibitors. J. Appl. Pharm. Sci. 2023, 13, 78–88. [Google Scholar] [CrossRef]
- Xue, Q.; Liu, X.; Russell, P.; Li, J.; Pan, W.; Fu, J.; Zhang, A. Evaluation of the Binding Performance of Flavonoids to Estrogen Receptor Alpha by Autodock, Autodock Vina and Surflex-Dock. Ecotoxicol. Environ. Saf. 2022, 233, 113323. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Zhou, Y.; Li, L.; Shen, X.; Chen, G.; Wang, X.; Liang, X.; Tan, M.; Huang, Z. Computational Approaches in Preclinical Studies on Drug Discovery and Development. Front. Chem. 2020, 8, 726. [Google Scholar]
- Currie, G.M. Pharmacology, Part 2: Introduction to Pharmacokinetics. J. Nucl. Med. Technol. 2018, 46, 221–230. [Google Scholar] [CrossRef]
- Awortwe, C.; Fasinu, P.S.; Rosenkranz, B. Application of Caco-2 Cell Line in Herb-Drug Interaction Studies: Current Approaches and Challenges. J. Pharm. Pharm. Sci. 2014, 17, 1–19. [Google Scholar] [CrossRef]
- Ahmed, I.; Leach, D.N.; Wohlmuth, H.; De Voss, J.J.; Blanchfield, J.T. Caco-2 Cell Permeability of Flavonoids and Saponins from Gynostemma Pentaphyllum: The Immortal Herb. ACS Omega 2020, 5, 21561–21569. [Google Scholar] [CrossRef]
- Ashmawy, S.M.; El-Gizawy, S.A.; El Maghraby, G.M.; Osman, M.A. Regional Difference in Intestinal Drug Absorption as a Measure for the Potential Effect of P-Glycoprotein Efflux Transporters. J. Pharm. Pharmacol. 2019, 71, 362–370. [Google Scholar] [CrossRef]
- Wang, P.H.; Tu, Y.S.; Tseng, Y.J. PgpRules: A Decision Tree Based Prediction Server for P-Glycoprotein Substrates and Inhibitors. Bioinformatics 2019, 35, 4193–4195. [Google Scholar] [CrossRef]
- Braun, N.; Binder, S.; Grosch, H.; Theek, C.; Ülker, J.; Tronnier, H.; Heinrich, U. Current Data on Effects of Long-Term Missions on the International Space Station on Skin Physiological Parameters. Ski. Pharmacol. Physiol. 2018, 32, 43–51. [Google Scholar] [CrossRef]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. PkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Dong, X. Current Strategies for Brain Drug Delivery. Theranostics 2018, 8, 1481–1493. [Google Scholar] [CrossRef] [PubMed]
- Lakshmanan, M.; Shewade, D.G.; Raj, G.M. Introduction to Basics of Pharmacology and Toxicology; Springer: Singapore, 2021. [Google Scholar]
- Tajimi, T.; Wakui, N.; Yanagisawa, K.; Yoshikawa, Y.; Ohue, M.; Akiyama, Y. Computational Prediction of Plasma Protein Binding of Cyclic Peptides from Small Molecule Experimental Data Using Sparse Modeling Techniques. BMC Bioinform. 2018, 19, 527. [Google Scholar] [CrossRef]
- Savva, M. On the Origin of the Apparent Volume of Distribution and Its Significance in Pharmacokinetics. J. Biosci. Med. 2022, 10, 78–98. [Google Scholar] [CrossRef]
- Clarke, H.J.; Gregoire, F.; Ma, F.; Martin, R.; Zhao, S.; Lavan, B.E. Cross-Species Differential Plasma Protein Binding of MBX-102/JNJ39659100: A Novel PPAR-γ Agonist. PPAR Res. 2008, 2008, 465715. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, R.; Esaki, T.; Kawashima, H.; Natsume-Kitatani, Y.; Nagao, C.; Ohashi, R.; Mizuguchi, K. Predicting Fraction Unbound in Human Plasma from Chemical Structure: Improved Accuracy in the Low Value Ranges. Mol. Pharm. 2018, 15, 5302–5311. [Google Scholar] [CrossRef]
