Hemp-Derived CBD Used in Food and Food Supplements
Abstract
:1. Introduction
2. Cannabis Compounds: Chemical Composition, Synthesis, and Stability
2.1. Cannabis Compounds
2.1.1. Cannabinoids
Cannabidiol (CBD)
- Anti-inflammatory effects: CBD has been studied for its anti-inflammatory properties. It interacts with receptors of the endocannabinoid system, which may reduce inflammatory processes in the body and promote cell regeneration. This can be useful for individuals suffering from chronic inflammatory diseases such as arthritis or Crohn’s disease [25].
- Analgesic effects: CBD can act as an analgesic, reducing pain perception and providing relief from various types of pain, including neuropathic and chronic pain. Studies show that CBD can affect receptor pathways involved in pain perception.
- Anxiolytic effects: CBD has been studied for its potential to reduce anxiety and stress. It has a calming effect on the central nervous system and may help improve mood and reduce stressful states [26].
- Antioxidants: CBD has strong antioxidant properties, which means it can help neutralize free radicals and protect cells from damage. This can have a positive effect on overall health and reduce the risk of oxidative stress.
- Neuroprotective effects: Studies suggest that CBD may have neuroprotective effects and protect the nervous system from damage and neurodegeneration. It may have potential in the treatment of neurological diseases such as Alzheimer’s and Parkinson’s.
CBD Production
- CBD extraction from the hemp
- The first step in the CBD production process is the extraction of cannabidiol from hemp plants. There are several extraction methods, including supercritical CO2 extraction, solvent extraction, and oil extraction. Supercritical CO2 extraction is the most common and is considered to be the gentlest method to obtain pure and concentrated CBD [34].
- 2.
- Purification and isolation of CBD
- After extraction, CBD needs to be further purified and isolated from other cannabinoids and impurities. This can be carried out by fractionation, distillation, or chromatography. The aim is to obtain a highly pure CBD with minimal tetrahydrocannabinol (THC) [35].
- 3.
- Formulation of CBD products
- Once isolated, CBD is often formulated into various products such as oils, capsules, creams, food supplements, or beverages. Formulation is important to ensure a stable and safe product with accurate dosing [36].
- 4.
- Quality and standardization
- CBD production requires adherence to strict standards and procedures to ensure consistent product quality and potency. This includes testing for CBD, THC, and other cannabinoid content, as well as testing for impurities such as pesticides, herbicides, and heavy metals [37].
Cannabidiolic Acid
Cannabinol (CBN)
Cannabigerol (CBG)
Cannabichromene (CBC)
2.1.2. Biosynthesis of Cannabinoids
2.1.3. Terpenes
2.1.4. Phenolic Compounds
2.2. Synthesis and Stability of Cannabinoids
3. Cannabis Compounds: Functional and Nutritional Properties
Cannabinoid Intake in the Human Body
4. Cannabis Legislation
5. Conditions of Cannabis Compound Use and Storage
5.1. Use of Cannabis Extracts and Emulsions
5.2. Storage Conditions of Cannabis Products
6. Potential Applications of Cannabis in the Food Industry
6.1. New Foods with CBD
6.2. Hemp Protein and Food for Vegans
6.3. Innovations in Hemp-Processing Technologies
- (a)
- Nanotechnology: This technology allows the particle size of cannabinoids and other valuable substances to be reduced to the nanometer level. It can increase their bioavailability and improve absorption efficiency, which has the potential to increase the potency of cannabis products.
- (b)
- Supercritical CO2 extraction: It is a modern technique that allows the efficient and gentle extraction of cannabinoids, terpenes, and other valuable components from cannabis. This method allows the separation of cannabinoids with high purity and minimizes the use of solvents, making it a greener and safer alternative to traditional extraction methods.
- (c)
- Fermentation: It may be a new way to extract valuable substances from cannabis, such as cannabinoids and enzymes. This method is more environmentally friendly and can reduce processing costs.
- (d)
- Biotechnological methods: These methods can be used to optimize the production of specific cannabinoids and terpenes. Genetic modification of cannabis can lead to the development of varieties with higher levels of specific compounds and better resistance to pests.
6.4. Functional Foods with Hemp
7. Future Directions of Cannabis Applications
- Safety and regulation: Extensive studies are needed on the safety of cannabis and its constituents, such as cannabinoids and terpenes, when used in food. These studies should assess possible adverse effects, drug interactions, and long-term effects on human health [106].
