A Review on Bioactive Anthraquinone and Derivatives as the Regulators for ROS
Abstract
:1. Introduction
2. Free Radicals and Oxidative Stress
3. Theoretical Study on the Antioxidant Activity of Anthraquinone Compounds
3.1. General Mechanism of Antioxidant Activity of Anthraquinone Compounds with Phenolic Substituents
3.2. Calculation Study of Antioxidant Activity of Anthraquinone Compounds with Phenolic Substituents
4. Antioxidant Experiments of Anthraquinone Compounds In Vitro
4.1. Antioxidant Experiments of Natural Anthraquinone Compounds
4.1.1. Study on Scavenging Activities of •OH Radical
4.1.2. Study on Scavenging Activity of DPPH• Radical
4.1.3. Study on Scavenging Activity of O2•− Radical
4.1.4. Determination of Anti-Lipid Peroxidation
4.1.5. Natural Anthraquinone Compounds in Cell Culture-Based Experiments
4.2. Antioxidant Experiments of Synthetic Anthraquinone Compounds
4.2.1. Anthraquinone Metal Complexes and Antioxidation Activities
4.2.2. Chemical Modification of Anthraquinone Compounds
5. In Vivo Antioxidant Experiments with Anthraquinone Compounds
5.1. Pharmacological Activities of Anthraquinone Compounds
5.1.1. Anti-Neurodegenerative Diseases
5.1.2. Anticancer
5.1.3. Anti-Hepatopathic Diseases
5.1.4. Anti-Cardiovascular Diseases
5.1.5. Anti-Inflammatory Activity
Comp. | Model a | Major Discoveries and Proposed Mechanisms b | Dosage of Administration | Refs. |
---|---|---|---|---|
Emodin (1) | C57B/6 mice orally injected with APAP | ↓ Oxidative damage | 10, 30 mg/kg | [110] |
CCl4-intoxicated mice | ↑ GSH, GRD, GPX, GST ↓ MDA ↓ Oxidative stress | 2.6 mg/g | [112] | |
SAP-induced mice | ↑ SOD ↓ NF-κB, TNF-α, IL-6, IL-1β ↓ MDA ↓ Oxidative stress | 1 mg/kg | [120] | |
SAP-induced mice | ↑ VDAC1 ↓ ROS ↓ Serum amylase, lipase, TNF-α, IL-18, caspase-1, NLRP3 | 6 mg/mL | [119] | |
Female C57B1/6 mice | ↑ SOD, CAT, GPX ↓ TNF-α, IL-6, IL-1β | 40 mg/kg | [122] | |
Healthy M. amblycephala fingerlings | ↑ GPX1, GSTm, HSP70 ↓ GAPDH, Sord | 30 mg/kg | [78] | |
6-week-old BALB/c-nu/nu mice | ↓ ABCG2 expression | 20, 40, 60 mM | [108] | |
Aloe-emodin (2) | Scopolamine-induced amnesia animal model | ↑ SOD, GPX, ACh ↓ MDA, AChE | IC50 = 18.37 μg/mL | [78] |
Male C57BL mice | ↑ SOD, MnSOD ↓ Cleaved caspase-3 | 0.1–10 mg/kg | [102] | |
Chrysophanol (5) | Male BALB/c mice | ↑ SOD, GPX, GSH, CAT ↓ MDA ↓ Oxidative stress ↓ TNF-α, IL-6, IL-10, iNOS, NF-κB, RIP140 | 1, 10 mg/kg | [124] |
Lead poisoned Kunming mice | ↑ SOD, GPX ↓ MDA | 10.0 mg/kg | [103] |
5.2. Pharmacokinetic Studies of Anthraquinone Compounds In Vivo
6. Analysis of the Structure-Activity Relationship
7. The Neutraceutical Properties of Natural Anthraquinone Compounds for Clinical Application
8. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Yang, B.; Chen, Y.; Shi, J. Reactive Oxygen Species (ROS)-Based Nanomedicine. Chem. Rev. 2019, 119, 4881–4985. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef] [PubMed]
- Perluigi, M.; Di Domenico, F.; Butterfield, D.A. Oxidative damage in neurodegeneration: Roles in the pathogenesis and progression of Alzheimer disease. Physiol. Rev. 2024, 104, 103–197. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Lian, G. ROS and diseases: Role in metabolism and energy supply. Mol. Cell Biochem. 2020, 467, 1–12. [Google Scholar] [CrossRef]
- Li, S.; Tan, H.; Wang, N.; Zhang, Z.; Lao, L.; Wong, C.; Feng, Y. The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int. J. Mol. Sci. 2015, 16, 26087–26124. [Google Scholar] [CrossRef] [PubMed]
- Stark, J. Oxidative stress and atherosclerosis. Orv. Hetil. 2015, 156, 1115–1119. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Chen, L.J.; Huang, T.; Ying, J.Q.; Li, J. The pharmacology, toxicology and therapeutic potential of anthraquinone derivative emodin. Chin. J. Nat. Med. 2020, 18, 425–435. [Google Scholar] [CrossRef]
- Hecht, F.; Zocchi, M.; Alimohammadi, F.; Harris, I.S. Regulation of antioxidants in cancer. Mol. Cell 2023. Online ahead of print. [Google Scholar] [CrossRef]
- Rudenko, N.N.; Vetoshkina, D.V.; Marenkova, T.V.; Borisova-Mubarakshina, M.M. Antioxidants of Non-Enzymatic Nature: Their Function in Higher Plant Cells and the Ways of Boosting Their Biosynthesis. Antioxidants 2023, 12, 2014. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Q.; Zhu, J.; Xiao, Q.; Zhang, L. Reactive oxygen species: Key regulators in vascular health and diseases. Br. J. Pharmacol. 2018, 175, 1279–1292. [Google Scholar] [CrossRef]
- Hamza, A.A.; Heeba, G.H.; Hassanin, S.O.; Elwy, H.M.; Bekhit, A.A.; Amin, A. Hibiscus-cisplatin combination treatment decreases liver toxicity in rats while increasing toxicity in lung cancer cells via oxidative stress- apoptosis pathway. Biomed. Pharmacother. 2023, 165, 115148. [Google Scholar] [CrossRef] [PubMed]
- Hamza, A.A.; Mohamed, M.G.; Fawzy, M.; Lashin; Amin, A. Dandelion prevents liver fibrosis, inflammatory response, and oxidative stress in rats. J. Basic Appl. Zool. 2020, 81, 43. [Google Scholar] [CrossRef]
- Duval, J.; Pecher, V.; Poujol, M.; Lesellier, E. Research advances for the extraction, analysis and uses of anthraquinones: A review. Ind. Crops Prod. 2016, 94, 812–833. [Google Scholar] [CrossRef]