- Rizzieri, D.; Paul, B.; Kang, Y. Metabolic Alterations and the Potential for Targeting Metabolic Pathways in the Treatment of Multiple Myeloma. J. Cancer Metastasis Treat. 2019, 5, 26. [Google Scholar] [CrossRef] [PubMed]
- Hakkola, J.; Hukkanen, J.; Turpeinen, M.; Pelkonen, O. Inhibition and Induction of CYP Enzymes in Humans: An Update. Arch. Toxicol. 2020, 94, 3671–3722. [Google Scholar]
- Barreto, E.F.; Larson, T.R.; Koubek, E.J. Drug Excretion. In Comprehensive Pharmacology; Elsevier: Amsterdam, The Netherlands, 2022; Volume 1. [Google Scholar]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
Compound Name | Flavonoid Subclass | Binding Affinity (Kcal/mol) |
---|---|---|
4′-Hydroxyisoflavone-7-O-α-L-rhamnosyl/(1 → 6)-β-d-glucopyranoside (287) | Isoflavone | −10.36 |
Erypoegin J (339) | 6α-Hydroxypterocarpan | −10.15 |
Sigmoidin K (354) | Coumestans | −9.941 |
Erysubin E (341) | 6α-Hydroxypterocarpan | −9.825 |
Demethylerystagallin A (333) | 6α-Hydroxypterocarpan | −9.79 |
Sigmoidin K (345) | Coumestan | −9.771 |
Apigenin-7-O-rhamnosyl-6-C-glucoside (14) | Flavone | −9.615 |
Kaempferol-3-O-(2ʹʹ-O-β-d-glucopyranosyl-6ʹʹ-O-α-L-rhamnopyranosyl-β-d-glucopyranoside) (20) | Flavone | −9.599 |
Lonchocarpol C (74) | Flavanone | −9.489 |
Erythribyssin L (325) | Pterocarpans | −9.469 |
Eryzerin C (131) | Flavanone | −9.411 |
Erythribyssin O (351) | Pterocarpene | −9.377 |
2(S)-5,7-Dihydroxy-[(5′′,6′′:3′,4′)- (2′′,2′′-dimethylpyrano)- (5ʹʹʹ,6′′′:5′,6′)]-(2′′′,2′′′- dimethylpyrano)flavanone (70) | Flavanone | −9.373 |
Sigmoidin E (64) | Flavanone | −9.352 |
(2S)-5,7-Dihydroxy-5′-prenyl-2ʹʹ-(4ʹʹ-hydroxyisopropyl)- dihydrofurano [1′′,3′′:3′,4′] flavanone (94) | Flavanone | −9.287 |
Isosojagol (355) | −9.275 | |
Isolupabigenin (210) | Isoflavone | −9.244 |
2(S)-5,7-Dihydroxy-5′-prenyl- [2′′,2′′-(3′′-hydroxy)- dimethylpyrano]-(5′′,6′′:3′,4′) flavanone (88) | Flavanone | −9.228 |
Neocyclomorusin (7) | Flavone | −9.208 |
Fuscaflavanones B (79) | Flavanone | −9.184 |
(2S)-5,7,5′-Trihydroxy-2ʹ′-(4′′- hydroxyisopropyl)-dihydrofurano [1′′,3′′:3′,4′]flavanone (96) | Flavanone | −9.149 |
Iespedezaflavanone B (Euchrestaflavanone A) (52) | Flavanone | −9.124 |
Eryzerin D (130) | Isoflavans | −9.124 |
Erystagallin B (334) | 6α-Hydroxypterocarpans | −9.126 |
5,3ʹ-Dihydroxy-4ʹ-methoxy-5ʹ-γ,γ-dimethylallyl-2ʹʹ,2ʹʹ-dimethylpyrano [5,6:6,7] isoflavanone (178) | Isoflavanone | −9.096 |
(2S)-5,7,5′-Trihydroxy-2′′-(4′′- hydroxyisopropyl)-3′′-hydroxy-dihydrofurano [1′′,3′′:3′,4′] flavanone (98) | Flavanone | −9.094 |
Lonchocarpol D (75) | Flavanone | −9.068 |
Vogelin G (222) | Isoflavone | −9.061 |
Erysenegalensein F (264) | Isoflavones | −9.061 |
Erypoegin H (347) | Pterocarpene | −9.058 |
