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Abstract: The development of a dynamic network for commodity polymer systems via feasible meth-
ods has been explored in the context of a society-wide focus on the environment and sustainability.
Herein, we demonstrate an adaptive post-curing method used to build a self-healable network of
waterborne polyurethane–acrylate (WPUA) composite latex. The composite latex was synthesized
via the miniemulsion polymerization of acrylates in the dispersion of waterborne polyurethane (PU),
with commercial acetoacetoxyethyl methacrylate (AAEM) serving as the functional monomer. Then,
a dynamic disulfide (S–S)-bearing diamine was applied as the crosslinking agent for the post-curing
of the hybrid latex via keto-amine condensation, which occurred during the evaporation of water
for film formation. It was revealed that the microphase separation in the hybrid films was sup-
pressed by the post-curing network. The mechanical performance exhibited a high reliability as
regards the contents of the crosslinking agents. The reversible exchange of S–S bonds meant that
the film displayed associative covalent-adaptive networks in the range of medium temperature in
stress relaxation tests, and ≥95% recovery in both the stress and the strain was achieved after the
cut-off films were self-healed at 70 ◦C for 2 h. The rebuilding of the network was also illustrated by
the >80% recovery in the elongation at break of the films after three crushing–hot pressing cycles.
These findings offer valuable insights, not only endowing the traditional WPUA with self-healing
and reprocessing properties, but broadening the field of study of dynamic networks to polymer
hybrid latex.

Keywords: waterborne; polyurethane–acrylate; latex; self-healing; dynamic network

1. Introduction

The discovery and commercialization of polymer materials have provided great op-
portunities in the contexts of both industry and human lives. However, the progress has
also led to increasing pressures on the environment and resources. Dynamic covalent
polymer networks (DCPNs) are highlighted as one of the more promising solutions. The
construction of topologically stable and chemically reversible polymer networks combines
the advantages of thermosets and thermoplastics [1,2]. Various types of dynamic covalent
bonds (DCBs) have been studied for this purpose, including hindered urea [3,4], boronic
ester [5–7], ester [8,9], imine [10,11], Diels–Alder [12,13], silyl ether [14,15], disulfide [16–19]
and olefin metathesis [20,21], etc. The dissociative or associative mechanisms and the under-
lying physics at different timescales have also been progressively revealed [22]. However,
challenges still exist in relation to the complexity of the polymer aggregation structures.
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Polyurethane (PU) is one of the most widely used commodity polymers. The cus-
tomizable chain structures make PU an attractive matrix for DCPN studies. Such DCPNs
are recognized as special since the network tends to behave as associative even when
the dissociative type of DCB is used. The reason is related to the microphase separation
of the hard/soft segments and the intrinsic H-bonding networks [23]. Besides PU, poly-
acrylate (PAC) is another type of general resin. The DCPNs of PAC are prepared in the
literature through solution polymerization/reactive extrusion [24], reversible addition–
fragmentation chain transfer (RAFT) polymerization [25], and bulk polymerization or
UV-curing [26,27]. Combining the advantages of both PU and PAC, such as toughness, elas-
ticity, resistance to different conditions, and cost-effectiveness, the synthesis and application
of polyurethane–acrylate is an attractive issue nowadays [28–30]. Corresponding DCPNs
of polyurethane–acrylate are also seen in the literature, but their study is still limited, and
most of the composites are prepared under homogeneous solution polymerization [31] or
UV curing with the active diluents [32].

In contrast to the polymerization carried out under homogeneous conditions, there
is a special interest in the heterophase polymerization (HPP) represented by emulsion
polymerization. The latex composites prepared by HPP are much welcome in the fields of
coatings and adhesives. Moreover, the use of water as the reaction medium is environmen-
tally friendly and results in “green products”. By introducing PU moiety into the HPP of
PAC via blending or grafting, waterborne polyurethane–acrylate (WPUA) composite latex
can be synthesized [33,34]. However, little is known about the effects when the DCBs are
introduced into the composite latex of WPUA.