- Optimization of processing technologies: Research should focus on finding innovative and efficient processing technologies for the food industry. This may include improving extraction methods, determining optimal temperatures and times for cooking and baking with cannabis, and exploring different ways to incorporate cannabis into foods with minimal loss of its active ingredients [107].
- Study of bioactive substances: Investigation should aim at the bioactive substances contained in cannabis and their potential effects on human health. This comprises studying the cannabinoids, terpenes, flavonoids, and other phytochemicals in cannabis and their effects on the human body, including their interactions with the endocannabinoid system [34].
- New product development: Research should focus on the development of new hemp-based food products that offer interesting and attractive options for consumers. This involves the creation of new cannabis dishes, desserts, drinks, and other products that are both appealing and healthy [108].
- Sustainability and environmental friendliness: The objective of research should be to find sustainable ways of growing and processing hemp for the food industry in order to minimize negative environmental impacts. This includes exploring options for organic cultivation, reducing water and energy consumption, and waste treatment [91].
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Appendio, G.; Chianese, G.; Taglialatela-Scafati, O. Cannabinoids: Occurrence and medicinal chemistry. Curr. Med. Chem. 2011, 18, 1085–1099. [Google Scholar] [CrossRef]
- Ross, S.; ElSohly, M. The Volatile Oil Composition of Fresh and Air-Dried Buds of Cannabis sativa. J. Nat. Prod. 1996, 59, 49–51. [Google Scholar] [CrossRef] [PubMed]
- ElSohly, M.; Turner, C.; Phoebe, C.; Joseph Knapp, J.; Schiff, P.; Slatkin, D. Anhydrocannabisativine, a New Alkaloid from Cannabis sativa L. J. Pharm. Sci. 1978, 67, 124. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Mahlberg, P. Immunochemical localization of tetrahydrocannabinol (THC) in cryopreserved glandular trichomes of cannabis (Cannabaceae). Am. J. Bot. 1997, 84, 336–342. [Google Scholar] [CrossRef]
- Hartsel, J.; Eades, J.; Hickory, B.; Makriyannis, A. Chapter 53—Cannabis sativa and hemp. In Nutraceuticals: Efficacy, Safety and Toxicity, 1st ed.; Gupta, R.C., Ed.; Academic Press: Amsterdam, The Netherlands, 2021; pp. 735–754. [Google Scholar] [CrossRef]
- Thomas, B.; ElSohly, M. Analytical Cannabis Chemistry: Quality Assessment, Assurance and Regulation of Medicinal Marijuana and Cannabinoid Products, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Lehmann, T.; Brenneisen, R. High Performance Liquid Chromatographic Profiling of Cannabis Products. J. Liq. Chromatogr. 1995, 18, 689–700. [Google Scholar] [CrossRef]
- Commission (EU) Implementing Decision. 2017, 2017/478. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32017D0478 (accessed on 18 August 2023).
- Turner, C.; ElSohly, M.; Boeren, E. Contents of Cannabis sativa L. XVII. Overview of natural constituents. J. Nat. Prod. 1980, 43, 169–234. [Google Scholar] [CrossRef] [PubMed]
- Morales, P.; Hurst, D.; Reggio, P. Molecular targets of phytocannabinoids: A complex picture. Prog. Chem. Org. Nat. Prod. 2017, 103, 103–131. [Google Scholar] [CrossRef]
- Ciolino, L.; Ranieri, T.; Taylor, A. Commercial cannabis products for consumers, Part 1: Qualitative analysis of cannabinoids by GC-MS. Forensic Sci. Int. 2018, 289, 429–437. [Google Scholar] [CrossRef]
- Anonym. Scientific opinion on the risks to human health associated with the presence of tetrahydrocannabinol (THC) in milk and other foods of animal origin. EFSA J. 2015, 13, 4141. [Google Scholar] [CrossRef]
- Aizpurua-Olaizola, O.; Omar, J.; Navarro, P.; Olivares, M.; Etxebarria, N.; Usobiaga, A. Identification and quantification of cannabinoids in Cannabis sativa L. plants by high-performance liquid chromatography and mass spectrometry. Anal. Bioanal. Chem. 2014, 406, 7549–7560. [Google Scholar] [CrossRef]
- Baňas, B.; Beitzke, B.; Carus, M.; Iffland, K.; Kruse, D.; Sarmento, L.; Sfrija, D. Reasonable Guideline Values for THC (Tetrahydrocannabinol) in Food Products. 2017. pp. 1–11. Available online: http://eiha.org/media/2017/09/17-09-18-THC-Position-paper_EIHA.pdf (accessed on 18 August 2023).
