Preparation and Characterization of Zinc(II)-Based Lewis/Brønsted Acidic Deep Eutectic Solvents
Abstract
:1. Introduction
2. Results and Discussion
2.1. DES Preparation and Stability
2.2. Melting Point
2.3. Density Measurements
2.4. Conductivity Measurements
2.5. Rheological Properties
2.6. NMR Characterization
3. Experimental Details
3.1. Determination of Water Content
3.2. LBDES Preparation
3.3. Experimental and Theoretical Solid–Liquid Phase Diagram
3.4. Density
3.5. Electrical Conductivity
3.6. Viscosity
3.7. NMR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burgess, J.R.; Prince, H. Zinc: Inorganic & Coordination Chemistry Based in Part on the Article Zinc: Inorganic and Coordination Chemistry by Reg H. Prince which Appeared in the Encyclopedia of Inorganic Chemistry, First Edition. In Encyclopedia of Inorganic and Bioinorganic Chemistry, 1st ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 1–22. [Google Scholar] [CrossRef]
- Ghouse, S.; Sreenivasulu, C.; Kishore, D.R.; Satyanarayana, G. Recent Developments by Zinc Based Reagents/Catalysts Promoted Organic Transformations. Tetrahedron 2022, 105, 132580. [Google Scholar] [CrossRef]
- Hayashi, E.; Takahashi, Y.; Itoh, H.; Yoneda, N. Enhancement of Catalytic Activity of ZnCl2 in the Friedel–Crafts Benzylation of Benzenes Using Polar Solvents. Bull. Chem. Soc. Jpn. 1993, 66, 3520–3521. [Google Scholar] [CrossRef]
- Thorat, B.R.; Gurav, A.; Dalvi, B.; Sawant, A.; Lokhande, V.; Mali, S.N. Green Synthesis of Substituted Dihydropyrimidin-2(1H)-One by Using Zinc Chloride /Acetic Acid Catalytic System. Curr. Chin. Chem. 2020, 1, 30–46. [Google Scholar] [CrossRef]
- Baker, G.J.; White, A.J.P.; Casely, I.J.; Grainger, D.; Crimmin, M.R. Catalytic, Z-Selective, Semi-Hydrogenation of Alkynes with a Zinc-Anilide Complex. J. Am. Chem. Soc. 2023, 145, 7667–7674. [Google Scholar] [CrossRef] [PubMed]
- Sattler, W.; Parkin, G. Zinc Catalysts for On-Demand Hydrogen Generation and Carbon Dioxide Functionalization. J. Am. Chem. Soc. 2012, 134, 17462–17465. [Google Scholar] [CrossRef]
- Gaware, S.; Chatterjee, R.; Kapdi, A.R.; Dandela, R. Zinc-Catalyzed Transamidation and Esterification of N-Benzoyl Cytosine via C–N Bond Cleavage. Org. Biomol. Chem. 2023, 21, 5176–5180. [Google Scholar] [CrossRef]
- Nakatake, D.; Yokote, Y.; Matsushima, Y.; Yazaki, R.; Ohshima, T. A Highly Stable but Highly Reactive Zinc Catalyst for Transesterification Supported by a Bis(Imidazole) Ligand. Green Chem. 2016, 18, 1524–1530. [Google Scholar] [CrossRef]
- Yang, R.; Xu, G.; Lv, C.; Dong, B.; Zhou, L.; Wang, Q. Zn(HMDS)2 as a Versatile Transesterification Catalyst for Polyesters Synthesis and Degradation toward a Circular Materials Economy Approach. ACS Sustain. Chem. Eng. 2020, 8, 18347–18353. [Google Scholar] [CrossRef]