Among various DCBs, the metathesis of aromatic disulfide (S–S) bonds under different
kinds of stimuli has been extensively investigated [35–37]. In our previous work [38], we
have demonstrated one post-curing strategy for the DCPN building of the PAC latex. In
this work, we put forward the strategy as a feasible method to build the DCPN of WPUA
composite latex, which was synthesized via miniemulsion polymerization with the func-
tional monomer of methacrylate acetoacetoxyethyl (AAEM). The network was formed by
the post–curing of the latex film through keto-amine condensation with 4,4′-dithiodianiline
(DTDA) serving as the diamine, and the dynamic S–S was therefore linked in simulta-
neously. Condensation would not occur in the aqueous medium, which permitted the
mixture of DTDA and as-synthesized latex to remain stable in the one-pot two-component
form. However, the microphase structures, the mechanical properties, and especially the
dynamic responses to the elevated temperatures of the consequent composite films were
dramatically changed by the disulfide-bearing network, which issues are discussed in detail
in the following sections.

2. Results and Discussion
2.1. Synthesis of WPUA–AAEM Latex

The synthesis of AAEM-decorated composite latex, denoted as WPUA–AAEM x%, is
illustrated in Figure 1a. The amphiphilic WPU is situated at the interface of the miniemul-
sion droplets, similar to the Pickering particles, to stabilize the droplets synergizing with
the emulsifiers. The polymerization in the miniemulsion proceeded stably in the x% range
from 0 to 20%. The characterization results for the composite latex are summarized in
Table 1. It can be seen that acrylic monomer conversions greater than 95% were achieved in
all the syntheses. The Z–average particle sizes increased for the samples with enhanced x%
from 0 to 20%, but were well controlled below 150 nm. Even for the sample with x% = 20%,
the PDI was similar to that of x% = 0. All latex samples exhibited a milky white appearance,
and good centrifugation stabilities and storage stabilities were achieved.
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Figure 1. (a) The synthesis of WPUA latex. (b) Schematic diagram of WPUA post-curing networks.

Table 1. The properties of WPUA–AAEM x% composite latex.

AAEM
Content (x) Conv. % Particle

Size/(d·nm) PDI Centrifugation
Stability *

Storage
Stability **

0% 98% 90 0.299 Passed ≥6 months
5% 98% 105 0.194 Passed ≥6 months
10% 97% 114 0.242 Passed ≥6 months
15% 96% 138 0.368 Passed ≥6 months
20% 97% 144 0.294 Passed ≥6 months

* No stratification or precipitation was observed after 15 min of centrifugation at 3000 r/min (HB/T 4737-2014).
** The time for 100 mL of latex to keep uniform when stored in a sealed 200 mL bottle at room temperature.

A comparison of the stabilities of WPUA–AAEM 0%, WPUA–AAEM 20%, and WPUA–
AAEM–DTDA 20% is displayed in Figure 2. In Figure 2a–c, all the BS% within the height
range from 10 mm to 40 mm remained at about 16%, indicating that the particle sizes were
consistent. It can be seen that the curves showed only slight differences during 12 h of
storage at 60 ◦C for all the samples, suggesting that there were no great changes in the
size and distribution of the particles dispersed in the latex. The decoration of the latex
with AAEM, as well as the following addition of the crosslinking agent DTDA, did not
disrupt the stability of the composite latex. In Figure 2d, the TEM image of WPUA–AAEM
15% latex particles is presented. The morphology of these particles displayed a typical
core–shell structure. The grafting of PU to PAC is illustrated in the Supporting Information
of Figure S1, where the end-capped C=C was consumed during the polymerization of the
PAC phase.
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latex particles.