- Regulation (EU) 1307/2013. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:347:0608:0670:en:PDF (accessed on 2 August 2021).
- Grotenhermen, F. Pharmacokinetics and pharmacodynamics of cannabinoids. Clin. Pharmacokinet. 2003, 42, 327–360. [Google Scholar] [CrossRef] [PubMed]
- Mechoulam, R.; Carlini, E. On cannabis-derived drugs. Naturwissenschaften 1978, 65, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Pacher, P.; Bátkai, S.; Kunos, G. The endocannabinoid system as a new target for pharmacotherapy. Pharmacol. Rev. 2006, 58, 389–462. [Google Scholar] [CrossRef] [PubMed]
- Fine, P.; Rosenfeld, M. The endocannabinoid system, cannabinoids and pain. Rambam Maimonides Med. J. 2013, 4, e0022. [Google Scholar] [CrossRef] [PubMed]
- Hanuš, L.; Meyer, S.; Muñoz, E.; Taglialatela-Scafati, O.; Appendino, G. Phytocannabinoids: A unified critical inventory. Nat. Prod. Rep. 2016, 33, 1357–1392. [Google Scholar] [CrossRef] [PubMed]
- Piscitelli, F.; Di Marzo, V. Cannabinoids: A class of unique natural products with unique pharmacology. Rend. Lincei Sci. Fis. Nat. 2021, 32, 5–15. [Google Scholar] [CrossRef]
- Bonaccorso, S.; Ricciardi, A.; Zangani, C.; Chiappini, S.; Schifano, F. Cannabidiol (CBD) use in psychiatric disorders: A systematic review. NeuroToxicology 2019, 74, 282–298. [Google Scholar] [CrossRef]
- Izzo, A.; Borrelli, F.; Capasso, R.; Di Marzo, V.; Mechoulam, R. Non-psychotropic plant cannabinoids: New therapeutic options from an ancient herb. Trends Pharmacol. Sci. 2009, 30, 515–527. [Google Scholar] [CrossRef]
- Adams, R. Marijuana: The Harvey Lecture, 19 February 1942. Bull. N. Y. Acad. Med. 1942, 18, 705–730. [Google Scholar]
- Atalay, S.; Jarocka-Karpowicz, I.; Skrzydlewska, E. Antioxidant and anti-inflammatory properties of cannabidiol. Antioxidants 2020, 9, 21. [Google Scholar] [CrossRef]
- Babson, K.; Sottile, J.; Morabito, D. Cannabis, cannabinoids and sleep: A review of the literature. Curr. Psychiatry Rep. 2017, 19, 23. [Google Scholar] [CrossRef] [PubMed]
- Iffland, K.; Grotenhermen, F. Update on the safety and side effects of cannabidiol: A review of clinical data and relevant animal studies. Cannabis Cannabinoid Res. 2017, 2, 139–154. [Google Scholar] [CrossRef] [PubMed]
- Pisanti, S.; Malfitano, A.M.; Ciaglia, E.; Lamberti, A.; Ranieri, R.; Cuomo, G.; Abate, M.; Faggiana, G.; Proto, M.C.; Fiore, D.; et al. Cannabidiol: State of the art and new challenges for therapeutic applications. Pharmacol. Ther. 2017, 175, 133–150. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Ruiz, J.; Sagredo, O.; Pazos, M.; García, C.; Pertwee, R.; Mechoulam, R.; Martínez-Orgado, J. Cannabidiol for neurodegenerative disorders: New important clinical applications of this phytocannabinoid? Br. J. Clin. Pharmacol. 2013, 75, 323–333. [Google Scholar] [CrossRef]
- Morano, A.; Fanella, M.; Albini, M.; Cifelli, P.; Palma, E.; Giallonardo, A.; Di Bonaventura, C. Cannabinoids in the treatment of epilepsy: Current status and future perspectives. Neuropsychiatr. Dis. Treat. 2020, 16, 381–396. [Google Scholar] [CrossRef] [PubMed]
- Czégény, Z.; Nagy, G.; Babinszki, B.; Bajtel, Á.; Sebestyén, Z.; Kiss, T.; Csupor-Löffler, B.; Tóth, B.; Csupor, D. CBD, a precursor of THC in e-cigarettes. Sci. Rep. 2021, 11, 8951. [Google Scholar] [CrossRef]
- Golombek, P.; Müller, M.; Barthlott, I.; Sproll, C.; Lachenmeier, D. Conversion of cannabidiol (CBD) to psychotropic cannabinoids including tetrahydrocannabinol (THC): Controversies in the scientific literature. Toxic 2020, 8, 41. [Google Scholar] [CrossRef]