- Hermann, A.; Hill, S.; Metz, A.; Heck, J.; Hoffmann, A.; Hartmann, L.; Herres-Pawlis, S. Next Generation of Zinc Bisguanidine Polymerization Catalysts towards Highly Crystalline, Biodegradable Polyesters. Angew. Chem.-Int. Ed. 2020, 59, 21778–21784. [Google Scholar] [CrossRef]
- Hofmann, M.; Sundermeier, J.; Alberti, C.; Enthaler, S. Zinc(II) Acetate Catalyzed Depolymerization of Poly(Ethylene Terephthalate). ChemistrySelect 2020, 5, 10010–10014. [Google Scholar] [CrossRef]
- Qin, H.; Hu, X.; Wang, J.; Cheng, H.; Chen, L.; Qi, Z. Overview of Acidic Deep Eutectic Solvents on Synthesis, Properties and Applications. Green Energy Environ. 2020, 5, 8–21. [Google Scholar] [CrossRef]
- Martins, M.A.R.; Pinho, S.P.; Coutinho, J.A.P. Insights into the Nature of Eutectic and Deep Eutectic Mixtures. J. Solut. Chem. 2019, 48, 962–982. [Google Scholar] [CrossRef]
- Khandelwal, S.; Tailor, Y.K.; Kumar, M. Deep Eutectic Solvents (DESs) as Eco-Friendly and Sustainable Solvent/Catalyst Systems in Organic Transformations. J. Mol. Liq. 2016, 215, 345–386. [Google Scholar] [CrossRef]
- Alonso, D.A.; Burlingham, S.J.; Chinchilla, R.; Guillena, G.; Ramón, D.J.; Tiecco, M. Asymmetric Organocatalysis in Deep Eutectic Solvents. Eur. J. Org. Chem. 2021, 2021, 4065–4071. [Google Scholar] [CrossRef]
- Giofrè, S.V.; Tiecco, M.; Ferlazzo, A.; Romeo, R.; Ciancaleoni, G.; Germani, R.; Iannazzo, D. Base-Free Copper-Catalyzed Azide-Alkyne Click Cycloadditions (CuAAc) in Natural Deep Eutectic Solvents as Green and Catalytic Reaction Media**. Eur. J. Org. Chem. 2021, 2021, 4777–4789. [Google Scholar] [CrossRef]
- Smith, E.L. Deep Eutectic Solvents (DESs) and the Metal Finishing Industry: Where Are They Now? Trans. Inst. Met. Finish. 2013, 91, 241–248. [Google Scholar] [CrossRef]
- Song, H.; Gao, J.; Che, X.; He, J.; Li, C. Catalytic oxidation-extractive desulfurization for model oil using inorganic oxysalts as oxidant and Lewis acid-organic acid mixture as catalyst and extractant. Appl. Cat. A-Gen. 2013, 456, 67–74. [Google Scholar] [CrossRef]
- Trivedi, T.J.; Lee, J.H.; Lee, H.J.; Jeong, Y.K.; Choi, J.W. Deep Eutectic Solvents as Attractive Media for CO2 Capture. Green Chem. 2016, 18, 2834–2842. [Google Scholar] [CrossRef]
- Costamagna, M.; Micheli, E.; Canale, V.; Ciulla, M.; Siani, G.; di Profio, P.; Tiecco, M.; Ciancaleoni, G. Low-Cost Temperature Transition Mixtures (TTM) Based on Ethylene Glycol/Potassium Hydroxide as Reversible CO2 Sorbents. J. Mol. Liq. 2021, 340, 117180. [Google Scholar] [CrossRef]
- Pelosi, C.; Gonzalez-Rivera, J.; Bernazzani, L.; Tiné, M.R.; Duce, C. Optimized Preparation, Thermal Characterization and Microwave Absorption Properties of Deep Eutectic Solvents Made by Choline Chloride and Hydrated Salts of Alkali Earth Metals. J. Mol. Liq. 2023, 371, 121104. [Google Scholar] [CrossRef]