2.2. The Film Formation and Curing

The stable WPUA–AAEM–DTDA latex was cast into films. The spontaneously formed
post-curing dynamic composite network is sketched in Figure 1b. The keto–amine conden-
sation and the incorporation of the aromatic S–S in the film has been revealed by FTIR. The
spectra of WPUA–AAEM 0% and WPUA–AAEM–DTDA 20% are shown in Figure S2 from
4000 cm−1 to 400 cm−1. The typical bands for PU and PAC, such as those at 3210 cm−1 to
3430 cm−1 assigned to the N–H stretching vibrations, 2940 cm−1 and 2854 cm−1 to the C–H
stretching vibrations, 1800 cm−1 to 1620 cm−1 to the C=O stretching vibrations, 1531 cm−1

to the N–H bending vibrations, 1465 cm−1 to the –CH2– bending vibrations, 1365 cm−1 and
1396 cm−1 to the non-symmetrical and symmetrical –CH3 bending vibrations, 1240 cm−1

to the C–O stretching vibrations, and 1112 cm−1 to the C–O–C stretching vibrations, are
all observable. In comparison with WPUA–AAEM 0%, a distinctive band at 517 cm−1

was detected in the zoom-in spectrum of WPUA–AAEM–DTDA 20% in Figure 3a. The
band is characteristic of S–S. Its emergence reveals the linkage of aromatic S–S bonds into
the polymer network through crosslinking reactions, as expected. Furthermore, the band
at 1652 cm−1 in Figure 3b broadened due to the formation of unsaturated double bonds
(–CH=CH–NH–), proving evidence of the keto–amine condensation between AAEM and
DTDA. In addition, the bands for benzene rings and C–S bonds attached in DTDA can be
observed in Figure 3b at 1592 cm−1 and 1493 cm−1, respectively.
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Figure 3. (a,b) The zoomed-in spectra of WPUA–AAEM 0% and 20% films in the wavenumber ranges
of 530–450 cm−1 and 1750–1450 cm−1, respectively. (c) UV–vis spectra of WPUA–AAEM–DTDA x%
films. Inset: photograph of WPUA–AAEM 10% film. (d) TGA profiles of WPUA–AAEM 0% and
WPUA–AAEM–DTDA 20% films.

The UV–vis spectra of WPUA–AAEM–DTDA x% films are shown in Figure 3c. It
can be observed that the WPUA–AAEM 0% film showed the transmittance of ~85% in
the range of 400 nm to 800 nm. As x% increased, the transmittance gradually decreased
in an almost parallel manner, likely due to the increased scattering as a consequence
of the enlarged particle sizes. The transmittance dropped to zero at ~400 nm, possibly
because of the incorporation of DTDA with chromophores. The yellow color of DTDA in
solution and the darkening color in the films with the increase in DTDA dosage can be
seen in Figure S3. The photograph of WPUA–AAEM 10% film is shown as the inset in
Figure 3c. The composite film presented as uniform, continuous and transparent without
macroscopic phase separation. The TGA profiles of WPUA–AAEM 0% and 20% are
provided in Figure 3d. The introduction of the AAEM–DTDA network did not show an
obvious impact on the thermal stability of the composite films.

