Mild and Efficient One-Step Synthesis of Nitrogen-Doped Multistage Porous Carbon for High-Performance Supercapacitors
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. Materials
3.2. Preparation of N-Doped Porous Carbon
3.3. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Turner, J.M. The matter of a clean energy future. Science 2022, 376, 1361. [Google Scholar] [CrossRef]
- Zhu, Y.; Cheng, S.; Zhou, W.; Jia, J.; Yang, L.; Yao, M.; Wang, M.; Wu, P.; Luo, H.; Liu, M. Porous functionalized self-standing carbon fiber paper electrodes for high-performance capacitive energy storage. ACS Appl. Mater. Interfaces 2017, 9, 13173–13180. [Google Scholar] [CrossRef] [PubMed]
- Şahin, M.E.; Blaabjerg, F.; Sangwongwanich, A. A comprehensive review on supercapacitor applications and developments. Energies 2022, 15, 674. [Google Scholar] [CrossRef]
- Zhu, Y.; Ji, X.; Yang, L.; Jia, J.; Cheng, S.; Chen, H.; Wu, Z.-S.; Passarello, D.; Liu, M. Targeted synthesis and reaction mechanism discussion of Mo2C based insertion-type electrodes for advanced pseudocapacitors. J. Mater. Chem. A 2020, 8, 7819–7827. [Google Scholar] [CrossRef]
- Xu, B.; Yue, S.; Sui, Z.; Zhang, X.; Hou, S.; Cao, G.; Yang, Y. What is the choice for supercapacitors: Graphene or graphene oxide? Energy Environ. Sci. 2011, 4, 2826–2830. [Google Scholar] [CrossRef]
- El-Kady, M.F.; Shao, Y.; Kaner, R.B. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 2016, 1, 16033. [Google Scholar] [CrossRef]
- Ye, K.-H.; Liu, Z.-Q.; Xu, C.-W.; Li, N.; Chen, Y.-B.; Su, Y.-Z. MnO2/reduced graphene oxide composite as high-performance electrode for flexible supercapacitors. Inorg. Chem. Commun. 2013, 30, 1–4. [Google Scholar] [CrossRef]
- Wang, Q.; Yan, J.; Wei, T.; Feng, J.; Ren, Y.; Fan, Z.; Zhang, M.; Jing, X. Two-dimensional mesoporous carbon sheet-like framework material for high-rate supercapacitors. Carbon 2013, 60, 481–487. [Google Scholar] [CrossRef]
- Anagbonu, P.; Ghali, M.; Allam, A. Low-temperature green synthesis of few-layered graphene sheets from pomegranate peels for supercapacitor applications. Sci. Rep. 2023, 13, 15627. [Google Scholar] [CrossRef]
- Fisher, R.A.; Watt, M.R.; Ready, W.J. Functionalized carbon nanotube supercapacitor electrodes: A review on pseudocapacitive materials. ECS J. Solid State Sci. Technol. 2013, 2, M3170. [Google Scholar] [CrossRef]
- Samy, M.M.; Mohamed, M.G.; El-Mahdy, A.F.; Mansoure, T.H.; Wu, K.C.-W.; Kuo, S.-W. High-performance supercapacitor electrodes prepared from dispersions of tetrabenzonaphthalene-based conjugated microporous polymers and carbon nanotubes. ACS Appl. Mater. Interfaces 2021, 13, 51906–51916. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, H.; Gao, Y.; Wan, C. Cellulose-derived carbon aerogels: A novel porous platform for supercapacitor electrodes. Mater. Des. 2022, 219, 110778. [Google Scholar] [CrossRef]
- Kalpana, D.; Omkumar, K.; Kumar, S.S.; Renganathan, N. A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor. Electrochim. Acta 2006, 52, 1309–1315. [Google Scholar] [CrossRef]
- Vozniakovskii, A.A.; Smirnova, E.A.; Apraksin, R.V.; Kidalov, S.V.; Voznyakovskii, A.P. Use of Few-Layer Graphene Synthesized under Conditions of Self-Propagating High-Temperature Synthesis for Supercapacitors Applications. Nanomaterials 2023, 13, 2368. [Google Scholar] [CrossRef] [PubMed]
- Kil, H.-J.; Yun, K.; Yoo, M.-E.; Kim, S.; Park, J.-W. Solution-processed graphene oxide electrode for supercapacitors fabricated using low temperature thermal reduction. RSC Adv. 2020, 10, 22102–22111. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Liu, P.; Wang, J.; Liu, C.; Zhang, S.; Tian, Y.; Zhang, F.; Wang, L.; Cao, L.; Zhang, J. In Situ N, O Co-Doped Nanoporous Carbon Derived from Mixed Egg and Rice Waste as Green Supercapacitor. Molecules 2023, 28, 6543. [Google Scholar] [CrossRef] [PubMed]