- White, C.M. A review of human studies evaluating the therapeutic effects and potential of cannabidiol (CBD). J. Clin. Pharmacol. 2019, 59, 923–934. [Google Scholar] [CrossRef]
- Andre, C.; Hausman, J.; Guerriero, G. Cannabis sativa: The plant of a thousand and one molecules. Front. Recent Dev. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef]
- Morales, P.; Reggio, P.; Jagerovic, N. A review on the medicinal chemistry of synthetic and natural cannabidiol derivatives. Front. Pharmacol. 2017, 8, 422. [Google Scholar] [CrossRef]
- Corroon, J.; Phillips, J. A cross-sectional study of cannabidiol users. Cannabis Cannabinoid Res. 2018, 3, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Bonn-Miller, M.; Loflin, M.; Thomas, B.; Marcu, J.; Hyke, T.; Vandrey, R. Labeling Accuracy of Cannabidiol Extracts Sold Online. JAMA 2017, 318, 1708–1709. [Google Scholar] [CrossRef]
- Russo, E.B. Taming THC: Potential synergistic cannabis and phytocannabinoid-terpenoid entourage effects. Br. J. Pharmacol. 2011, 163, 1344–1364. [Google Scholar] [CrossRef] [PubMed]
- Pagano, E.; Montanaro, V.; Pistone, A.; Altieri, V.; Capasso, R. Effect of non-psychotropic cannabinoids of plant origin on bladder contractility: Focus on cannabigerol. Nat. Prod. Commun. 2015, 10, 1009–1012. [Google Scholar] [CrossRef]
- ElSohly, M.; Slade, D. Chemical constituents of marijuana: A complex mixture of natural cannabinoids. Life Sci. 2005, 78, 539–548. [Google Scholar] [CrossRef]
- Tomko, A.; Whynot, E.; Ellis, L.; Dupré, D. Anticancer potential of cannabinoids, terpenes and flavonoids present in cannabis. Cancers 2020, 12, 1985. [Google Scholar] [CrossRef] [PubMed]
- Ujváry, I.; Hanuš, L. Human metabolites of cannabidiol: A review of their formation, biological activity and importance in therapy. Cannabis Cannabinoid Res. 2016, 1, 90–101. [Google Scholar] [CrossRef]
- Pollastro, F.; Caprioglio, D.; Del Prete, D.; Rogati, F.; Minassi, A.; Taglialatela-Scafati, O.; Munoz, E.; Appendino, G. Cannabichromene. Nat. Prod. Commun. 2018, 13, 1934578X1801300. [Google Scholar] [CrossRef]
- Karas, J.; Wong, L.; Paulin, O.; Mazeh, A.; Hussein, M.; Li, J.; Velkov, T. Antimicrobial activity of cannabinoids. Antibiotics 2020, 9, 406. [Google Scholar] [CrossRef]
- Citti, C.; Braghiroli, D.; Vandelli, M.; Cannazza, G. Pharmaceutical and biomedical analysis of cannabinoids: A critical review. J. Pharm. Biomed. Anal. 2018, 147, 565–579. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Hemp seed in the food industry: Nutritional value, health benefits and industrial applications. Compr. Rev. Food Sci. Food Saf. 2019, 19, 282–308. [Google Scholar] [CrossRef] [PubMed]
- Fellermeier, M.; Zenk, M. Prenylation of olivetolate by hemp transferase produces cannabigerol acid, a precursor of tetrahydrocannabinol. FEBS Lett. 1998, 427, 283–285. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.; Yun, Y.; Choi, H.; Hong, C.; Shim, H.; Lee, J.; Kim, Y. Profiling cannabinoid content and expression levels of corresponding biosynthetic genes in commercial hemp (Cannabis sativa L.) cultivars. Plants 2022, 11, 3088. [Google Scholar] [CrossRef]