The swelling tests of WPUA–AAEM–DTDA x% films were conducted in THF for
24 h at room temperature, and the results are presented in Figure 4a. The apparent gel
content in THF (gel%) was ~73% for WPUA–AAEM 0%, which would be related to the
intrinsic physical and chemical crosslinking points contributed by H-bonding interactions
and the grafting reactions [33], respectively. As x% increased from 0 to 5%, the gel%
increased to a maximum of over 90%, confirming the post-curing reaction of AAEM–DTDA.
Correspondingly, the apparent swelling degree in THF in 24 h (swelling%) also decreased to
the minimum of 250%. But the gel% decreased again with further increases in x%. The gel%
of WPUA–AAEM–DTDA 20% was even slightly lower than that of WPUA–AAEM 0%. The
corresponding swelling% also increased to about 600% as x% increased from 5% to 20%. It
has been suggested that the dynamic exchange of substances would occur in the associative
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dynamic network based on aromatic S–S bonds in organic solvents [39]. Moreover, the
consumption of the keto groups of AAEM by side-reactions could not be ignored. The
diamine would be present in excess, and promotes the dynamic exchange reactions. In this
respect, the low content of DTDA would mainly contribute to the formation of network
points, while the dynamic effect would become more pronounced at higher contents. The
comprehensive result is the decreased gel% and increased swelling% when x% was larger
than 5% in the 24 h of swelling in THF. The photographs of WPUA–AAEM–DTDA x%
films after 24 h of immersion in THF are provided in Figure S4a. All the films sustained
their shapes in the swollen state.
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Figure 4. (a) The gel% and swelling% of WPUA–AAEM–DTDA x% films. (b) The normalized SR curves
of WPUA–AAEM–DTDA 20% films at different temperatures. (c) Linear fitting of the relaxation time
to the Arrhenius equation. (d) DMA tanδ–temperature spectra of WPUA–AAEM–DTDA x% films.
(e) DMA tanδ–temperature spectra of the films of WPUA–AAEM–DTDA 20%, WPU–2%DTDA–PAC
and WPU–2%DTDA–PAC–DTDA 20%. The black line in (a) represents the gel content, which is
measured by the Soxhlet extraction method, and the blue represents the swelling degree, which has
been written out in the article. The dashed line in (b) indicates the relaxation time corresponding
to the relaxation process deformation to 1/e times the original. The color dots in (c) represent the
Arrhenius equation fitting results for stress relaxation of curves at different temperatures in (b). The
vertical dashed line in (d,e) indicates the position of the peak in the Tanδ-temperature curve, in order
to see the transformation of different curves more clearly.
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The dynamic network exchange is illustrated through stress relaxation (SR) in Figure 4b.
The relaxation time (τ) was observed within 10 min and accelerated with increasing tem-
peratures. Based on the Maxwell model for viscoelastic fluids, the τ was linearly fitted
to the temperature based on the Arrhenius equation [40], and the results are shown in
Figure 4c. The activation energy (Ea) was calculated through fitting, resulting in 31 kJ/mol,
which value is much lower than that of all-PAC latex networks crosslinked by DTDA, as
prepared by Gong et al. [41]. The difference may stem from their low relative contents of
AAEM/DTDA, which were limited to within 7%, accounting for the total weight of PAC.
In this research, the dosage of the AAEM/DADA was not significantly increased in relation
to the total resin weight (PU + PAC). But, since the post-curing was contributed mainly by
the PAC phase, the possibility of locally increased DCB exchange would be the reason for
the accelerated chain exchange reactions.

The microphase structure is illustrated by the tanδ–temperature spectra in Figure 4d,
characterized by DMA. It can be observed that all the curves exhibited three transitions.
The peak in the range of −10 ◦C to 0 ◦C is ascribed to the glass transition temperature (Tg)
of the PAC phase, denoted as Tg, PAC. The peak near 60 ◦C is assigned to the Tg of the hard
segmental phase of PU (Tg, PUH). The small sub-peak near −40 ◦C is assigned to the Tg
of the soft segmental phase of PU (Tg, PUS). Tg, PUS remained almost unchanged with the
increase in x%, indicating that the cross-linking had little effect on the soft segmental phases.
The position of Tg, PUH stood also at almost the same place, but the peak broadened with
the increase in x%. At the same time, the Tg, PAC gradually shifted toward Tg, PUH. Both the
shortened distance between the two peaks and the elevation of the valley between them
suggest suppression on the microphase separation of PAC and the hard segmental domains
of PU. In this way, the composite film exhibited was more and more similar to the latex
interpenetration network (LIPN), and the damping temperature range with tan δ > 0.3 [42]
spanned from −8 ◦C to above 100 ◦C for the sample of WPUA–AAEM–DTDA 20%. The
corresponding storage modulus spectra are provided in Figure S5.

To further illustrate the contribution of post-curing, two other samples were prepared
with DTDA fixed only in the PU phase (WPU–2%DTDA–PAC) through copolymerization,
and in both PAC and PU phases (WPU–2%DTDA–PAC–DTDA 20%) through the post-
curing of WPU–2%DTDA–PAC by DTDA, respectively. The comparison results are shown
in Figure 4e. It can be seen that the Tg, PUH peak moved to the highest temperature, and
the most distinctive three peaks were observed on the sample of WPU–2%DTDA–PAC
without post-curing. In comparison with WPU–2%DTDA–PAC, the formation of the
post-curing network and its forced compatibilization effects on the three phases in WPUA–
AAEM–DTDA 20% are indicated by the shifts of the peaks, with Tg, PUH and Tg, PAC to
lower temperatures, and Tg, PUS to higher temperatures. However, the most extensive
suppression of the phase-separation was seen in the sample of WPU–2%DTDA–PAC–
DTDA. The increased component similarity as well as the chain exchange through the S–S
metathesis resulted in the merger of the peaks of Tg, PUH and Tg, PAC into a strong and
broad one in the spectrum.