- Ghanim, H.; Sia, C.; Abuaysheh, S.; Korzeniewski, K.; Patnaik, P.; Marumganti, A.; Chaudhuri, A.; Dandona, P. An antiinflammatory and reactive oxygen species suppressive effects of an extract of Polygonum cuspidatum containing resveratrol. J. Clin. Endocrinol. Metab. 2010, 95, E1–E8. [Google Scholar] [CrossRef] [PubMed]
- Kosalec, I.; Kremer, D.; Locatelli, M.; Epifano, F.; Genovese, S.; Carlucci, G.; Randić, M.; Zovko Končić, M. Anthraquinone profile, antioxidant and antimicrobial activity of bark extracts of Rhamnus alaternus, R. fallax, R. intermedia and R. pumila. Food Chem. 2013, 136, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.H.; Pan, T.M. Dimerumic acid, a novel antioxidant identified from Monascus-fermented products exerts chemoprotective effects: Mini review. J. Funct. Food. 2013, 5, 2–9. [Google Scholar] [CrossRef]
- Nishizawa, M.; Kohno, M.; Nishimura, M.; Kitagawa, A.; Niwano, Y. Presence of peroxyradicals in cigarette smoke and the scavenging effect of shikonin, a naphthoquinone pigment. Chem. Pharm. Bull. 2005, 53, 796–799. [Google Scholar] [CrossRef]
- Salah, K.; Mahjoub, M.; Ammar, S.; Michel, L.; Millet-Clerc, J.; Chaumont, J.; Mighri, Z.; Aouni, M. Antimicrobial and antioxidant activities of the methanolic extracts of three Salvia species from Tunisia. Nat. Prod. Res. 2006, 20, 1110–1120. [Google Scholar] [CrossRef]
- Xu, H.; Lu, Y.; Zhang, T.; Liu, K.; Liu, L.; He, Z.; Xu, B.; Wu, X. Characterization of binding interactions of anthraquinones and bovine β-lactoglobulin. Food Chem. 2019, 281, 28–35. [Google Scholar] [CrossRef]
- Lu, J.; Bao, J.; Wu, G.; Xu, W.; Huang, M.; Chen, X.; Wang, Y. Quinones derived from plant secondary metabolites as anti-cancer agents. Anti-Cancer Agents Med. Chem. 2013, 13, 456–463. [Google Scholar]
- Brkanac, S.R.; Genic, M.; Gajski, G.; Vujcic, V.; Garaj-Vrhovac, V.; Kremer, D.; Domijan, A.M. Toxicity and antioxidant capacity of Frangula alnus Mill. bark and its active component emodin. Regul. Toxicol. Pharmacol. 2015, 73, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Degirmenci, N.; Alpsoy, L.; Aktumsek, A. Evaluation of antioxidant, enzyme inhibition, and cytotoxic activity of three anthraquinones (alizarin, purpurin, and quinizarin). Hum. Exp. Toxicol. 2016, 35, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Bu, Q.; Jin, Y.; Xu, M.J.; Wu, L.; Liang, L.F. Structurally Diverse Metabolites from the Ophiorrhiza japonica Bl. and Their Antioxidant Activities In Vitro and PPARα Agonistic Activities In Silico. Molecules 2022, 27, 5301. [Google Scholar] [CrossRef]
- Watroly, M.N.; Sekar, M.; Fuloria, S.; Gan, S.H.; Jeyabalan, S.; Wu, Y.S.; Subramaniyan, V.; Sathasivam, K.V.; Ravi, S.; Mat Rani, N.N.I.; et al. Chemistry, Biosynthesis, Physicochemical and Biological Properties of Rubiadin: A Promising Natural Anthraquinone for New Drug Discovery and Development. Drug Des. Dev. Ther. 2021, 15, 4527–4549. [Google Scholar] [CrossRef] [PubMed]
- Riley, P.A. Free radicals in biology: Oxidative stress and the effects of ionizing radiation. Int. J. Radiat. Biol. 1994, 65, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Free radicals and antioxidants—Quo vadis? Trends Pharmacol. Sci. 2011, 32, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Afanas’ev, I. Free radical mechanisms of aging processes under physiological conditions. Biogerontology 2005, 6, 283–290. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef]
- Gulcin, I.; Mshvildadze, V.; Gepdiremen, A.; Elias, R. The antioxidant activity of a triterpenoid glycoside isolated from the berries of Hedera colchica: 3-O-(beta-D-glucopyranosyl)-hederagenin. Phytother. Res. 2006, 20, 130–134. [Google Scholar] [CrossRef]
- Gulcin, I.; Mshvildadze, V.; Gepdiremen, A.; Elias, R. Screening of antiradical and antioxidant activity of monodesmosides and crude extract from Leontice smirnowii tuber. Phytomedicine 2006, 13, 343–351. [Google Scholar] [CrossRef]
- Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006, 160, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Firuzi, O.; Miri, R.; Tavakkoli, M.; Saso, L. Antioxidant Therapy: Current Status and Future Prospects. Curr. Med. Chem. 2011, 18, 3871–3888. [Google Scholar] [CrossRef] [PubMed]
- Carocho, M.; Ferreira, I. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 2013, 51, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.; Mahmood, U.; Kim, H.; Choi, M.; Choi, Y.; Lee, J.; Cho, J.; Hyun, J.; Kim, Y.; Chang, M.; et al. Phloroglucinol ameliorates cognitive impairments by reducing the amyloid β peptide burden and pro-inflammatory cytokines in the hippocampus of 5XFAD mice. Free Radical Biol. Med. 2018, 126, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Parveen, A.; Akash, M.; Rehman, K.; Kyunn, W. Recent Investigations for Discovery of Natural Antioxidants: A Comprehensive Review. Crit. Rev. Eukaryot. Gene. Expr. 2016, 26, 143–160. [Google Scholar] [CrossRef] [PubMed]
- Budimir, A. Metal ions, Alzheimer’s disease and chelation therapy. Acta Pharm. 2011, 61, 1–14. [Google Scholar] [CrossRef]