- Karnan, M.; Subramani, K.; Sudhan, N.; Ilayaraja, N.; Sathish, M. Aloe vera derived activated high-surface-area carbon for flexible and high-energy supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 35191–35202. [Google Scholar] [CrossRef]
- Ahmed, S.; Ahmed, A.; Rafat, M. Supercapacitor performance of activated carbon derived from rotten carrot in aqueous, organic and ionic liquid based electrolytes. J. Saudi Chem. Soc. 2018, 22, 993–1002. [Google Scholar] [CrossRef]
- Xue, W.; Xing, L.; Daoyan, Z.; Jun, W. Adsorption and desorption performance of modified tobacco stalks on Congo Red in aqueous solution. Chin. J. Environ. Eng. 2016, 10, 7007–7011. [Google Scholar]
- Jiang, B.; Cao, L.; Yuan, Q.; Ma, Z.; Huang, Z.; Lin, Z.; Zhang, P. Biomass straw-derived porous carbon synthesized for supercapacitor by ball milling. Materials 2022, 15, 924. [Google Scholar] [CrossRef]
- Tan, H.; Fan, Y.; Pan, X.; Chen, S.; Tao, H.; Yang, D.; Zhang, W.; Li, Z. Fabrication of tobacco-stem-derived hierarchical porous carbon via synergistic gas exfoliation effect for high-performance supercapacitors. Ind. Crops Prod. 2023, 191, 115981. [Google Scholar] [CrossRef]
- Shiraishi, S. Electric double layer capacitors. In Carbon Alloys; Elsevier: Amsterdam, The Netherlands, 2003; pp. 447–457. [Google Scholar]
- Yin, Y.; Liu, Q.; Wang, J.; Zhao, Y. Recent insights in synthesis and energy storage applications of porous carbon derived from biomass waste: A review. Int. J. Hydrogen Energy 2022, 47, 39338–39363. [Google Scholar] [CrossRef]
- Zhao, Y.-Q.; Lu, M.; Tao, P.-Y.; Zhang, Y.-J.; Gong, X.-T.; Yang, Z.; Zhang, G.-Q.; Li, H.-L. Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. J. Power Sources 2016, 307, 391–400. [Google Scholar] [CrossRef]
- Ismagilov, Z.R.; Shalagina, A.E.; Podyacheva, O.Y.; Ischenko, A.V.; Kibis, L.S.; Boronin, A.I.; Chesalov, Y.A.; Kochubey, D.I.; Romanenko, A.I.; Anikeeva, O.B. Structure and electrical conductivity of nitrogen-doped carbon nanofibers. Carbon 2009, 47, 1922–1929. [Google Scholar] [CrossRef]
- Zou, K.; Deng, Y.; Chen, J.; Qian, Y.; Yang, Y.; Li, Y.; Chen, G. Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors. J. Power Sources 2018, 378, 579–588. [Google Scholar] [CrossRef]
- Yuan, Q.; Ma, Z.; Chen, J.; Huang, Z.; Fang, Z.; Zhang, P.; Lin, Z.; Cui, J. N,S-codoped activated carbon material with ultra-high surface area for high-performance supercapacitors. Polymers 2020, 12, 1982. [Google Scholar] [CrossRef] [PubMed]
- Shang, Z.; An, X.; Zhang, H.; Shen, M.; Baker, F.; Liu, Y.; Liu, L.; Yang, J.; Cao, H.; Xu, Q. Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor. Carbon 2020, 161, 62–70. [Google Scholar] [CrossRef]
- Guan, L.; Pan, L.; Peng, T.; Gao, C.; Zhao, W.; Yang, Z.; Hu, H.; Wu, M. Synthesis of biomass-derived nitrogen-doped porous carbon nanosheests for high-performance supercapacitors. ACS Sustain. Chem. Eng. 2019, 7, 8405–8412. [Google Scholar] [CrossRef]
- Nazir, G.; Rehman, A.; Park, S.-J. Sustainable N-doped hierarchical porous carbons as efficient CO2 adsorbents and high-performance supercapacitor electrodes. J. CO2 Util. 2020, 42, 101326. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, Y.; Wang, L.; Chen, Y.; Gao, S. Hierarchical porous biomass-derived carbon framework with ultrahigh surface area for outstanding capacitance supercapacitor. Renew. Energy 2021, 179, 1826–1835. [Google Scholar] [CrossRef]