2.3. The Mechanical Properties, Self-Healing and Reprocessing

The mechanical properties and self-healing of WPUA–AAEM–DTDA x% films are
depicted in Figure 5. The typical stress-strain curves are seen in Figure 5a. In comparison
with WPUA–AAEM 0%, all the post-cured films showed an increased strength/modulus
and decreased elongation at break. The quantitative variations are plotted in Figure 5b as a
function of x%. The tensile strength of WPUA–AAEM 0% was 7.9 MPa, with an elongation
at break of 874%. The enhanced strength (10.4 MPa) and the minimum elongation at break
(359%) was reached at x% = 5 as the effect of the post-curing. However, as x% further
increased, the elongation at break gradually increased. The tensile strength also increased,
reached the maximum of 10.6 MPa at x% = 10%, and descended to ~ 10 MPa at x% = 15%
and 20%. The enhancement in elongation at break would be related to the increased content
of flexible S–S bonds. Moreover, their dynamic exchange would also contribute to the
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energy dissipation. It can be seen in Figure 5c that all the other samples showed an elevated
fracture energy compared to that of x% = 5%, calculated through the integration on the
underline area of the tensile curves. For the sample with x% = 20%, the modulus was
almost doubled in comparison with that of x% = 0%, but with no sacrifice in the toughness
indicated by the quite close fracture energies of the two samples. In this way, the post-
curing of AAEM–DTDA on the composite WPUA latex tends to strike a balance between
the improvements in strength and toughness.

Molecules 2023, 28, x FOR PEER REVIEW  8  of  14 
 

 

reached the maximum of 10.6 MPa at x% = 10%, and descended to ~ 10 MPa at x% = 15% 

and 20%. The enhancement in elongation at break would be related to the increased con-

tent of flexible S−S bonds. Moreover, their dynamic exchange would also contribute to the 

energy dissipation. It can be seen in Figure 5c that all the other samples showed an ele-

vated fracture energy compared to that of x% = 5%, calculated through the integration on 

the underline area of the tensile curves. For the sample with x% = 20%, the modulus was 

almost doubled in comparison with that of x% = 0%, but with no sacrifice in the toughness 

indicated by the quite close fracture energies of the two samples. In this way, the post-

curing of AAEM–DTDA on the composite WPUA latex tends to strike a balance between 

the improvements in strength and toughness. 

 

Figure 5. (a) Stress–strain curves of WPUA–AAEM–DTDA x% films. (b) Tensile strength and elon-

gation at break of WPUA–AAEM–DTDA x% films. (c) Young’s modulus and breaking energy of 

WPUA–AAEM–DTDA x% films. 

All the samples were able to recover from the cut-off damage at 70 °C, except AAEM–

DTDA (x% = 0). The process is illustrated in Figure S4b. It can be seen in Figure 6a that the 

mechanical performance of  the self-healed sample with x% = 5 was quite poor despite 

having almost the best original strength. The shapes of the stress–strain curves for the self-

healed samples with x% = 10% were close to the original ones, and the strength as well as 

the strain increased with the elongation of the self-healing time, following the trace of the 

original stress–strain curve  in Figure 6b. Elevation  in  the curve slope was seen  for  the 

samples with x% = 15% (Figure 6c) and 20% (Figure 6d), suggesting the reconfiguration of 

the  composite  network  structures.  The  best  results  were  achieved  at  the  highest 

AAEM/DTDA content with x% = 20%, where a high elongation at break was observed 

closest to the original one, indicating the reconstruction of the dynamic network after two 

hours of self-healing. The stress–strain curves of the original and self-healed samples of 