- Crichton, R.R.; Dexter, D.T.; Ward, R.J. Metal based neurodegenerative diseases—From molecular mechanisms to therapeutic strategies. Coord. Chem. Rev. 2008, 252, 1189–1199. [Google Scholar] [CrossRef]
- Grazul, M.; Budzisz, E. Biological activity of metal ions complexes of chromones, coumarins and flavones. Coord. Chem. Rev. 2009, 253, 2588–2598. [Google Scholar] [CrossRef]
- Bilenko, N.; Yehiel, M.; Inbar, Y.; Gazala, E. The association between anemia in infants, and maternal knowledge and adherence to iron supplementation in southern Israel. Isr. Med. Assoc. J. 2007, 9, 521–524. [Google Scholar] [PubMed]
- Flora, S. Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxid. Med. Cell. Longev. 2009, 2, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011, 283, 65–87. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Jomova, K.; Rhodes, C.; Kuča, K.; Musílek, K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch. Toxicol. 2016, 90, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C.; Valko, M. Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends Pharmacol. Sci. 2017, 38, 592–607. [Google Scholar] [CrossRef] [PubMed]
- Kostyuk, V.; Potapovich, A. Mechanisms of the suppression of free radical overproduction by antioxidants. Front. Biosci., Elite Ed. 2009, 1, 179–188. [Google Scholar] [PubMed]
- Biela, M.; Rimarčík, J.; Senajová, E.; Kleinová, A.; Klein, E. Antioxidant action of deprotonated flavonoids: Thermodynamics of sequential proton-loss electron-transfer. Phytochemistry 2020, 180, 112528. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Liu, Y.; Xie, Y.; Cong, C.; Wang, G.; An, L.; Teng, Y.; Chen, M.; Zhang, L. Antioxidant activity and mechanism of dihydrochalcone C-glycosides: Effects of C-glycosylation and hydroxyl groups. Phytochemistry 2020, 179, 112393. [Google Scholar] [CrossRef]
- Zheng, Y.; Fu, Z.; Deng, G.; Guo, R.; Chen, D. Free radical scavenging potency of ellagic acid and its derivatives in multiple H/e processes. Phytochemistry 2020, 180, 112517. [Google Scholar] [CrossRef]
- Leopoldini, M.; Russo, N.; Toscano, M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011, 125, 288–306. [Google Scholar] [CrossRef]
- Michalík, M.; Poliak, P.; Lukeš, V.; Klein, E. From phenols to quinones: Thermodynamics of radical scavenging activity of para-substituted phenols. Phytochemistry 2019, 166, 112077. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Deng, G.; Chen, D.; Guo, R.; Lai, R. The influence of C2C3 double bond on the antiradical activity of flavonoid: Different mechanisms analysis. Phytochemistry 2019, 157, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y. Structure-Activity Relationships and Rational Design Strategies for Radical-Scavenging Antioxidants. Curr. Comput. Aided Drug Des. 2005, 1, 257–273. [Google Scholar] [CrossRef]
- Cai, Y.; Sun, M.; Xing, J.; Corke, H. Antioxidant phenolic constituents in roots of Rheum officinale and Rubia cordifolia: Structure-radical scavenging activity relationships. J. Agric. Food Chem. 2004, 52, 7884–7890. [Google Scholar] [CrossRef] [PubMed]
- Pratt, D.; DiLabio, G.; Brigati, G.; Pedulli, G.; Valgimigli, L. 5-Pyrimidinols: Novel chain-breaking antioxidants more effective than phenols. J. Am. Chem. Soc. 2001, 123, 4625–4626. [Google Scholar] [CrossRef] [PubMed]
- Litwinienko, G.; Ingold, K. Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer. J. Org. Chem. 2004, 69, 5888–5896. [Google Scholar] [CrossRef]
- Litwinienko, G.; Ingold, K. Abnormal solvent effects on hydrogen atom abstraction. 3. Novel kinetics in sequential proton loss electron transfer chemistry. J. Org. Chem. 2005, 70, 8982–8990. [Google Scholar] [CrossRef]
- Nazifi, S.M.R.; Asgharshamsi, M.H.; Dehkordi, M.M.; Zborowski, K.K. Antioxidant properties of Aloe vera components: A DFT theoretical evaluation. Free Radic. Res. 2019, 53, 922–931. [Google Scholar] [CrossRef]
- Jeremić, S.; Amić, A.; Stanojević-Pirković, M.; Marković, Z. Selected anthraquinones as potential free radical scavengers and P-glycoprotein inhibitors. Org. Biomol. Chem. 2018, 16, 1890–1902. [Google Scholar] [CrossRef]
- Isin, D.O. Theoretical study on the investigation of antioxidant properties of some hydroxyanthraquinones. Mol. Phys. 2016, 114, 3578–3588. [Google Scholar] [CrossRef]
- Markovic, Z.; Jeremic, S.; Markovic, J.D.; Pirkovic, M.S.; Amic, D. Influence of structural characteristics of substituents on the antioxidant activity of some anthraquinone derivatives. Comput. Theor. Chem. 2016, 1077, 25–31. [Google Scholar] [CrossRef]
- Markovic, Z.S.; Manojlovic, N.T. DFT study on the reactivity of OH groups in emodin: Structural and electronic features of emodin radicals. Mon. Chem. 2009, 140, 1311–1318. [Google Scholar] [CrossRef]
- Jeremic, S.R.; Sehovic, S.F.; Manojlovic, N.T.; Markovic, Z.S. Antioxidant and free radical scavenging activity of purpurin. Mon. Chem. 2012, 143, 427–435. [Google Scholar] [CrossRef]
