An Aptamer-Based Lateral Flow Biosensor for Low-Cost, Rapid and Instrument-Free Detection of Ochratoxin A in Food Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Assembly and Working Principle of the Lateral Flow Aptasensor
2.2. Optimization of Experimental Parameters
2.3. Analytical Performance
2.4. Application of the Lateral Flow Aptasensor to Food Samples
3. Materials, Equipment and Methods
3.1. Reagents and Materials
3.2. Equipment
3.3. Preparation of the AuNPs and the AuNP-Aptamer Conjugate
3.4. Preparation of Streptavidin–Biotin–DNA Probe Conjugates for Test and Control Lines
3.5. Preparation of PVA Barrier Solution
3.6. Preparation of the Lateral Flow Strip Components
3.7. Sample Preparation for OTA Detection
3.8. Detection of OTA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OTA | ochratoxin A |
AuNPs | gold nanoparticles |
NC | nitrocellulose |
IARC | International Agency for Research on Cancer |
MLs | maximum limits |
TLC | thin-layer chromatography |
HPLC | high-performance liquid chromatography |
GC | gas chromatography |
SELEX | Systematic Evolution of Ligands by EXponential enrichment |
AFB1 | aflatoxin B1 |
FB1 | fumonisin B1 |
DON | deoxynivalenol |
PEG | polyethylene glycol |
PVP | polyvinylpyrrolidone |
PVA | poly vinyl alcohol |
BSA | bovine serum albumin |
RSD | relative standard deviation |
LOD | limit of detection |
QDs | quantum dots |
AgNPs | silver nanoparticles |
References
- Van der Merwe, K.J.; Steyn, P.S.; Fourie, L.; Scott, D.B.; Theron, J.J. A toxic metabolite produced by Aspergillus ochraceus Wilh. Nature 1965, 205, 1112–1113. [Google Scholar] [CrossRef] [PubMed]
- Atumo, S. A Review of Ochratoxin A Occurrence, Condition for the Formation and Analytical Methods. Int. J. Agric. Sc. Food Technol. 2020, 6, 180–185. [Google Scholar]
- Raiola, A.; Tenore, G.C.; Manyes, L.; Meca, G.; Ritieni, A. Risk analysis of main mycotoxins occurring in food for children: An overview. Food Chem. Toxicol. 2015, 84, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Gao, D.; Sun, F. Nanomaterial-based aptamer biosensors for ochratoxin A detection: A review. Anal. Bioanal. Chem. 2022, 414, 2953–2969. [Google Scholar] [CrossRef] [PubMed]
- Roland, A.; Bros, P.; Bouisseau, A.; Cavelier, F.; Schneider, R. Analysis of ochratoxin A in grapes, musts and wines by LC–MS/MS: First comparison of stable isotope dilution assay and diastereomeric dilution assay methods. Anal. Chim. Acta 2014, 818, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Shibata, H.; Suzuki, K.; Citterio, D. Toward practical application of paper-based microfluidics for medical diagnostics: State-of-the-art and challenges. Lab Chip 2017, 17, 1206–1249. [Google Scholar] [CrossRef] [PubMed]
- Bahadir, E.; Sezgintürk, M. Lateral flow assays: Principles, designs and labels. Trends Anal. Chem. 2016, 82, 286–306. [Google Scholar] [CrossRef]
- Meulenberg, E.P. Immunochemical methods for ochratoxin A detection: A review. Toxins 2012, 4, 244–266. [Google Scholar] [CrossRef]