- Zhang, M.; Tian, R.; Han, H.; Wu, K.; Wang, B.; Liu, Y.; Zhu, Y.; Lu, H.; Liang, B. Preparation Strategy and Stability of Deep Eutectic Solvents: A Case Study Based on Choline Chloride-Carboxylic Acid. J. Clean. Prod. 2022, 345, 131028. [Google Scholar] [CrossRef]
- Ijardar, S.P.; Singh, V.; Gardas, R.L. Revisiting the Physicochemical Properties and Applications of Deep Eutectic Solvents. Molecules 2022, 27, 1368. [Google Scholar] [CrossRef] [PubMed]
- Omar, K.A.; Sadeghi, R. Physicochemical Properties of Deep Eutectic Solvents: A Review. J. Mol. Liq. 2022, 360, 119524. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, X.; Liu, Y.; Wu, K.; Zhu, Y.; Lu, H.; Liang, B. Insights into the Relationships between Physicochemical Properties, Solvent Performance, and Applications of Deep Eutectic Solvents. Environ. Sci. Pollut. Res. 2021, 28, 35537–35563. [Google Scholar] [CrossRef] [PubMed]
- González-Rivera, J.; Pelosi, C.; Pulidori, E.; Duce, C.; Tiné, M.R.; Ciancaleoni, G.; Bernazzani, L. Guidelines for a Correct Evaluation of Deep Eutectic Solvents Thermal Stability. Curr. Res. Green Sustain. Chem. 2022, 5, 100333. [Google Scholar] [CrossRef]
- Ghareh Bagh, F.S.; Shahbaz, K.; Mjalli, F.S.; Hashim, M.A.; Alnashef, I.M. Zinc (II) Chloride-Based Deep Eutectic Solvents for Application as Electrolytes: Preparation and Characterization. J. Mol. Liq. 2015, 204, 76–83. [Google Scholar] [CrossRef]
- Thorat, G.M.; Ho, V.C.; Mun, J. Zn-Based Deep Eutectic Solvent as the Stabilizing Electrolyte for Zn Metal Anode in Rechargeable Aqueous Batteries. Front. Chem. 2022, 9, 825807. [Google Scholar] [CrossRef]
- Hong, S.; Sun, X.; Lian, H.; Pojman, J.A.; Mota-Morales, J.D. Zinc Chloride/Acetamide Deep Eutectic Solvent-Mediated Fractionation of Lignin Produces High- and Low-Molecular-Weight Fillers for Phenol-Formaldehyde Resins. J. Appl. Polym. Sci. 2020, 137, 48385. [Google Scholar] [CrossRef]
- Tong, Z.; Zeng, S.; Tang, H.; Wang, W.; Sun, Y.; Xia, Q.; Yu, H. A Room Temperature Dissolution Solvent and Its Mechanism for Natural Biopolymers: Hydrogen Bonding Interaction Investigation. Green Chem. 2023, 25, 5086–5096. [Google Scholar] [CrossRef]
- Wang, Q.; Yao, X.; Geng, Y.; Zhou, Q.; Lu, X.; Zhang, S. Deep Eutectic Solvents as Highly Active Catalysts for the Fast and Mild Glycolysis of Poly(Ethylene Terephthalate)(PET). Green Chem. 2015, 17, 2473–2479. [Google Scholar] [CrossRef]
- Sarjuna, K.; Ilangeswaran, D. Preparation of Some Zinc Chloride Based Deep Eutectic Solvents and Their Characterization. Mater. Today Proc. 2020, 33, 2767–2770. [Google Scholar] [CrossRef]
- Kaur, H.; Singh, M.; Singh, H.; Kaur, M.; Singh, G.; Sekar, K.; Kang, T.S. Zinc Chloride Promoted the Inimitable Dissolution and Degradation of Polyethylene in a Deep Eutectic Solvent under White Light. Green Chem. 2022, 24, 2953–2961. [Google Scholar] [CrossRef]