- Jung, H.A.; Chung, H.Y.; Yokozawa, T.; Kim, Y.C.; Choi, J.S. Alaternin and emodin with hydroxyl radical inhibitory and/or scavenging activities and hepatoprotective activity on tacrine-induced cytotoxicity in HepG2 cells. Arch. Pharm. Res. 2004, 27, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Vargas, F.R.; Diaz, Y.H.; Carbonell, K.M. Antioxidant and scavenging activity of emodin, aloe-emodin, and rhein on free-radical and reactive oxygen species. Pharm. Biol. 2004, 42, 342–348. [Google Scholar] [CrossRef]
- Kumar, M.; Chandel, M.; Kumar, S.; Kaur, S. amelioration of oxidative stress by anthraquinones in various in vitro assays asian pacific journal of tropical disease. Asian Pac. J. Trop. Dis 2012, 2, S692–S698. [Google Scholar] [CrossRef]
- Lin, J.; Li, X.C.; Han, L.; Li, F.; Lu, W.B.; Bai, Y.; Chen, D.F. Folium Sennae protects against hydroxyl radical-induced DNA damage via antioxidant mechanism: An in vitro study. Bot. Stud. 2014, 55, 16. [Google Scholar] [CrossRef] [PubMed]
- Waly, M.; Ali, B.; Al-Lawati, I.; Nemmar, A. Protective effects of emodin against cisplatin-induced oxidative stress in cultured human kidney (HEK 293) cells. J. Appl. Toxicol. 2013, 33, 626–630. [Google Scholar] [CrossRef]
- Nam, W.; Kim, S.; Nam, S.; Friedman, M. Structure-Antioxidative and Anti-Inflammatory Activity Relationships of Purpurin and Related Anthraquinones in Chemical and Cell Assays. Molecules 2017, 22, 265. [Google Scholar] [CrossRef]
- Baghiani, A.; Charef, N.; Djarmouni, M.; Saadeh, H.; Arrar, L.; Mubarak, M. Free radical scanvenging and antioxidant effects of some anthraquinone derivatives. Med. Chem. 2011, 7, 639–644. [Google Scholar] [CrossRef]
- Shi, A.H.; Huang, J.W.; Liu, Y.H.; Yuan, K. Separation, Antioxidant and Antimicrobial Activities of Chemical Constituents from Exocarp of Juglans mandshurica Maxim. Asian J. Chem. 2013, 25, 3361–3365. [Google Scholar] [CrossRef]
- Milenkovic, D.A.; Dimic, D.S.; Avdovic, E.H.; Amic, A.D.; Markovic, J.M.D.; Markovic, Z.S. Advanced oxidation process of coumarins by hydroxyl radical: Towards the new mechanism leading to less toxic products. Chem. Eng. J. 2020, 395, 13. [Google Scholar] [CrossRef]
- Kou, X.D.; Liu, J.J.; Chen, Y.H.; Yang, A.H.; Shen, R. Emodin derivatives with multi-factor anti-AD activities: AChE inhibitor, anti-oxidant and metal chelator. J. Mol. Struct. 2021, 1239, 11. [Google Scholar] [CrossRef]
- Yen, G.C.; Duh, P.D.; Chuang, D.Y. Antioxidant activity of anthraquinones and anthrone. Food Chem. 2000, 70, 437–441. [Google Scholar] [CrossRef]
- Malterud, K.; Farbrot, T.; Huse, A.; Sund, R. Antioxidant and radical scavenging effects of anthraquinones and anthrones. Pharmacology 1993, 47, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Chung, H.Y.; Jung, H.A.; Park, H.J.; Yokozawa, T. Comparative evaluation of antioxidant potential of alaternin (2-hydroxyemodin) and emodin. J. Agric. Food Chem. 2000, 48, 6347–6351. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Yeh, S.; Hong, C. Effect of anthraquinone derivatives on lipid peroxidation in rat heart mitochondria: Structure-activity relationship. J. Nat. Prod. 1995, 58, 1365–1371. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Xie, J.M.; Wang, Y.T.; Wang, S.; Wu, S.C.; Wang, Q.M.; Ding, H. Protective effects of aloe-emodin on scopolamine-induced memory impairment in mice and H2O2-induced cytotoxicity in PC12 cells. Bioorg. Med. Chem. Lett. 2014, 24, 5385–5389. [Google Scholar] [CrossRef]
- Zhong, X.F.; Huang, G.D.; Luo, T.; Deng, Z.Y.; Hu, J.N. Protective effect of rhein against oxidative stress-related endothelial cell injury. Mol. Med. Rep. 2012, 5, 1261–1266. [Google Scholar]
- Chae, U.; Min, J.; Lee, H.; Song, K.; Lee, H.; Lee, H.; Lee, S.; Lee, D. Chrysophanol suppresses pro-inflammatory response in microglia via regulation of Drp1-dependent mitochondrial fission. Immunopharmacol. Immunotoxicol. 2017, 39, 268–275. [Google Scholar] [CrossRef]
- Hussain, Y.; Singh, J.; Raza, W.; Meena, A.; Rajak, S.; Sinha, R.A.; Luqman, S. Purpurin ameliorates alcohol-induced hepatotoxicity by reducing ROS generation and promoting Nrf2 expression. Life Sci. 2022, 309, 120964. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Kwon, H.J.; Jung, H.Y.; Hahn, K.R.; Yoon, Y.S.; Hwang, I.K.; Choi, S.Y.; Kim, D.W. Neuroprotective Effects of Purpurin Against Ischemic Damage via MAPKs, Bax, and Oxidative Stress Cascades in the Gerbil Hippocampus. Mol. Neurobiol. 2022, 59, 2580–2592. [Google Scholar] [CrossRef]
- Yang, A.; Yu, Q.; Ju, H.; Song, L.; Kou, X.; Shen, R. Design, Synthesis and Biological Evaluation of Xanthone Derivatives for Possible Treatment of Alzheimer’s Disease Based on Multi-Target Strategy. Chem. Biodivers. 2020, 17, e2000442. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Kou, X.; Ju, H.; Zhang, H.; Yang, A.; Shen, R. Design, synthesis and biological evaluation of naringenin carbamate derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2021, 49, 128316. [Google Scholar] [CrossRef] [PubMed]