- Farinon, B.; Molinari, R.; Costantini, L.; Merendino, N. Seeds of hemp (Cannabis sativa L.): Hemp seed: Nutritional quality and potential functionality for human health and nutrition. Nutrients 2020, 12, 1935. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.; Shahbazi, F.; Rondeau-Gagné, S.; Trant, J. Biosynthesis of cannabinoids. J. Cannabis Res. 2021, 3, 7. [Google Scholar] [CrossRef]
- Chen, C.; Pan, Z. Cannabidiol and terpenes from hemp—Ingredients for future foods and processing technologies. J. Future Foods 2021, 1, 113–127. [Google Scholar] [CrossRef]
- Booth, J.K.; Yuen, M.M.S.; Jancsik, S.; Madilao, L.L.; Page, J.E.; Bohlmanna, J. Terpene Synthases and Terpene Variation in Cannabis sativa. Plant Physiol. 2020, 184, 130–147. [Google Scholar] [CrossRef]
- Desaulniers Brousseau, V.; Wu, B.-S.; MacPherson, S.; Morello, V.; Lefsrud, M. Cannabinoids and Terpenes: How Production of Photo-Protectants Can Be Manipulated to Enhance Cannabis sativa L. Phytochemistry. Front. Plant Sci. 2021, 12, 620021. [Google Scholar] [CrossRef]
- Fairbairn, J.; Liebmann, J.; Rowan, M. Stability of cannabis and its preparations in storage. J. Pharm. Pharmacol. 1976, 28, 1–7. [Google Scholar] [CrossRef]
- Harvey, D.J. Stability of cannabinoids in dried cannabis samples from around 1896–1905. J. Ethnopharmacol. 1990, 28, 117–128. [Google Scholar] [CrossRef]
- Peschel, W. Quality control of traditional cannabis tinctures: Pattern, markers and stability. Sci. Pharm. 2016, 84, 567–584. [Google Scholar] [CrossRef]
- Ratio of CBN and D9-THC Concentrations as an Indicator of the Age of Stored Marijuana Samples. 1997–1998. Available online: https://www.unodc.org/unodc/en/data-and-analysis/bulletin/bulletin_1997-01-01_1_page008.html (accessed on 24 August 2023).
- Wang, M.; Wang, Y.; Avula, B.; Radwan, M.M.; Wanas, A.S.; Van Antwerp, J.; Parcher, J.F.; ElSohly, M.A.; Khan, I.A. Decarboxylation Study of Acidic Cannabinoids: A Novel Approach Using Ultra-High-Performance Supercritical Fluid Chromatography/Photodiode Array-Mass Spectrometry. Cannabis Cannabinoid Res. 2016, 1, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Gaoni, Y.; Mechoulam, R. Isolation, structure and partial synthesis of the active ingredient of hashish. J. Am. Chem. Soc. 1964, 86, 1646–1647. [Google Scholar] [CrossRef]
- McPartland, J.; Russo, E. Cannabis and cannabis extracts: Greater than the sum of their parts? J. Cannabis Ther. 2001, 1, 103–132. [Google Scholar] [CrossRef]
- Lindholst, C. Long-term stability of hemp resin and hemp extracts. Aust. J. Forensic Sci. 2010, 42, 181–190. [Google Scholar] [CrossRef]
- Moreno, T.; Montanes, F.; Tallon, S.; Fenton, T.; King, J. Extraction of cannabinoids from hemp (Cannabis sativa L.) using high-pressure solvents: A review of different processing options. J. Supercrit. Fluids 2020, 161, 104850. [Google Scholar] [CrossRef]
- Kanter, S.; Musumeci, M.; Hollister, L. Quantitative determination of Δ9-tetrahydrocannabinol and Δ9-tetrahydrocannabinolic acid in marijuana by high-pressure liquid chromatography. J. Chromatogr. A 1979, 171, 504–508. [Google Scholar] [CrossRef]
- Veress, T.; Szanto, J.I.; Leisztner, L. Determination of cannabinoid acids by high-performance liquid chromatography of their neutral derivatives formed by thermal decarboxylation. J. Chromatogr. A 1990, 520, 339–347. [Google Scholar] [CrossRef]
- Citti, C.; Pacchetti, B.; Vandelli, M.; Forni, F.; Cannazza, G. Analysis of cannabinoids in commercial hemp seed oil and study of cannabidiol acid (CBDA) decarboxylation kinetics. J. Pharm. Biomed. Anal. 2018, 149, 532–540. [Google Scholar] [CrossRef]