Ficuisoflavone (223) | Isoflavone | −9.048 |
Fuscaflavanones A2 (78) | Flavanone | −9.043 |
4′-Hydroxyisoflavone-7-O-β-d-glucopyranoside (286) | Isoflavone | −9.021 |
Corylin (201) | Isoflavone | −8.971 |
Erythribyssin G (40) | Flavanone | −8.966 |
Erylivingstone K (137) | Isoflavan | −8.965 |
Erysubin F (193) | Isoflavone | −8.951 |
2ʹ,7-Dihydroxy-3ʹ -(3-methylbut-2- enyl)-2ʹʹʹ,2ʹʹʹ-dimethylpyrano [5ʹʹ,6ʹʹ:4ʹ,5ʹ]isoflavan (138) | Isoflavan | −8.946 |
Lonchocarpol A (Senegalensein) (73) | Flavanone | −8.941 |
(2S)-5,7,5′-Trihydroxy-6′-prenyl-2′′-(4′′-hydroxyisopropyl)-3′′- hydroxy-dihydrofurano [1′′,3′′:4′,5′] flavanone (99) | Flavanone | −8.941 |
Erystagallin A (332) | 6α-Hydroxypterocarpans | −8.937 |
2(S)-5,7-Dihydroxy- [2′′,2′′-(3′′,4′′-dihydroxy)- dimethylpyrano]-(5′′,6′′:3′,4′) flavanone (90) | Flavanone | −8.933 |
Erythraddison IV (174) | Isoflavanone | −8.922 |
Glabrol (24) | Flavanone | −8.914 |
Vogelin I (278) | Isoflavone | −8.888 |
Fuscaflavanones A1 (77) | Flavanone | −8.887 |
Erysenegalensein L (267) | Isoflavone | −8.865 |
2(S)-5,7-Dihydroxy-5′-prenyl [2′′,2′′-(3′′,4′′-dihydroxy)- dimethylpyrano]-(5′′,6′′:3′,4′) flavanone (91) | Flavanone | −8.863 |
Erylatissin B (200) | Isoflavone | −8.861 |
1-ethyl-3-[8-methyl-5-(2-methyl-pyridin-4-yl)-isoquinolin-3-yl]-urea | Co-crystal ligand | −8.853 |
ATP | Natrual substrate | −7.498 |
Compounds | Toxicity Parameter | |||||
---|---|---|---|---|---|---|
hERG Blockers | H-HT | DILI | Mutagenic | Carcinogenicity | Respiratory Toxicity | |
287 | A | A | B | B | C | A |
339 | C | C | A | B | C | C |
354 | A | C | C | A | B | A |
341 | B | C | A | B | C | C |
333 | A | C | A | B | A | B |
345 | A | C | C | B | A | C |
14 | A | B | C | A | A | A |
20 | B | A | C | B | A | A |
74 | A | B | B | A | A | B |
131 | A | B | A | A | C | C |
70 | A | C | C | A | C | C |
64 | A | C | B | A | B | C |
94 | A | C | B | A | A | C |
355 | A | C | C | A | B | A |
210 | A | C | C | A | A | A |
88 | A | C | B | A | B | C |
7 | A | C | C | B | C | B |
79 | A | C | C | A | B | B |
96 | A | A | C | A | B | C |
52 | A | C | C | A | A | C |
130 | B | C | A | A | B | C |
334 | A | B | A | A | A | B |
178 | A | C | B | A | B | A |
98 | A | A | C | A | A | B |
75 | A | A | B | A | A | A |
222 | A | C | A | A | A | A |
264 | A | B | C | A | C | B |
347 | A | C | C | C | A | B |
223 | A | A | A | A | B | A |
78 | A | C | C | A | C | C |
286 | A | A | B | A | B | A |
201 | B | B | B | A | C | C |
40 | A | C | B | A | B | C |
137 | A | B | A | A | C | C |
193 | A | C | B | A | A | C |
138 | B | C | A | A | B | A |
73 | A | C | C | A | A | C |
99 | A | C | C | A | A | C |
332 | B | C | A | B | A | B |
90 | A | B | A | A | C | C |
174 | A | A | B | A | B | B |
24 | A | C | B | A | A | C |
278 | A | B | B | A | C | A |
77 | A | C | C | C | C | C |
267 | A | C | C | A | C | A |
91 | A | C | C | A | B | A |
200 | A | B | A | A | C | B |
Pharmakokinetics Parameter | Compounds | |||||
---|---|---|---|---|---|---|