- Kou, X.; Song, L.; Wang, Y.; Yu, Q.; Ju, H.; Yang, A.; Shen, R. Design, synthesis and anti-Alzheimer’s disease activity study of xanthone derivatives based on multi-target strategy. Bioorg. Med. Chem. Lett. 2020, 30, 126927. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Liu, C.; Zhang, H.; Wu, J.; Shen, R.; Kou, X. A multifunctional anti-AD approach: Design, synthesis, X-ray crystal structure, biological evaluation and molecular docking of chrysin derivatives. Eur. J. Med. Chem. 2022, 233, 114216. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Kou, X.; Wang, X.; Wu, J.; Yang, A.; Shen, R. Novel chrysin derivatives as hidden multifunctional agents for anti-Alzheimer’s disease: Design, synthesis and in vitro evaluation. Eur. J. Pharm. Sci. 2021, 166, 105976. [Google Scholar] [CrossRef]
- Pan, X.L.; Xiang, H.; Xie, Y.F.; Zhang, C.E.; Dong, X.P. The Compound, Confirm and Antioxidant Activity of Emodin-copper(Ⅱ) Metal Complex. Lishizhen Med. Mater. Medica Res. 2013, 24, 2892–2894. [Google Scholar]
- Xiang, H.; Pan, X.L.; Xie, Y.F.; Zhang, C.E.; Dong, X.P. Concentration for 50% of Maximum Effect Study of Antioxidant Activity of 3 Emodin Metal Complex. Chin. J. Exp. Tradit. Med. Formulae 2013, 19, 236–239. [Google Scholar]
- Yang, L.; Tan, J.; Wang, B.; Zhu, L. Synthesis, characterization, and anti-cancer activity of emodin-Mn(II) metal complex. Chin. J. Nat. Med. 2014, 12, 937–942. [Google Scholar] [CrossRef]
- Tsiapali, E.; Whaley, S.; Kalbfleisch, J.; Ensley, H.; Browder, I.; Williams, D. Glucans exhibit weak antioxidant activity, but stimulate macrophage free radical activity. Free Radical Biol. Med. 2001, 30, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Shen, Y.; Huang, H.; Liao, J.; Ho, L.; Chou, Y.; Wang, W.; Chen, C. Evaluation of the anti-inflammatory and cytotoxic effects of anthraquinones and anthracenes derivatives in human leucocytes. J. Pharm. Pharmacol. 2004, 56, 915–919. [Google Scholar] [CrossRef] [PubMed]
- Park, M.Y.; Kwon, H.J.; Sung, M.K. Evaluation of Aloin and Aloe-Emodin as Anti-Inflammatory Agents in Aloe by Using Murine Macrophages. Biosci. Biotechnol. Biochem. 2009, 73, 828–832. [Google Scholar] [CrossRef] [PubMed]
- Rabe, T.; van Staden, J. Antibacterial activity of South African plants used for medicinal purposes. J. Ethnopharmacol. 1997, 56, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.J.; Li, F.F.; Xing, J.M. Separation and Purification of Aloe Anthraquinones Using PEG/Salt Aqueous Two-Phase System. Sep. Sci. Technol. 2011, 46, 1503–1510. [Google Scholar] [CrossRef]
- Xu, K.; Wang, P.; Wang, L.; Liu, C.; Xu, S.; Cheng, Y.; Wang, Y.; Li, Q.; Lei, H. Quinone derivatives from the genus Rubia and their bioactivities. Chem. Biodivers. 2014, 11, 341–363. [Google Scholar] [CrossRef] [PubMed]
- Markesbery, W.R. The role of oxidative stress in Alzheimer disease. Arch. Neurol. 1999, 56, 1449–1452. [Google Scholar] [CrossRef]
- Yu, S.P.; Canzoniero, L.M.T.; Choi, D.W. Ion homeostasis and apoptosis. Curr. Opin. Cell Biol. 2001, 13, 405–411. [Google Scholar] [CrossRef]
- Marcus, D.L.; Thomas, C.; Rodriguez, C.; Simberkoff, K.; Tsai, J.S.; Strafaci, J.A.; Freedman, M.L. Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer’s disease. Exp. Neurol. 1998, 150, 40–44. [Google Scholar] [CrossRef]
- Wang, L.; Liu, S.; Xu, J.; Watanabe, N.; Mayo, K.; Li, J.; Li, X. Emodin inhibits aggregation of amyloid-β peptide 1-42 and improves cognitive deficits in Alzheimer’s disease transgenic mice. J. Neurochem. 2021, 157, 1992–2007. [Google Scholar] [CrossRef]
- Chen, Q.; Lai, C.; Chen, F.; Ding, Y.; Zhou, Y.; Su, S.; Ni, R.; Tang, Z. Emodin Protects SH-SY5Y Cells Against Zinc-Induced Synaptic Impairment and Oxidative Stress Through the ERK1/2 Pathway. Front. Pharmacol. 2022, 13, 821521. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Huang, Y.; Fang, Y.; Zhao, H.; Shi, W.; Li, J.; Duan, Y.; Sun, Y.; Gao, L.; Luo, Y. Chrysophanol attenuates nitrosative/oxidative stress injury in a mouse model of focal cerebral ischemia/reperfusion. J. Pharmacol. Sci. 2018, 138, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yan, C.; Wang, S.; Hou, Y.; Xue, G.; Zhang, L. Chrysophanol attenuates lead exposure-induced injury to hippocampal neurons in neonatal mice. Neural Regener. Res. 2014, 9, 924–930. [Google Scholar]
- Liou, G.Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res. 2010, 44, 479–496. [Google Scholar] [CrossRef]
- Huang, Y.; Li, W.; Su, Z.; Kong, A. The complexity of the Nrf2 pathway: Beyond the antioxidant response. J. Nutr. Biochem. 2015, 26, 1401–1413. [Google Scholar] [CrossRef]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Yang, J.; Wang, C.; Zhang, N.; Dong, Y.; Wang, C.; Wang, Y.; Lin, X. Emodin augments cisplatin cytotoxicity in platinum-resistant ovarian cancer cells via ROS-dependent MRP1 downregulation. Biomed. Res. Int. 2014, 2014, 107671. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dong, Y.; Wang, W.; Wang, H.; Chen, Y.; Shi, G.; Yi, J.; Wang, J. Emodin as an effective agent in targeting cancer stem-like side population cells of gallbladder carcinoma. Stem Cells Dev. 2013, 22, 554–566. [Google Scholar] [CrossRef]
- Wang, K.; Meng, X.; Chen, J.; Wang, K.; Zhou, C.; Yu, R.; Ma, Q. Emodin Induced Necroptosis and Inhibited Glycolysis in the Renal Cancer Cells by Enhancing ROS. Oxid. Med. Cell. Longev. 2021, 2021, 8840590. [Google Scholar] [CrossRef]