WPU–2%DTDA–PAC are provided in Figure S6. It can be seen that the original strength 

of the films was enhanced to 15.3 MPa with the elongation at break of 976%. However, the 

consequently self-healed sample presented a strength of only 5.8 MPa with an elongation 

of 425%, much poorer  than  that of  the  self-healed WPUA–AAEM–DTDA 20%. WPU–

2%DTDA–PAC–DTDA 20% also showed poor mechanical performance after self-healing 

Figure 5. (a) Stress–strain curves of WPUA–AAEM–DTDA x% films. (b) Tensile strength and
elongation at break of WPUA–AAEM–DTDA x% films. (c) Young’s modulus and breaking energy of
WPUA–AAEM–DTDA x% films.

All the samples were able to recover from the cut-off damage at 70 ◦C, except AAEM–
DTDA (x% = 0). The process is illustrated in Figure S4b. It can be seen in Figure 6a that
the mechanical performance of the self-healed sample with x% = 5 was quite poor despite
having almost the best original strength. The shapes of the stress–strain curves for the
self-healed samples with x% = 10% were close to the original ones, and the strength as
well as the strain increased with the elongation of the self-healing time, following the
trace of the original stress–strain curve in Figure 6b. Elevation in the curve slope was
seen for the samples with x% = 15% (Figure 6c) and 20% (Figure 6d), suggesting the
reconfiguration of the composite network structures. The best results were achieved at
the highest AAEM/DTDA content with x% = 20%, where a high elongation at break was
observed closest to the original one, indicating the reconstruction of the dynamic network
after two hours of self-healing. The stress–strain curves of the original and self-healed
samples of WPU–2%DTDA–PAC are provided in Figure S6. It can be seen that the original
strength of the films was enhanced to 15.3 MPa with the elongation at break of 976%.
However, the consequently self-healed sample presented a strength of only 5.8 MPa with
an elongation of 425%, much poorer than that of the self-healed WPUA–AAEM–DTDA
20%. WPU–2%DTDA–PAC–DTDA 20% also showed poor mechanical performance after
self-healing in Figure S7. However, improvements in the mechanical performance were not
observed like that in the WPU–2%DTDA–PAC.
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The self-healing efficiencies of WPUA–AAEM–DTDA x% films on the tensile strength
(Hσ) and the elongation at break (Hε) after 2 h of healing at 70 ◦C are plotted as a function
of x% in Figure 6e. The efficiencies increased simultaneously with the increasing x%. It
can be observed that both the Hσ and Hε at x% = 5% were less than 20%. The increasing
of Hσ and Hε to ~80% for x = 10% and 15% clearly suggests that the increased contents of
dynamic S–S bonds facilitate the reconstruction of the WPUA post-curing network from the
damage. At x% = 20%, the Hσ of the corresponding film exceeded 100%, and Hε reached
95%, demonstrating an excellent self-healing ability.

The stress–strain curves of the WPUA–AAEM–DTDA 20% films after different re-
processing cycles are shown in Figure 7a. Although not as much as that of the original
film, the reprocessed samples all maintained 600% of elongation at break, suggesting that
the dynamic exchange of the reversible interaction was adaptable enough to largely sus-
tain their networks. The degeneration in the film’s strength would possibly be related to
the changes in microphase separation in competition with the ordered, disordered and
hybrid H-bonding interactions in the composite film during the reprocessing. The fail-
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ure of the permanent cross-linking points between the PU and PAC could also possibly
take some responsibility for the decreased performance. The Hσ and Hε after different
crushing–reprocessing circles are plotted in Figure 7b. It can be observed that the Hε of the
WPUA–AAEM–DTDA 20% film remained at 80% even after three reprocessing cycles.
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3. Materials and Methods
3.1. Materials