- Mitravinda, T.; Anandan, S.; Sharma, C.S.; Rao, T.N. Design and development of honeycomb structured nitrogen-rich cork derived nanoporous activated carbon for high-performance supercapacitors. J. Energy Storage 2021, 34, 102017. [Google Scholar] [CrossRef]
- Chen, X.Y.; Chen, C.; Zhang, Z.J.; Xie, D.H.; Deng, X.; Liu, J.W. Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. J. Power Sources 2013, 230, 50–58. [Google Scholar] [CrossRef]
- Zhang, T.; Walawender, W.P.; Fan, L.; Fan, M.; Daugaard, D.; Brown, R. Preparation of activated carbon from forest and agricultural residues through CO2 activation. Chem. Eng. J. 2004, 105, 53–59. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Guo, W.; Tian, K.; Zhang, J.; Zhang, B.; Li, X.; Wang, H. Activation-induced bowl-shaped nitrogen and oxygen dual-doped carbon material and its excellent supercapacitance. J. Mater. Sci. Technol. 2023, 160, 1–8. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Y.; Hu, Z.; Liu, F.; Xiao, G.; Zhao, H.; Zhu, J.; Liu, Z. Facile preparation and boosted electrochemical properties of carbon/carbon composite electrodes for supercapacitors. Energy Technol. 2023, 11, 2300027. [Google Scholar] [CrossRef]
- Liao, Y.; Shang, Z.; Ju, G.; Wang, D.; Yang, Q.; Wang, Y.; Yuan, S. Biomass Derived N-Doped Porous Carbon Made from Reed Straw for an Enhanced Supercapacitor. Molecules 2023, 28, 4633. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.; Xu, Z.; Sun, Y.; He, M.; Hou, D.; Cao, X.; Tsang, D.C. Critical impact of nitrogen vacancies in nonradical carbocatalysis on nitrogen-doped graphitic biochar. Environ. Sci. Technol. 2021, 55, 7004–7014. [Google Scholar] [CrossRef]
- Wang, J.; Duan, X.; Gao, J.; Shen, Y.; Feng, X.; Yu, Z.; Tan, X.; Liu, S.; Wang, S. Roles of structure defect, oxygen groups and heteroatom doping on carbon in nonradical oxidation of water contaminants. Water Res. 2020, 185, 116244. [Google Scholar] [CrossRef]
- Hulicova-Jurcakova, D.; Seredych, M.; Lu, G.Q.; Bandosz, T.J. Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 2009, 19, 438–447. [Google Scholar] [CrossRef]
- Yu, X.; He, Z.; Liu, C.; Mishra, D.D.; Hu, Y.; Mei, T.; Zhang, Z.; Chen, Z.; Wang, X. Design and synthesis of Mo2C/N, S co-doped porous carbon composites with enhanced electrochemical performance for sodium-ion batteries. J. Alloys Compd. 2022, 901, 163618. [Google Scholar] [CrossRef]
- Zhu, L.; Shen, F.; Smith Jr, R.L.; Yan, L.; Li, L.; Qi, X. Black liquor-derived porous carbons from rice straw for high-performance supercapacitors. Chem. Eng. J. 2017, 316, 770–777. [Google Scholar] [CrossRef]
- Yakaboylu, G.A.; Jiang, C.; Yumak, T.; Zondlo, J.W.; Wang, J.; Sabolsky, E.M. Engineered hierarchical porous carbons for supercapacitor applications through chemical pretreatment and activation of biomass precursors. Renew. Energy 2021, 163, 276–287. [Google Scholar] [CrossRef]
- Dai, C.; Wan, J.; Geng, W.; Song, S.; Ma, F.; Shao, J. KOH direct treatment of kombucha and in situ activation to prepare hierarchical porous carbon for high-performance supercapacitor electrodes. J. Solid State Electrochem. 2017, 21, 2929–2938. [Google Scholar] [CrossRef]
- Kitenge, V.; Tarimo, D.; Oyedotun, K.; Rutavi, G.; Manyala, N. Facile and sustainable technique to produce low-cost high surface area mangosteen shell activated carbon for supercapacitors applications. J. Energy Storage 2022, 56, 105876. [Google Scholar] [CrossRef]