- Goud, K.Y.; Reddy, K.K.; Satyanarayana, M.; Kummari, S.; Gobi, K.V. A review on recent developments in optical and electrochemical aptamer-based assays for mycotoxins using advanced nanomaterials. Microchim. Acta 2019, 187, 29. [Google Scholar] [CrossRef]
- Sun, H.; Zu, Y. A highlight of recent advances in aptamer technology and its application. Molecules 2015, 20, 11959–11980. [Google Scholar] [CrossRef]
- Bazin, I.; Nabais, E.; Lopez-Ferber, M. Rapid visual tests: Fast and reliable detection of ochratoxin A. Toxins 2010, 2, 2230–2241. [Google Scholar] [CrossRef] [PubMed]
- Ha, T.H. Recent Advances for the Detection of Ochratoxin A. Toxins 2015, 7, 5276–5300. [Google Scholar] [CrossRef] [PubMed]
- Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Tombelli, S.; Minunni, M.; Mascini, M. Analytical applications of aptamers. Biosens. Bioelectron. 2005, 20, 2424–2434. [Google Scholar] [CrossRef] [PubMed]
- Ilgu, M.; Nilsen-Hamilton, M. Aptamers in analytics. Analyst 2016, 141, 1551–1568. [Google Scholar] [CrossRef] [PubMed]
- Rozenbluma, G.T.; Lopeza, V.G.; Vitullo, A.D.; Radrizzani, M. Aptamers: Current challenges and future prospects. Expert Opin. Drug Dis. 2016, 11, 127–135. [Google Scholar] [CrossRef]
- Lee, J.; So, H.; Jeon, E.; Chang, H.; Won, K.; Kim, Y. Aptamers as molecular recognition elements for electrical nanobiosensors. Anal. Bioanal. Chem. 2008, 390, 1023–1032. [Google Scholar] [CrossRef]
- Majdinasab, M.; Badea, M.; Marty, J.L. Aptamer-Based Lateral Flow Assays: Current Trends in Clinical Diagnostic Rapid Tests. Pharmaceuticals 2022, 15, 90. [Google Scholar] [CrossRef]
- Song, S.; Wang, L.; Li, J.; Zhao, J.; Fan, C. Aptamer-based biosensors. Trends Anal. Chem. 2008, 27, 108–117. [Google Scholar] [CrossRef]
- Alam, N.; Tong, L.; He, Z.; Tang, R.; Ahsan, L.; Ni, Y. Improving the sensitivity of cellulose fiber-based lateral flow assay by incorporating a water-dissolvable polyvinyl alcohol dam. Cellulose 2021, 28, 8641–8651. [Google Scholar] [CrossRef] [PubMed]
- Harpaz, D.; Axelrod, T.; Yitian, A.; Eltzov, E.; Marks, R.S.; Tok, A. Dissolvable Polyvinyl-Alcohol Film, a Time-Barrier to Modulate Sample Flow in a 3D-Printed Holder for Capillary Flow Paper Diagnostics. Materials 2019, 12, 343. [Google Scholar] [CrossRef] [PubMed]
- Christopoulou, N.; Kalogianni, D.; Christopoulos, T. Macromolecular crowding agents enhance the sensitivity of lateral flow immunoassays. Biosens. Bioelectron. 2022, 218, 114737. [Google Scholar] [CrossRef] [PubMed]
- Amini, M.; Pourmand, M.R.; Faridi-Majidi, R.; Heiat, M.; Mohammad Nezhady, M.A.; Safari, M.; Noorbakhsh, F.; Baharifar, H. Optimising effective parameters to improve performance quality in lateral flow immunoassay for detection of PBP2a in methicillin-resistant Staphylococcus aureus (MRSA). J. Exp. Nanosci. 2020, 15, 266–279. [Google Scholar] [CrossRef]