- Davidson, A.W.; Chappell, W. Some Studies in the System Zinc Acetate-Hydrogen Chloride-Acetic Acid. J. Am. Chem. Soc. 1939, 61, 2164–2167. [Google Scholar] [CrossRef]
- Mgxadeni, N.; Mmelesi, O.; Kabane, B.; Bahadur, I. Influence of Hydrogen Bond Donor on Zinc Chloride in Separation of Binary Mixtures: Activity Coefficients at Infinite Dilution. J. Mol. Liq. 2022, 351, 118596. [Google Scholar] [CrossRef]
- Tamaddon, F.; Rashidi, H. ZnCl2:2HOAc: A Deep Eutectic Solvent for the Friedel–Crafts Acetylation of Poly-Phenols and Chemo-Selective Protection of Alcohols. Res. Chem. Intermed. 2023, 49, 3589–3603. [Google Scholar] [CrossRef]
- Rollo, M.; Raffi, F.; Rossi, E.; Tiecco, M.; Martinelli, E.; Ciancaleoni, G. Depolymerization of Polyethylene Terephthalate (PET) under Mild Conditions by Lewis/Brønsted Acidic Deep Eutectic Solvents. Chem. Eng. J. 2023, 456, 141092. [Google Scholar] [CrossRef]
- Chen, X.; Guo, H.; Abdeltawab, A.A.; Guan, Y.; Al-Deyab, S.S.; Yu, G.; Yu, L. Brønsted-Lewis Acidic Ionic Liquids and Application in Oxidative Desulfurization of Diesel Fuel. Energy Fuels 2015, 29, 2998–3003. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, X.F.; Wang, Z.; Zheng, T.; Yao, J. Deep Eutectic Solvent with Bifunctional Brønsted-Lewis Acids for Highly Efficient Lignocellulose Fractionation. Bioresour. Technol. 2022, 347, 126723. [Google Scholar] [CrossRef]
- Liu, F.; Xue, Z.; Zhao, X.; Mou, H.; He, J.; Mu, T. Catalytic Deep Eutectic Solvents for Highly Efficient Conversion of Cellulose to Gluconic Acid with Gluconic Acid Self-Precipitation Separation. Chem. Commun. 2018, 54, 6140–6143. [Google Scholar] [CrossRef]
- Shaibuna, M.; Theresa, L.V.; Sreekumar, K. A New Green and Efficient Brønsted: Lewis Acidic DES for Pyrrole Synthesis. Catal. Lett. 2018, 248, 2359–2372. [Google Scholar] [CrossRef]
- Rollo, M.; Perini, M.A.G.; Sanzone, A.; Polastri, L.; Tiecco, M.; Torregrosa-Chinillach, A.; Martinelli, E.; Ciancaleoni, G. Effect of chloride salts and microwave on polyethylene terephthalate (PET) hydrolysis by iron chloride/acetic acid Lewis/Brønsted acidic deep eutectic solvent. RSC Sustain. 2023. Advance Article. [Google Scholar] [CrossRef]
- Zhou, F.; Shi, R.; Wang, Y.; Xue, Z.; Zhang, B.; Mu, T. Acidity scales of deep eutectic solvents based on IR and NMR. Phys. Chem. Chem. Phys. 2022, 24, 16973–16978. [Google Scholar] [CrossRef] [PubMed]
- Delso, I.; Lafuente, C.; Muñoz-Embid, J.; Artal, M. NMR study of choline chloride-based deep eutectic solvents. J. Mol. Liq. 2019, 290, 111236. [Google Scholar] [CrossRef]
- Sirviö, J.A.; Visanko, M.; Liimatainen, H. Acidic Deep Eutectic Solvents as Hydrolytic Media for Cellulose Nanocrystal Production. Biomacromolecules 2016, 17, 3025–3032. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 2 November 2023).