Isophorone diisocyanate (IPDI) was purchased from Bayer, GER. Polytetramethylene
ether glycol (PTMG, 2000 g/mol) was purchased from Jiangsu Jiaren Chemical Works Co.,
Ltd., Beijing, China. AAEM, DTDA and N-Methyl-2-pyrrolidone (NMP) were purchased
from Shanghai Aladdin Biochemical Technology Co., Ltd., Beijing, China. 2-hydroxyethyl
methacrylate (HEMA) and 2,2-di(hydroxymethyl) butyric acid (DMBA) were purchased
from Shanghai Macklin Biochemical Technology Co., Ltd., Beijing, China. 1,4-butanediol
(BDO) was purchased from Tianjin Fuchen Chemical Reagent Co., Ltd., Beijing, China.
Dibutyltin dilaurate (DBTDL) was purchased from Tianjin Guangfu Technology Devel-
opment Co., Ltd., Beijing, China. Methyl methacrylate (MMA) and 2-ethylhexyl acrylate
(EHA) were purchased from Qilu Petrochemical Co., Ltd., Beijing, China. Hexadecane
(HD) was purchased from Hubei Xinrunde Chemical Co., Ltd., Beijing, China. Self-made
deionized (DI) water was used in the synthesis. All other solvents and emulsifiers were
commercial products purchased from the market.

3.2. Characterization

The particle size and distribution were tested by the dynamic laser scattering (DLS)
of a Zetasizer NanoZS, Malvern, UK. Fourier transform Infrared (FTIR) spectra were
recorded by a Tensor 37, Bruker, Billerica, MA, USA. Attenuated total reflection FTIR
(ATR–FTIR) spectra were collected using a Nicolet IS5, Thermo Fisher, Waltham, MA,
USA. The morphology of WPUA latex particles was observed by an HT-7700 (Hitachi,
Tokyo, Japan) transmission electron microscope (TEM). The latex was stained by 3 wt. % of
sodium phosphotungstate solution before characterization. The optical stability analysis
was carried out on a Turbiscan Lab, Formulation, FR. The backscattering (BS%) of the
latex to an 880 nm near-infrared light laser was recorded per 40 microns along the height
of the sample tube, and the scan was repeated every 30 min. The test temperature was
60 ◦C. UV–visible (UV–vis) spectra were recorded on a UV–3150, Shimadzu, Kyoto, Japan.
Dynamic mechanical analysis (DMA) was carried out on a Q800, TA, US. The film samples
were preloaded with a force of 0.01 N before characterization. The spectra were recorded
in the temperature range from −100 ◦C to 100 ◦C at the ramping rate of 3 ◦C/min and
frequency of 1 Hz. The stress relaxation was characterized by this DMA at a strain of 3%.
The tensile properties of the films were tested using a CMT4304 electronic universal testing
machine in accordance with the method specified in GB/T 1040.3–2006 [43].
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3.3. Synthesis of WPUA Composite Latex

Two steps were involved in the synthesis.
Step 1. The synthesis of methacrylate end-capped waterborne polyurethane (MWPU)

dispersion.
In a typical synthesis, 11.11 g of IPDI, 20 g of PTMG and 2.44 g of DMBA dissolved

in ~3 g of NMP were charged in a 500 mL four-neck round-bottom flask equipped with a
mechanical stirrer, a thermometer, a reflux condenser, a nitrogen inlet and an outlet. The
system was purged with N2 for 30 min before the addition of 0.2 wt. % of DBTDL. The
reaction temperature was then raised to 80 ◦C. After 3 h, 1.36 g of BDO was added, and
the reaction was continued for 1 h. A small amount of acetone was added for viscosity
adjustment. The temperature was then reduced to 70 ◦C, and 2.34 g of HEMA was added
to end-cap the residual NCO. After 2 h, the reaction temperature was lowered to 50 ◦C, and
1.67 g of TEA was added for neutralization in 30 min. An appropriate amount of water was
added under accelerated stirring for 30 min of emulsification. The dispersion was treated
under vacuum to remove the small amount of solvent. The final MWPU dispersion had a
solid content of ~30%.