- Lee, E.; Baek, S.; Park, J.; Kim, Y. Rheum undulatumEmodin in inhibits oxidative stress in the liver via AMPK with Hippo/Yap signalling pathway. Pharm. Biol. 2020, 58, 333–341. [Google Scholar] [CrossRef]
- Alisi, A.; Pastore, A.; Ceccarelli, S.; Panera, N.; Gnani, D.; Bruscalupi, G.; Massimi, M.; Tozzi, G.; Piemonte, F.; Nobili, V. Emodin prevents intrahepatic fat accumulation, inflammation and redox status imbalance during diet-induced hepatosteatosis in rats. Int. J. Mol. Sci. 2012, 13, 2276–2289. [Google Scholar] [CrossRef] [PubMed]
- Chiu, P.Y.; Mak, D.H.F.; Poon, M.K.T.; Ko, K.M. In vivo antioxidant action of a lignan-enriched extract of Schisandra fruit and an anthraquinone-containing extract of Polygonum root in comparison with schisandrin B and emodin. Planta Med. 2002, 68, 951–956. [Google Scholar] [CrossRef] [PubMed]
- Ghayur, M.N.; Gilani, A.H.; Rasheed, H.; Khan, A.; Iqbal, Z.; Ismail, M.; Saeed, S.A.; Janssen, L.J. Cardiovascular and airway relaxant activities of peony root extract. Can. J. Physiol. Pharmacol. 2008, 86, 793–803. [Google Scholar] [CrossRef] [PubMed]
- DiDonato, J.; Mercurio, F.; Karin, M. NF-κB and the link between inflammation and cancer. Immunol. Rev. 2012, 246, 379–400. [Google Scholar] [CrossRef] [PubMed]
- Pande, V.; Ramos, M. Molecular recognition of 15-deoxy-delta(12,14)-prostaglandin J2 by nuclear factor-kappa B and other cellular proteins. Bioorg. Med. Chem. Lett. 2005, 15, 4057–4063. [Google Scholar] [CrossRef] [PubMed]
- Abu-Hilal, M.; McPhail, M.; Marchand, L.; Johnson, C. Malondialdehyde and superoxide dismutase as potential markers of severity in acute pancreatitis. JOP 2006, 7, 185–192. [Google Scholar]
- Gutierrez, P.; Folch-Puy, E.; Bulbena, O.; Closa, D. Oxidised lipids present in ascitic fluid interfere with the regulation of the macrophages during acute pancreatitis, promoting an exacerbation of the inflammatory response. Gut 2008, 57, 642–648. [Google Scholar] [CrossRef]
- Ji, L.; Gomez-Cabrera, M.; Vina, J. Role of nuclear factor kappaB and mitogen-activated protein kinase signaling in exercise-induced antioxidant enzyme adaptation. Appl. Physiol. Nutr. Metab. 2007, 32, 930–935. [Google Scholar] [CrossRef]
- Xia, S.; Ni, Y.; Zhou, Q.; Liu, H.; Xiang, H.; Sui, H.; Shang, D. Emodin Attenuates Severe Acute Pancreatitis via Antioxidant and Anti-inflammatory Activity. Inflammation 2019, 42, 2129–2138. [Google Scholar] [CrossRef]
- Yao, W.Y.; Zhou, Y.F.; Qian, A.H.; Zhang, Y.P.; Qiao, M.M.; Zhai, Z.K.; Yuan, Y.Z.; Yang, S.L. Emodin has a protective effect in cases of severe acute pancreatitis via inhibition of nuclear factor-kappa B activation resulting in antioxidation. Mol. Med. Rep. 2015, 11, 1416–1420. [Google Scholar] [CrossRef]
- Song, C.; Liu, B.; Xie, J.; Ge, X.; Zhao, Z.; Zhang, Y.; Zhang, H.; Ren, M.; Zhou, Q.; Miao, L.; et al. Comparative proteomic analysis of liver antioxidant mechanisms in Megalobrama amblycephala stimulated with dietary emodin. Sci. Rep. 2017, 7, 40356. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.H.; Shi, X.Q.; Liang, S.H.; Zhou, L.; Liu, K.F.; Zhao, J. Emodin Attenuates Cigarette Smoke Induced Lung Injury in a Mouse Model via Suppression of Reactive Oxygen Species Production. J. Biochem. Mol. Toxicol. 2015, 29, 526–532. [Google Scholar] [CrossRef]
- Xian, M.; Cai, J.; Zheng, K.; Liu, Q.; Liu, Y.; Lin, H.; Liang, S.; Wang, S. Aloe-emodin prevents nerve injury and neuroinflammation caused by ischemic stroke via the PI3K/AKT/mTOR and NF-κB pathway. Food Funct. 2021, 12, 8056–8067. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Rui, Z.; Li, P.; Sun, Y.; Lu, Q.; Yue, Q.; Wang, J.; Liu, J.; Hao, K.; Ding, X. Protective effect of chrysophanol on LPS/D-GalN-induced hepatic injury through the RIP140/NF-κB pathway. RSC Adv. 2016, 6, 38192–38200. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Yang, Y.; Wang, D.; Gao, H. Natural barrigenol-like triterpenoids: A comprehensive review of their contributions to medicinal chemistry. Phytochemistry 2019, 161, 41–74. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, X.; Yu, X.; Cao, F.; Cai, X.; Chen, P.; Li, M.; Feng, Y.; Li, H.; Wang, X. Pharmacokinetics of Anthraquinones from Medicinal Plants. Front. Pharmacol. 2021, 12, 638993. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.Y.; Yang, M.W.; Qian, W.; Lin, H.; Geng, Y.; Zhou, Z.Q.; Xiao, D.W. Quantitative determination of rhein in human plasma by liquid chromatography-negative electrospray ionization tandem mass/mass spectrometry and the application in a pharmacokinetic study. J. Pharm. Biomed. Anal. 2012, 57, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.F.; Huang, X.; Yu, Q.; Qin, F.; Wan, M.H.; Wang, Y.G.; Liang, M.Z. Determination and pharmacokinetic comparison of rhein in rats after oral dosed with Da-Cheng-Qi Decoction and Xiao-Cheng-Qi decoction. Biomed. Chromatogr. 2007, 21, 1186–1190. [Google Scholar] [CrossRef]
- Yan, D.M.; Ma, Y.M. Simultaneous quantification of five anthraquinones in rat plasma by high-performance liquid chromatography with fluorescence detection. Biomed. Chromatogr. 2007, 21, 502–507. [Google Scholar] [CrossRef]