- Speight, J.G. Lange’s Handbook of Chemistry, 17th ed.; McGraw-Hill Education: New York, NY, USA, 2017. [Google Scholar]
- Wohlfarth, C. Viscosity of Levulinic Acid. In Viscosity of Pure Organic Liquids and Binary Liquid Mixtures; Springer: Berlin/Heidelberg, Germany, 2017; p. 161. [Google Scholar] [CrossRef]
- Abranches, D.O.; Coutinho, J.A.P. Everything You Wanted to Know about Deep Eutectic Solvents but Were Afraid to Be Told. Annu. Rev. Chem. Biomol. Eng. 2023, 14, 141–163. [Google Scholar] [CrossRef] [PubMed]
- Chua, Y.Z.; Do, H.T.; Schick, C.; Zaitsau, D.; Held, C. New experimental melting properties as access for predicting amino-acid solubility. RSC Adv. 2018, 8, 6365–6372. [Google Scholar] [CrossRef]
- Chase, M.W., Jr. NIST-JANAF Thermochemical Tables. In JANAF Thermochemical Tables; American Chemical Society: Washington, DC, USA, 1998; Volume 9. [Google Scholar]
- Elhamarnah, Y.A.; Nasser, M.; Qiblawey, H.; Benamor, A.; Atilhan, M.; Aparicio, S. A Comprehensive Review on the Rheological Behavior of Imidazolium Based Ionic Liquids and Natural Deep Eutectic Solvents. J. Mol. Liq. 2019, 277, 932–958. [Google Scholar] [CrossRef]
Acid | +ZrOCl2·8H2O | +ZnCl2 | +SnCl2 | +AlCl3·6H2O |
---|---|---|---|---|
Acetic acid | ✗ | ✓ (3:1, DES1) | ✗ | ✗ |
Glycolic acid | ✗ | ✓ (4:1, DES2) | ✓ (6:1) a | ✗ |
Oxalic acid | ✗ | ✗ | ✗ | ✗ |
MSA b | ✓ (7:1) a | ✗ | ✗ | ✗ |
pTSA c | ✗ | ✗ | ✗ | ✗ |
Levulinic acid | ✗ | ✓ (3:1, DES3) | ✗ | ✗ |
Formic acid | ✓ (2.5:1) a | ✓ (3:1, DES4) | ✗ | ✗ |
Sample | γBrønsted acid | γZnCl2 |
---|---|---|
DES1 | 0.31 | 0.12 |
DES2 | 0.18 | 0.21 |
DES3 | 0.62 | 0.20 |
DES4 | 0.36 | 0.13 |
Parameter a | DES1 | DES2 | DES3 |
---|---|---|---|
a (fitting) (g·cm−3 K−1) | −0.001200 | −0.000961 | −0.000926 |
b (fitting) (g·cm−3) | 1.86959 | 1.95845 | 1.68288 |
αP (104) (K−1) b | 7.94 | 5.75 | 6.58 |
Ea(η) (kJ·mol−1) | Ea(σ) (kJ·mol−1) | |
---|---|---|
DES1 | 52 ± 1 | 34 ± 1 |
DES2 | 113 ± 0.9 | 63 ± 1 |
DES3 | 95.4 ± 0.1 | 45 ± 1 |
Substance | Tm (K) | ΔmH (kJ·mol−1) |
---|---|---|
Acetic acid | 289.75 | 11.72 |
ZnCl2 | 563.15 | 7.322 |
Glycolic acid | 348.15 | 17.30 |
Levulinic acid | 306.15 | 9.22 |
Formic acid | 281.45 | 12.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelosi, C.; Quaranta, A.; Rollo, M.; Martinelli, E.; Duce, C.; Ciancaleoni, G.; Bernazzani, L. Preparation and Characterization of Zinc(II)-Based Lewis/Brønsted Acidic Deep Eutectic Solvents. Molecules 2023, 28, 8054. https://doi.org/10.3390/molecules28248054
Pelosi C, Quaranta A, Rollo M, Martinelli E, Duce C, Ciancaleoni G, Bernazzani L. Preparation and Characterization of Zinc(II)-Based Lewis/Brønsted Acidic Deep Eutectic Solvents. Molecules. 2023; 28(24):8054. https://doi.org/10.3390/molecules28248054
Chicago/Turabian StylePelosi, Chiara, Aldo Quaranta, Marco Rollo, Elisa Martinelli, Celia Duce, Gianluca Ciancaleoni, and Luca Bernazzani. 2023. "Preparation and Characterization of Zinc(II)-Based Lewis/Brønsted Acidic Deep Eutectic Solvents" Molecules 28, no. 24: 8054. https://doi.org/10.3390/molecules28248054
APA StylePelosi, C., Quaranta, A., Rollo, M., Martinelli, E., Duce, C., Ciancaleoni, G., & Bernazzani, L. (2023). Preparation and Characterization of Zinc(II)-Based Lewis/Brønsted Acidic Deep Eutectic Solvents. Molecules, 28(24), 8054. https://doi.org/10.3390/molecules28248054