- Salehi, A.; Puchalski, K.; Shokoohinia, Y.; Zolfaghari, B.; Asgary, S. Differentiating Cannabis Products: Drugs, Food, and Supplements. Front. Pharmacol. 2022, 13, 906038. [Google Scholar] [CrossRef]
- Irakli, M.; Tsaliki, E.; Kalivas, A.; Kleisiaris, F.; Sarrou, E.; Cook, C.M. Effect of Genotype and Growing Year on the Nutritional, Phytochemical, and Antioxidant Properties of Industrial Hemp (Cannabis sativa L.) Seeds. Antioxidants 2019, 8, 491. [Google Scholar] [CrossRef]
- Andrews, K.W.; Gusev, P.A.; McNeal, M.; Savarala, S.; Dang, P.T.V.; Oh, L.; Atkinson, R.; Pehrsson, P.R.; Dwyer, J.T.; Saldanha, L.G.; et al. Dietary Supplement Ingredient Database (DSID) and the Application of Analytically Based Estimates of Ingredient Amount to Intake Calculations. J. Nutr. 2018, 148, 1413S–1421S. [Google Scholar] [CrossRef] [PubMed]
- Korus, J.; Witczak, M.; Ziobro, R.; Juszczak, L. Hemp (Cannabis sativa subsp. sativa) flour and protein preparation as natural nutrients and structure forming agents in starch based gluten-free bread. LWT 2017, 84, 143–150. [Google Scholar] [CrossRef]
- Rupasinghe, H.; Davis, A.; Kumar, S.; Murray, B.; Zheljazkov, V. Sown cannabis (Cannabis sativa subsp. sativa) as a new source of functional food ingredients and value-added nutraceuticals. Molecules 2020, 25, 4078. [Google Scholar] [CrossRef]
- Ross, S.A.; Mehmedic, Z.; Murphy, T.P.; Elsohly, M.A. GC-MS Analysis of the Total Delta9-THC Content of Both Drug- and Fiber-type Cannabis Seeds. J. Anal. Toxicol. 2000, 24, 715–717. [Google Scholar] [CrossRef]
- Rusu, I.E.; Vlaic, M.; Mureşan, C.C.; Mureşan, A.E.; Mureşan, V.; Pop, C.R.; Chiş, M.S.; Man, S.M.; Filip, M.R.; Onica, B.-M.; et al. Hemp (Cannabis sativa L.) flour-based wheat bread as fortified bakery product. Plants 2021, 10, 1558. [Google Scholar] [CrossRef]
- House, J.; Neufeld, J.; Leson, G. Assessment of protein quality of hemp seed (Cannabis sativa L.) products using the amino acid corrected protein score method. J. Agric. Food Chem. 2010, 58, 11801–11807. [Google Scholar] [CrossRef]
- Montserrat-De La Paz, S.; Marín-Aguilar, F.; García-Giménez, M.; Fernández-Arche, M. Hemp oil (Cannabis sativa L.): Analytical and phytochemical characterization of the unsaponifiable fraction. J. Agric. Food Chem. 2014, 62, 1105–1110. [Google Scholar] [CrossRef]
- Steinbach, W. Hemp Pralines. 1999. Germany. DE19746830C1. Granted 1999-10-23. Registered 1999-08-12. Available online: https://patents.google.com/patent/DE19746830C1/en (accessed on 18 August 2023).
- Burton, R.A.; Andres, M.; Cole, M.; Cowley, J.M.; Augustin, M.A. Industrial hemp seed: From the field to value-added food ingredients. J. Cannabis Res. 2022, 4, 45. [Google Scholar] [CrossRef] [PubMed]
- Method of Making Bread Containing Blue Ginseng Seeds: KR100927544B1. In Google Patents. Available online: https://patents.google.com/patent/KR100927544B1/en (accessed on 18 August 2023).
- Use of Whole Cannabis Sativa Seed Powder for the Preparation of Functional Food with Adjuvant Blood Fat Reduction Therapy. 2007. China. CN100998414B. Granted 2006-12-30. Registered 2007-07-18. Available online: https://patents.google.com/patent/CN100998414B/en (accessed on 18 August 2023).
- Method of Production of Hemp Milk. 2012. Canada. CA2505350C. Granted 2002-11-14. Registered 2012-05-15. Available online: https://patents.google.com/patent/CA2505350C/en (accessed on 18 August 2023).