- Lu, S.Y.; Lin, C.; Li, Y.S.; Zhou, Y.; Meng, X.M.; Yu, S.Y.; Li, Z.H.; Li, L.; Ren, H.L.; Liu, Z.S. A screening lateral flow immunochromatographic assay for on-site detection of okadaic acid in shellfish products. Anal. Biochem. 2012, 422, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zong, Z.; Xu, J.; Yao, B.; Xu, Z.; Yao, L.; Chen, W. Recognition-Activated Primer-Mediated Exponential Rolling Circle Amplification for Signal Probe Production and Ultrasensitive Visual Detection of Ochratoxin A with Nucleic Acid Lateral Flow Strips. Anal. Chem. 2023, 95, 16398–16406. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ma, W.; Chen, W.; Liu, L.; Ma, W.; Zhu, Y.; Xu, L.; Kuang, H.; Xu, C. An aptamer-based chromatographic strip assay for sensitive toxin semi-quantitative detection. Biosens. Bioelectron. 2011, 26, 3059–3062. [Google Scholar] [CrossRef]
- Zhou, W.; Kong, W.; Dou, X.; Zhao, M.; Ouyang, Z.; Yang, M. An aptamer based lateral flow strip for on-site rapid detection of ochratoxin A in Astragalus membranaceus. J. Chromatogr. B 2016, 1022, 102–108. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, D.; Cui, S.; Li, C.; Yun, Z.; Zhang, J.; Sun, F. Design of a Signal-Amplified Aptamer-Based Lateral Flow Test Strip for the Rapid Detection of Ochratoxin A in Red Wine. Foods 2022, 11, 1598. [Google Scholar] [CrossRef]
- Velu, R.; DeRosa, M. Lateral flow assays for Ochratoxin A using metal nanoparticles: Comparison of “adsorption–desorption” approach to linkage inversion assembled nano-aptasensors (LIANA). Analyst 2018, 143, 4566–4574. [Google Scholar] [CrossRef]
- Zhang, G.; Zhu, C.; Huang, Y.; Yan, J.; Chen, A. A Lateral Flow Strip Based Aptasensor for Detection of Ochratoxin A in Corn Samples. Molecules 2018, 23, 291. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, W.; Ma, W.; Liu, L.; Ma, W.; Zhao, Y.; Zhu, Y.; Xu, L.; Kuang, H.; Xu, C. Fluorescent strip sensor for rapid determination of toxins. Chem. Commun. 2011, 47, 1574–1576. [Google Scholar] [CrossRef] [PubMed]
- Jin, B.; Yang, Y.; He, R.; Park, Y.; Lee, A.; Bai, D.; Li, F.; Lu, T.; Xu, F.; Lin, M. Lateral flow aptamer assay integrated smartphone-based portable device for simultaneous detection of multiple targets using upconversion nanoparticles. Sens. Actuat. B Chem. 2018, 276, 48–56. [Google Scholar] [CrossRef]
- Wu, S.; Liu, L.; Duan, N.; Wang, W.; Yu, Q.; Wang, Z. A test strip for ochratoxin A based on the use of aptamer-modified fluorescence upconversion nanoparticles. Microchim. Acta 2018, 185, 497. [Google Scholar] [CrossRef]
- Fu, Q.; Yuan, L.; Cao, F.; Zang, L.; Ji, D. Lateral flow strip biosensor based on streptavidin-coated gold nanoparticles with recombinase polymerase amplification for the quantitative point-of-care testing of Salmonella. Microchem. J. 2021, 171, 106859. [Google Scholar] [CrossRef]
- He, Y.; Liu, S.; Kong, L.; Liu, Z. A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005, 61, 2861–2866. [Google Scholar] [CrossRef]
Sample | Amount Added (ng/mL) | Amount Determined (ng mL−1) | % Recovery | % RSD (n = 3) |
---|---|---|---|---|