Step 2. The synthesis of WPUA composite latex.
In the synthesis, 5.5 g of MMA, 11 g of EHA, and proper amounts of HD and AAEM

were added to the aqueous solution of the emulsifiers. Under constant stirring at 500 rpm,
the mixture was thoroughly dispersed for 10 min. Subsequently, the prepared MWPU
dispersion was added to the mixture, and the stirring continued for 10 min, resulting in the
coarse emulsion. The miniemulsion was obtained after the coarse emulsion was sonicated
for 5 min using a sonication tip at 50% power, with the operation manner of 30 s on and 15 s
off. The resulting miniemulsion was then transferred to a 500 mL four-neck round-bottom
flask equipped with a mechanical stirrer, a thermometer, a reflux condenser, a nitrogen inlet
and an outlet. The temperature was raised to 80 ◦C, and the initiator of APS was added.
Four hours later, the temperature was lowered to room temperature. The pH was adjusted
to 8–9 using ammonia water. The product was named as WPUA–AAEM x%, where x% is
designated as the mass fraction of AAEM in the acrylic monomers fed in the second step.
The conversion of the acrylic monomers was determined by the gravimetric method.

3.4. Film Formation and Post-Curing

DTDA was dissolved in a small amount of ethanol and added to the latex of WPUA–
AAEM x% in the molar ratio of AAEM:DTDA = 2:1. The mixture was cast into a PTFE mold
after 15 min of magnetic stirring. The film was dried at room temperature for 3 h before
it was transferred to an oven and further dried at 60 ◦C for 24 h. The films were named
WPUA–AAEM–DTDA x%, where x% represents the mass fraction of AAEM in the acrylic
monomers fed in the second step, as in WPUA–AAEM x%.

3.5. The Self-Healing and Reprocessing

At room temperature, dumbbell-shaped specimens prepared for tensile tests were cut
off from the center using a surgical scalpel. The severed sections were reattached and fixed
with small clamps. The temporarily attached specimens were placed in an oven at 70 ◦C
for a designated period. Healed specimens were obtained after 12 h of cooling at room
temperature. The healing efficiency (H) was evaluated based on tensile strength (σ) and
fracture elongation (ε), as provided in Equations (1) and (2), respectively.

Hσ = σ/σ0 × 100% (1)

Hε = ε/ε0 × 100% (2)

where σ0 and ε0 represent the initial tensile strength and fracture elongation of the original
specimens, while σ and ε denote the tensile strength and fracture elongation of the repaired
specimens, respectively.
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For the reprocessing test, the film was fragmented at first. The pieces were collected
and hot-pressed for 2 min at 120 ◦C, 5 MPa. The recovery efficiencies were also evaluated
using Equations (1) and (2).

4. Conclusions

A series of WPUA–AAEM x% composite core–shell latexes were synthesized by
miniemulsion polymerization with the incorporation of AAEM. The introduction of dy-
namic disulfide bonds into the composite network was achieved by adding DTDA to the
dispersion for the post-curing of the latex film via the keto–amine condensation, as sug-
gested by the FTIR, TGA and DMA characterization results. The formation of the aromatic
S–S incorporated network did not show a strong impact on the thermal stability, but forced
compatibilization was observed on the different microphases of PU and PAC. The associa-
tive type of dynamic network was indicated by the swelling–relaxation time behavior in
the moderate temperature range (30 ◦C to 70 ◦C). At low dosages of the AAEM–DTDA,
the post-curing effect was mainly seen on the improvement in the tensile strength and
solvent resistance, similar to traditional curing systems. However, the dynamic exchange
would dominate the behavior of the post-cured latex films as the x% increased to high
levels. Besides the contents, the location of the dynamic S–S in the composite latex would
also influence the recovery of the dynamic network. Under the optimum condition, with
20% of AAEM/DTDA incorporated mainly in the PAC phase, the film exhibited a tensile
strength of 9.9 MPa and an elongation at break of 734%. It was able to self-heal from the
cut-off damage at 70 ◦C for 2 h, showing a high self-healing efficiency greater than 95%,
and more than 80% retention of the mechanical performance was observed through two
cycles of crushing–reprocessing.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28248122/s1, Figure S1: (a) The FTIR spectra of MWPU
and WPU. (b) The zoomed-in spectra of MWPU and WPU. Figure S2: ATR–FTIR spectra of WPUA–
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