- Carvalho, Â.; Hansen, E.; Kayser, O.; Carlsen, S.; Stehle, F. Designing microorganisms for heterologous cannabinoid biosynthesis. FEMS Yeast Res. 2017, 17, 37. [Google Scholar] [CrossRef] [PubMed]
- Huestis, M.A. Pharmacokinetics and metabolism of the plant cannabinoids, Δ9-Tetrahydrocannabinol, cannabidiol and cannabinol. In Cannabinoids. Handbook of Experimental Pharmacology, 1st ed.; Pertwee, R.G., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 657–690. [Google Scholar] [CrossRef]
- Garrett, E.; Hunt, C.A. Physicochemical properties, solubility and binding of Δ9-Tetrahydrocannabinol to proteins. J. Pharm. Sci. 1974, 63, 1056–1064. [Google Scholar] [CrossRef]
- Gonçalves, J.; Rosado, T.; Soares, S.; Simão, A.Y.; Caramelo, D.; Luís, Â.; Fernández, N.; Barroso, M.; Gallardo, E.; Duarte, A.P. Cannabis and Its Secondary Metabolites: Their use as therapeutic drugs, toxicological aspects and analytical determination. Medicines 2019, 6, 31. [Google Scholar] [CrossRef]
- Grant, K.; Petroff, R.; Isoherranen, N.; Stella, N.; Burbacher, T. Cannabis use during pregnancy: Pharmacokinetics and effects on child development. Pharmacol. Ther. 2018, 182, 133–151. [Google Scholar] [CrossRef] [PubMed]
- Lucas, C.; Galettis, P.; Schneider, J. The Pharmacokinetics and the pharmacodynamics of cannabinoids. Br. J. Clin. Pharmacol. 2018, 84, 2477–2482. [Google Scholar] [CrossRef] [PubMed]
- Degenhardt, L.; Hall, W. the extent of illicit drug use and dependence and their contribution to the global burden of disease. Lancet 2012, 379, 55–70. [Google Scholar] [CrossRef]
- Christinat, N.; Savoy, M.; Mottier, P. Development, validation and application of an LC-MS/MS method for the quantification of 15 cannabinoids in food. Food Chem. 2020, 318, 126469. [Google Scholar] [CrossRef]
- Ereño, D.P. Global Regulatory Trends in CBD Use in Food and Food Supplements. Regulatory Affairs Professionals Society, 2021; pp. 1–10. Available online: https://www.raps.org/News-and-Articles/News-Articles/2021/6/Global-regulatory-trends-on-CBD-use-in-food-and-fo (accessed on 4 December 2023).
- Ďuriš Nicholsonová, L. Availability and Conditions for CBD Sales on the EU Single Market. Priority Question for Written Answer P-000686/2021 to the Commission, Rule 138. European Parliament. 2021. Available online: https://www.europarl.europa.eu/doceo/document/P-9-2021-000686_EN.html (accessed on 2 October 2023).
- Šustková, L. Konopí pro Léčebné Použití. State Institute for Drug Control. 2010. Available online: https://www.sukl.cz/konopi-pro-lecebne-pouziti (accessed on 18 August 2023).
- Walch, S.; Lachenmeier, D. Analysis and toxicological evaluation of cannabinoids in hemp food products—A review. Electron. J. Environ. Agric. Food Chem. 2005, 4, 812–826. [Google Scholar] [CrossRef]
- Fischedick, J.; Hazekamp, A.; Erkelens, T.; Choi, Y.; Verpoorte, R. Metabolic fingerprinting of Cannabis sativa L., cannabinoids and terpenoids for chemotaxonomy and drug standardization. Phytochemistry 2010, 71, 2058–2073. [Google Scholar] [CrossRef]
- Hazekamp, A.; Fischedick, J. Cannabis—From cultivar to chemovar. Drug Test. Anal. 2012, 4, 660–667. [Google Scholar] [CrossRef]
- Chen, P.; Rogers, M. Opportunities and challenges in the development of orally administered cannabis edibles. Curr. Opin. Food Sci. 2019, 28, 7–13. [Google Scholar] [CrossRef]
- Anges, T.; Dimartino, S.; Lee, S.; Goh, K.; Wen, J.; Oey, I.; Ko, S.; Kwak, H. Interfacial structures of whey protein isolate (WPI) and lactoferrin on hydrophobic surfaces in a model system monitored by quartz crystal microbalance with dispersion (QCM-D) and their formation on nanoemulsions. Food Hydrocoll. 2016, 56, 150–160. [Google Scholar] [CrossRef]