74 | 334 | 75 | 223 | 286 | 174 | |
Adsorption | ||||||
Caco−2 permeability | −4.832 | −4.887 | −4.839 | −4.848 | −6.104 | −4.947 |
MDCK permeability | 1.4 × 10−5 | 1.3 × 10−5 | 1.3 × 10−5 | 1 × 10−5 | 1.2 × 10−5 | 1.7 × 10−5 |
Pgp−inhibitor | Medium probability | Medium probability | Medium probability | High probability | High probability | High probability |
Pgp−substrate | Low probability | High probability | Low probability | High probability | Low probability | Low probability |
Human intestinal absorption | High | High | High | High | Medium | High |
Skin permeation | −2.859 | −2.737 | −2.938 | −2.738 | −2.735 | −2.762 |
Distribution | ||||||
Plasma protein binding (PBP) | 97.205% | 87.618% | 98.748% | 98.416% | 90.990% | 99.914% |
Volume distribution (VD) | 0.926 | 2.476 | 0.654 | 0.507 | 0.979 | 0.440 |
BBB penetration | Low penetration | Low penetration | Low penetration | Low penetration | Low penetration | Low penetration |
Fraction unbound | 4.677% | 13.018% | 2.757% | 1.610% | 6.015 | 0.891% |
Metabolism | ||||||
CYP1A2 inhibitor | No | No | No | Yes | No | Yes |
CYP1A2 substrate | No | No | No | No | No | Yes |
CYP2C19 inhibitor | Yes | Yes | Yes | Yes | No | Yes |
CYP2C19 substrate | No | Yes | No | No | No | No |
CYP2C9 inhibitor | Yes | Yes | Yes | Yes | No | Yes |
CYP2C9 substrate | Yes | Yes | Yes | Yes | No | Yes |
CYP2D6 inhibitor | Yes | Yes | Yes | Yes | Yes | Yes |
CYP2D6 substrate | No | No | No | Yes | Yes | Yes |
CYP3A4 inhibitor | No | No | No | No | No | Yes |
CYP2A4 substrate | No | No | No | No | No | No |
Excretion | ||||||
Clearance | 12.099 | 15.185 | 15.185 | 6.230 | 2.363 | 7.857 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akili, A.W.R.; Hardianto, A.; Latip, J.; Permana, A.; Herlina, T. Virtual Screening and ADMET Prediction to Uncover the Potency of Flavonoids from Genus Erythrina as Antibacterial Agent through Inhibition of Bacterial ATPase DNA Gyrase B. Molecules 2023, 28, 8010. https://doi.org/10.3390/molecules28248010
Akili AWR, Hardianto A, Latip J, Permana A, Herlina T. Virtual Screening and ADMET Prediction to Uncover the Potency of Flavonoids from Genus Erythrina as Antibacterial Agent through Inhibition of Bacterial ATPase DNA Gyrase B. Molecules. 2023; 28(24):8010. https://doi.org/10.3390/molecules28248010
Chicago/Turabian StyleAkili, Abd. Wahid Rizaldi, Ari Hardianto, Jalifah Latip, Afri Permana, and Tati Herlina. 2023. "Virtual Screening and ADMET Prediction to Uncover the Potency of Flavonoids from Genus Erythrina as Antibacterial Agent through Inhibition of Bacterial ATPase DNA Gyrase B" Molecules 28, no. 24: 8010. https://doi.org/10.3390/molecules28248010
APA StyleAkili, A. W. R., Hardianto, A., Latip, J., Permana, A., & Herlina, T. (2023). Virtual Screening and ADMET Prediction to Uncover the Potency of Flavonoids from Genus Erythrina as Antibacterial Agent through Inhibition of Bacterial ATPase DNA Gyrase B. Molecules, 28(24), 8010. https://doi.org/10.3390/molecules28248010