- Yan, D.; Ma, Y.; Shi, R.; Xu, D.; Zhang, N. Pharmacokinetics of anthraquinones in Xiexin decoction and in different combinations of its constituent herbs. Phytother. Res. 2009, 23, 317–323. [Google Scholar] [CrossRef]
- Shia, C.; Juang, S.; Tsai, S.; Chang, P.; Kuo, S.; Hou, Y.; Chao, P. Metabolism and pharmacokinetics of anthraquinones in Rheum palmatum in rats and ex vivo antioxidant activity. Planta Med. 2009, 75, 1386–1392. [Google Scholar] [CrossRef]
- Song, R.; Xu, L.; Xu, F.; Li, Z.; Dong, H.; Tian, Y.; Zhang, Z. In vivo metabolism study of rhubarb decoction in rat using high-performance liquid chromatography with UV photodiode-array and mass-spectrometric detection: A strategy for systematic analysis of metabolites from traditional Chinese medicines in biological samples. J. Chromatogr. A 2010, 1217, 7144–7152. [Google Scholar] [PubMed]
- Xu, Y.; Wang, Q.; Yin, Z.; Gao, X. On-line incubation and real-time detection by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry for rapidly analyzing metabolites of anthraquinones in rat liver microsomes. J. Chromatogr. A 2018, 1571, 94–106. [Google Scholar] [CrossRef] [PubMed]
- Song, R.; Lin, H.; Zhang, Z.; Li, Z.; Xu, L.; Dong, H.; Tian, Y. Profiling the metabolic differences of anthraquinone derivatives using liquid chromatography/tandem mass spectrometry with data-dependent acquisition. Rapid Commun. Mass Spectrom. 2009, 23, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Shia, C.S.; Hou, Y.C.; Juang, S.H.; Tsai, S.Y.; Hsieh, P.H.; Ho, L.C.; Chao, P.D. Metabolism and pharmacokinetics of san-huang-xie-xin-tang, a polyphenol-rich chinese medicine formula, in rats and ex-vivo antioxidant activity. Evid. Based Complement. Alternat. Med. 2011, 2011, 721293. [Google Scholar] [CrossRef]
- Malik, E.; Müller, C. Anthraquinones as Pharmacological Tools and Drugs. Med. Res. Rev. 2016, 36, 705–748. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Chen, H.; Yu, Z.; Zhao, Z. Comparison of raw and processed Radix Polygoni Multiflori (Heshouwu) by high performance liquid chromatography and mass spectrometry. Chin. Med. 2010, 5, 29. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, Z.; Yao, J.; Wu, X.; Sun, L.; Liu, C.; Duan, W.; Yan, M.; Sun, L.; Liu, J.; et al. Participation of cathepsin B in emodin-induced apoptosis in HK-2 Cells. Toxicol. Lett. 2008, 181, 196–204. [Google Scholar] [CrossRef]
- Westendorf, J.; Marquardt, H.; Poginsky, B.; Dominiak, M.; Schmidt, J.; Marquardt, H. Genotoxicity of naturally occurring hydroxyanthraquinones. Mutat. Res. 1990, 240, 1–12. [Google Scholar] [CrossRef]
- Liu, Y. Incorporation of absorption and metabolism into liver toxicity prediction for phytochemicals: A tiered in silico QSAR approach. Food Chem. Toxicol. 2018, 118, 409–415. [Google Scholar] [CrossRef]
- Wu, W.; Yan, R.; Yao, M.; Zhan, Y.; Wang, Y. Pharmacokinetics of anthraquinones in rat plasma after oral administration of a rhubarb extract. Biomed. Chromatogr. 2014, 28, 564–572. [Google Scholar] [CrossRef]
- Li, P.; Lu, Q.; Jiang, W.; Pei, X.; Sun, Y.; Hao, H.; Hao, K. Pharmacokinetics and pharmacodynamics of rhubarb anthraquinones extract in normal and disease rats. Biomed. Pharmacother. 2017, 91, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wu, J.; Tian, R.; Su, S.; Deng, S.; Meng, X. Targeting foam cell formation and macrophage polarization in atherosclerosis: The Therapeutic potential of rhubarb. Biomed. Pharmacother. 2020, 129, 110433. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.; Zuo, J.; Guo, F.; Dong, D. What we already know about rhubarb: A comprehensive review. Chin. Med. 2020, 15, 88. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Slain, D.; Cheng, J.; Ma, W.; Liang, W. Eighteen cases of liver injury following ingestion of Polygonum multiflorum. Complement. Ther. Med. 2014, 22, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Ni, B.; Lin, H.; Zhang, M.; Li, X.; Yin, X.; Qu, C.; Ni, J. Traditional usages, botany, phytochemistry, pharmacology and toxicology of Polygonum multiflorum Thunb.: A review. J. Ethnopharmacol. 2015, 159, 158–183. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health. 2019. Available online: https://www.nih.gov/ (accessed on 10 December 2023).
- Gao, Y.; Kuok, K.I.; Jin, Y.; Wang, R. Biomedical applications of Aloe vera. Crit. Rev. Food Sci. Nutr. 2019, 59 (Suppl. 1), S244–S256. [Google Scholar] [CrossRef] [PubMed]
- Trybus, W.; Król, T.; Trybus, E.; Stachurska, A. Physcion Induces Potential Anticancer Effects in Cervical Cancer Cells. Cells 2021, 10, 2029. [Google Scholar] [CrossRef]
- Lucini, L.; Pellizzoni, M.; Pellegrino, R.; Molinari, G.P.; Colla, G. Phytochemical constituents and in vitro radical scavenging activity of different Aloe species. Food Chem. 2015, 170, 501–507. [Google Scholar] [CrossRef]
- Akhtari, K.; Hassanzadeh, K.; Fakhraei, B.; Fakhraei, N.; Hassanzadeh, H.; Zarei, S.A. A density functional theory study of the reactivity descriptors and antioxidant behavior of Crocin. Comput. Theor. Chem. 2013, 1013, 123–129. [Google Scholar] [CrossRef]
Comp. | Model | Major Discoveries and Proposed Mechanisms a | Dosage of Administration | Refs. |