- Charoen, R.; Jangchud, A.; Jangchud, K.; Harnsilawat, T.; Naivikul, O.; Mcclements, D. Influence of Biopolymer Emulsifier Type on Formation and Stability of Rice Bran Oil-in-Water Emulsions. J. Food Sci. 2011, 76, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, B.; Argin, S.; Ozilgen, M.; McClements, D. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum Arabic. Food Chem. 2015, 188, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Formato, M.; Crescente, G.; Scognamiglio, M.; Fiorentino, A.; Pecoraro, M.; Piccolella, S.; Catauro, M.; Pacifico, S. (-)-Cannabidiolic acid, a still overlooked bioactive compound: An initial review and preliminary research. Molecules 2020, 25, 2638. [Google Scholar] [CrossRef] [PubMed]
- Di Marco Pisciottano, I.; Guadagnuolo, G.; Soprano, V.; Esposito, M.; Gallo, P. Investigation of Δ9-THC and relevant cannabinoids in products from the Italian market: A study by LC-MS/MS of food, beverages and feed. Food Chem. 2021, 346, 128898. [Google Scholar] [CrossRef]
- Thomas, B.F.; ElSohly, M.A. Chapter 2—Biosynthesis and pharmacology of phytocannabinoids and related chemical constituents. In The Analytical Chemistry of Cannabis, 1st ed.; Thomas, B.F., ElSohly, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 27–41. [Google Scholar] [CrossRef]
- Starowicz, M.; Granvogl, M. Trends in food science and technology a review of mead production and physicochemical, toxicological and sensory properties of mead with special emphasis on taste. Trends Food Sci. Technol. 2020, 106, 402–416. [Google Scholar] [CrossRef]
- Callaway, J.C. Hemp seed as a source of nutrition: A review. Euphytica 2004, 140, 65–72. [Google Scholar] [CrossRef]
- Lopresti, A.; Smith, S.; Malvi, H.; Kodgule, R. Investigation of stress relieving and pharmacological effects of ashwagandha (Withania somnifera) extract. Medicine 2019, 98, e17186. [Google Scholar] [CrossRef]
- Ramadan, M.F. Nutritional value, functional properties and nutraceutical applications of black cumin (Nigella sativa L.): A review. Int. J. Food Sci. Technol. 2007, 42, 1208–1218. [Google Scholar] [CrossRef]
- Younes, M.; Aquilina, G.; Castle, L.; Engel, K.-H.; Fowler, P.; Frutos Fernandez, M.J.; Fürst, P.; Gürtler, R.; Husøy, T.; Mennes, W.; et al. Re-evaluation of phosphoric acid–phosphates—di-, tri- and polyphosphates (E 338–341, E 343, E 450–452) as food additives and the safety of proposed extension of use. EFSA J. 2019, 17, e05674. [Google Scholar] [CrossRef]
- Benedec, D.; Vlase, L.; Oniga, I.; Mot, A.; Damian, G.; Hanganu, D.; Duma, M.; Silaghi-Dumitrescu, R. Polyphenolic composition, antioxidant and antibacterial activities of two Romanian subspecies of Achillea distans Waldst. et Kit. ex Willd. Molecules 2013, 18, 8725–8739. [Google Scholar] [CrossRef] [PubMed]
- Norajit, K.; Gu, B.; Ryu, G. Effect of hemp powder addition on physicochemical properties and characteristics of extruded rice energy bar. Food Chem. 2011, 129, 1919–1925. [Google Scholar] [CrossRef]
- Small, E. Development and classification of Cannabis sativa (marijuana, hemp) in relation to human use. Bot. Rev. 2015, 81, 189–294. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartončíková, M.; Lapčíková, B.; Lapčík, L.; Valenta, T. Hemp-Derived CBD Used in Food and Food Supplements. Molecules 2023, 28, 8047. https://doi.org/10.3390/molecules28248047
Bartončíková M, Lapčíková B, Lapčík L, Valenta T. Hemp-Derived CBD Used in Food and Food Supplements. Molecules. 2023; 28(24):8047. https://doi.org/10.3390/molecules28248047
Chicago/Turabian StyleBartončíková, Michaela, Barbora Lapčíková, Lubomír Lapčík, and Tomáš Valenta. 2023. "Hemp-Derived CBD Used in Food and Food Supplements" Molecules 28, no. 24: 8047. https://doi.org/10.3390/molecules28248047
APA StyleBartončíková, M., Lapčíková, B., Lapčík, L., & Valenta, T. (2023). Hemp-Derived CBD Used in Food and Food Supplements. Molecules, 28(24), 8047. https://doi.org/10.3390/molecules28248047