- Zhu, Y.; Zheng, S.; Lu, P.; Ma, J.; Das, P.; Su, F.; Cheng, H.-M.; Wu, Z.-S. Kinetic regulation of MXene with water-in-LiCl electrolyte for high-voltage micro-supercapacitors. Natl. Sci. Rev. 2022, 9, nwac024. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.-P.; Huang, L.; Gao, X.; Cheng, Y.; Yao, B.; Hu, Z.; Wan, J.; Xiao, X.; Zhou, J. Activated carbon derived from melaleuca barks for outstanding high-rate supercapacitors. Nanotechnology 2015, 26, 304004. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Zhang, F.; Hu, J.; Wang, H.; Yang, S.; Liu, H. Co-pyrolysis of sewage sludge and waste tobacco stem: Gas products analysis, pyrolysis kinetics, artificial neural network modeling, and synergistic effects. Bioresour. Technol. 2023, 389, 129816. [Google Scholar] [CrossRef]
- Gao, F.; Shao, G.; Qu, J.; Lv, S.; Li, Y.; Wu, M. Tailoring of porous and nitrogen-rich carbons derived from hydrochar for high-performance supercapacitor electrodes. Electrochim. Acta 2015, 155, 201–208. [Google Scholar] [CrossRef]
- Kim, M.-J.; Choi, S.W.; Kim, H.; Mun, S.; Lee, K.B. Simple synthesis of spent coffee ground-based microporous carbons using K2CO3 as an activation agent and their application to CO2 capture. Chem. Eng. J. 2020, 397, 125404. [Google Scholar] [CrossRef]
- Jain, A.; Ghosh, M.; Krajewski, M.; Kurungot, S.; Michalska, M. Biomass-derived activated carbon material from native European deciduous trees as an inexpensive and sustainable energy material for supercapacitor application. J. Energy Storage 2021, 34, 102178. [Google Scholar] [CrossRef]
Samples | SBET (m2·g−1) | Vtotal (cm3·g−1) | Vmeso (cm3·g−1) | Vmicro (cm3·g−1) | Vmeso/Vtotal (%) | Dp (nm) |
---|---|---|---|---|---|---|
YAC | 1110 | 0.70 | 0.15 | 0.56 | 21.95 | 2.52 |
N-YAC0.5 | 2367 | 1.53 | 0.71 | 0.98 | 46.49 | 2.59 |
N-YAC1 | 1773 | 1.29 | 0.85 | 0.73 | 65.72 | 2.91 |
N-YAC2 | 670 | 0.45 | 0.21 | 0.30 | 47.05 | 2.68 |
Sample | Total Nitrogen (at. %) | Percentage of Components (%) | |||
---|---|---|---|---|---|
N-6 | N-5 | N-Q | N-X | ||
YAC | 0.54 | 44 | 24 | 12 | 20 |
N-YAC0.5 | 1.85 | 18 | 42 | 40 | - |
Materials | Activation Method | SSA (m2·g−1) | Electrolyte | Capacitance (F·g−1) | Ref. |
---|---|---|---|---|---|
Pine nutshell | KOH + melamine | 1847 | 6 M KOH | 324 (at 0.05 A·g−1) | [29] |
Houttuynia | KOH + melamine | 2090 | 6 M KOH | 473.5 (at 1 A·g−1) | [28] |
Reed straw | KOH + melamine | 547.1 | 6 M KOH | 202.8 (at 1 A·g−1) | [37] |
Rice straw | KOH + melamine | 2646 | 6 M KOH | 337 (at 0.5 A·g−1) | [42] |
Bagasse via | KOH + urea | 2905.4 | 2 M Li2SO4 | 259.5 (at 1 A·g−1) | [26] |
Miscanthus | KOH | 639 | 6 M KOH | 162 (at 0.5 A·g−1) | [43] |
Kombucha | KOH | 917 | 6 M KOH | 326 (at 1 A·g−1) | [44] |
Mangosteen Shell | K2CO3 | 2802.6 | 6 M KOH | 298.2 (at 0.5 A·g−1) | [45] |
Tobacco straw | K2CO3 + melamine | 2367 | 6 M KOH | 338 (at 1 A·g−1) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Li, J. Mild and Efficient One-Step Synthesis of Nitrogen-Doped Multistage Porous Carbon for High-Performance Supercapacitors. Molecules 2023, 28, 8136. https://doi.org/10.3390/molecules28248136
Zhang T, Li J. Mild and Efficient One-Step Synthesis of Nitrogen-Doped Multistage Porous Carbon for High-Performance Supercapacitors. Molecules. 2023; 28(24):8136. https://doi.org/10.3390/molecules28248136
Chicago/Turabian StyleZhang, Tianliang, and Jun Li. 2023. "Mild and Efficient One-Step Synthesis of Nitrogen-Doped Multistage Porous Carbon for High-Performance Supercapacitors" Molecules 28, no. 24: 8136. https://doi.org/10.3390/molecules28248136
APA StyleZhang, T., & Li, J. (2023). Mild and Efficient One-Step Synthesis of Nitrogen-Doped Multistage Porous Carbon for High-Performance Supercapacitors. Molecules, 28(24), 8136. https://doi.org/10.3390/molecules28248136