Beer | 0.1 | 0.104 ± 0.012 | 104 | 11.7 |
1 | 0.95 ± 0.11 | 95 | 11.1 | |
10.0 | 10.50 ± 0.36 | 105 | 3.4 | |
White wine | 0.1 | 0.096 ± 0.011 | 96 | 11.8 |
1 | 1.09 ± 0.04 | 109 | 3.7 | |
10.0 | 10.93 ± 0.85 | 109 | 7.8 | |
Rose wine | 0.1 | 0.104 ± 0.004 | 104 | 3.8 |
1 | 0.937 ± 0.035 | 94 | 3.7 | |
10.0 | 9.8 ± 1.1 | 98 | 11.3 | |
Red wine | 0.1 | 0.090 ± 0.003 | 90 | 3.3 |
1 | 0.977 ± 0.075 | 98 | 7.7 | |
10.0 | 9.07 ± 0.35 | 91 | 3.9 | |
Apple Juice | 0.1 | 0.114 ± 0.005 | 114 | 4.4 |
1 | 1.12 ± 0.05 | 112 | 4.0 | |
10.0 | 9.45 ± 0.21 | 95 | 2.2 | |
Milk (3.2% w/v) | 0.1 | 0.094 ± 0.007 | 94 | 7.0 |
1 | 0.95 ± 0.1 | 95 | 10.6 | |
10.0 | 9.07 ± 0.35 | 91 | 3.9 | |
Milk (0% w/v) | 0.1 | 0.105 ± 0.014 | 105 | 13.3 |
1 | 1.13 ± 0.04 | 113 | 3.6 | |
10.0 | 9.69 ± 0.32 | 97 | 3.3 |
Detection | Labels | Visual LOD (ng/mL) | Quantitative LOD (ng/mL) | Linear Range | Total Assay Time (min) | Use of Activated Aptamer | Complex Preparation of Biorecognition Conjugate | Samples | Reference |
---|---|---|---|---|---|---|---|---|---|
Colorimetry | AuNPs | 10−4 | 35 × 10−6 | 10−4–102 ng/mL | 200 | Yes | Yes | Corn, rice, coffee bean | [26] |
Colorimetry | AuNPs | 1 | 0.18 | 0–2.5 ng/mL | <10 | No | No | Red Wine | [27] |
Visual | AuNPs | 1 | - | - | 15 | Yes | No | Astragalus membranaceus | [28] |
Colorimetry | AuNPs | 0.4 | 0.04 | 0–0.4 ng/mL | 15 | No | No | Red Wine | [29] |
Colorimetry | AuNPs/ AgNPs | 0.25 | 1.6 | 0.02–25.4 ng/mL | 60 | No | Yes | - | [30] |
Fluorescence | Cy5 | - | 0.4 | 1–1000 ng/mL | 20 | No | No | Corn | [31] |
Fluorescence | QDs | 5 | 1.9 | 0–10 ng/mL | <15 | No | No | Red Wine | [32] |
Fluorescence | UCNPs | - | 3 | 0.01–50 μg/mL | 30 | No | Yes | Real water | [33] |
Fluorescence | UCNPs | - | 1.86 | 5-100 ng/mL | 15 | Yes | Yes | Wheat, Beer | [34] |
Colorimetry | AuNPs | 0.05 | 0.02 | 0.05–25 ng/mL | 20 | No | No | Beer, Wine, Apple juice, Milk | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mermiga, E.; Pagkali, V.; Kokkinos, C.; Economou, A. An Aptamer-Based Lateral Flow Biosensor for Low-Cost, Rapid and Instrument-Free Detection of Ochratoxin A in Food Samples. Molecules 2023, 28, 8135. https://doi.org/10.3390/molecules28248135
Mermiga E, Pagkali V, Kokkinos C, Economou A. An Aptamer-Based Lateral Flow Biosensor for Low-Cost, Rapid and Instrument-Free Detection of Ochratoxin A in Food Samples. Molecules. 2023; 28(24):8135. https://doi.org/10.3390/molecules28248135
Chicago/Turabian StyleMermiga, Electra, Varvara Pagkali, Christos Kokkinos, and Anastasios Economou. 2023. "An Aptamer-Based Lateral Flow Biosensor for Low-Cost, Rapid and Instrument-Free Detection of Ochratoxin A in Food Samples" Molecules 28, no. 24: 8135. https://doi.org/10.3390/molecules28248135
APA StyleMermiga, E., Pagkali, V., Kokkinos, C., & Economou, A. (2023). An Aptamer-Based Lateral Flow Biosensor for Low-Cost, Rapid and Instrument-Free Detection of Ochratoxin A in Food Samples. Molecules, 28(24), 8135. https://doi.org/10.3390/molecules28248135