---|---|---|---|---|
Emodin (1) | human embryonic kidney cells (HEK 293) | ↑ SOD, CAT, GPX, GR, GST | 0.5 μM | [68] |
Aloe-emodin (2) | H2O2-induced PC12 cells | ↓ AChE ↓ Oxidative stress | - | [78] |
Rhein (3) | H2O2-induced human umbilical vein endothelial cells | ↑ NO, NOS, SOD, GSH-PX ↓ Caspase-3, -8, -9 mRNA, MDA, LDH | 2, 4, 8, 16 μM | [79] |
Chrysophanol (5) | BV-2 mucin microglia | ↓ Drp1 (S637) ↓ MAPK, NF-κB, ROS | 10 μM | [80] |
Purpurin (10) | primary hepatocytes and WRL-68 cells | ↑ Nrf2, GST, GPX, GR, CAT, SOD | 30, 100 μM | [81] |
Comp. | Models | Dosage of Administration | Metabolic Pathway | Metabolites | Refs. |
---|---|---|---|---|---|
Emodin (1) | Sprague-Dawley rats | 10 mL/kg rhubarb decoction | glucuronidation oxidation hydroxylation hydrogenation sulfation | emodin-O-diglucuronides, emodin-O-glucoside-O-glucuronide, 1,8-dihydroxy-3-carboxy-6-methylanthraquinone-1 or 8-O-glucoside, emodin-1 or 8-O-glucuronide-3-O-sulfate or emodin-1 or 8-O-sulfate-3-O-glucuronide, 1,3,8-trihydroxy-6-methyl-10-oxanthranol glucuronide, emodin-O-diglucuronides, 1,3,8-trihydroxy-6-(glucuronidyl)methylanthrquinone, emodin acid-O-glucuronide, emodin-2-C-glucuronide, emodin-3-O-glucuronide | [132] |
Sprague-Dawley rats | 0.0156 mg/mL | transhydroxylation hydroxylation reduction oxidation dihydroxylation | hydroxy-emodin, dihydroxy-emodin, hydroxy-aloe-emodin, hydroxy-rhein, aloe-emodin isomer, aloe-emodin, emodin, 1,3,8-trihydroxy-6-methyl-9-oxanthranol/1,3,8-trihydroxy-6-methyl-10-oxanthranol | [133] | |
Aloe-emodin (2) | Sprague-Dawley rats | 10 mg/kg rhubarb decoction | glucuronidation oxidation hydrogenation hydroxylation | aloe-emodin-8-O-glucoside-1-O-glucuronide or aloe-emodin-1-O-glucoside-8-O-glucuronide, 2-hydroxyaloe-emodin-ω-O-glucuronide | [132] |
Sprague-Dawley rats | 0.035 mg/mL | hydroxylation reduction oxidation | dihydroxy-aloe-emodin, hydroxy-aloe-emodin, hydroxy-rhein, hydroxyl-1,8-dihydroxy-3-hydroxymethyl-9-oxanthranol/hydroxyl-1, 8-dihydroxy-3-hydroxymethyl-10-oxanthranol, aloe-emodin, rhein isomer | [133] | |
Rhein (3) | Sprague-Dawley rats | 0.195 mg/mL | hydroxylation reduction | rhein, rhein isomer, dihydroxyl-1,8-dihydroxy-3-carboxyl-9-oxanthranol/dihydroxyl-1,8-dihydroxy-3-carboxyl-10-oxanthranol | [133] |
Physcion (4) | Sprague-Dawley rats | 0.16 mg/mL | demethylation hydroxylation reduction | emodin isomer, hydroxy-emodin, emodin, dihydroxy-1,8-dihydroxy-3-methoxy-6-methyl-9-oxanthranol/1,8-dihydroxy-3-methoxy-6-methyl-10-oxanthranol | [133] |
Sprague-Dawley rats | 10 mg/kg rhubarb decoction | glucuronidation sulfation | physcion-1-O-glucoside-8-O-glucuronide or physcion-8-O-glucoside-1-O-glucuronide, physcion-1,8-O-diglucuronides | [132] | |
Chrysophanol (5) | Sprague-Dawley rats | 10 mg/kg rhubarb decoction | glucuronidation sulfation | chrysophanol-1-O-glucoside-8-O-glucuronide, chrysophanol-8-O-glucoside-1-O-glucuronide, chrysophanol-1,8-biglucuronides, chrysophanol-1-O-glucuronide, chrysophanol-8-O-glucuroniede | [132] |
Sprague-Dawley rats | 0.0755 mg/mL | hydroxylation acetylation demethylation, reduction, oxidation | dihydroxy-chrysophanol, chrysophanol, dihydroxyl-1,8-dihydroxy-3-methyl-9-oxanthranol/dihydroxyl-1, 8-dihydroxy-3-methyl-10-oxanthranol, hydroxy-chrysophanol, rhein | [133] |
Comp. | Source Botantical | Botanical Daily Intake a (g/day) | Neutraceutical Properties | Refs. |
---|---|---|---|---|
1 Emodin | Rhubarb (Da Huang, Rheum officinale, Rheum palmatum, Rheum tanguticum), root or rhizome | 3–30 [141] | Tumor, Inflammation, Gastrointestinal disease, Hepatoprotective activity, Diabetic nephropathy, Atherosclerosis | [142,143,144] |
Fo-Ti (Polygonum multiflorum), root | 3–12 [145] | Alzheimer’s disease, Parkinson’s disease, Hyperlipidaemia, Inflammation, Cancer | [146] | |
2 Aloe-emodin | Rhubarb (Da Huang, Rheum officinale, Rheum palmatum, Rheum tanguticum), root or rhizome | 3–30 [141] | Tumor, Inflammation, Gastrointestinal disease, Hepatoprotective activity, Diabetic nephropathy, Atherosclerosis | [142,143,144] |
Fo-Ti (Polygonum multiflorum), root | 3–12 [145] | Alzheimer’s disease, Parkinson’s disease, Hyperlipidaemia, Inflammation, Cancer | [146] | |
Aloe (Aloe vera, Aloe barbadensis), leaf | 0.005–174 National Institutes of Health, (2019) [147] | Inflammation, Cancer | [148] | |
3 Rhein | Rhubarb (Da Huang, Rheum officinale, Rheum palmatum, Rheum tanguticum), root or rhizome | 3–30 [141] | Tumor, Inflammation, Gastrointestinal disease, Hepatoprotective activity, Diabetic nephropathy, Atherosclerosis | [142,143,144] |
Fo-Ti (Polygonum multiflorum), root | 3–12 [145] | Alzheimer’s disease, Parkinson’s disease, Hyperlipidaemia, Inflammation, Cancer | [146] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Zheng, L. A Review on Bioactive Anthraquinone and Derivatives as the Regulators for ROS. Molecules 2023, 28, 8139. https://doi.org/10.3390/molecules28248139
Zhao L, Zheng L. A Review on Bioactive Anthraquinone and Derivatives as the Regulators for ROS. Molecules. 2023; 28(24):8139. https://doi.org/10.3390/molecules28248139
Chicago/Turabian StyleZhao, Lihua, and Lin Zheng. 2023. "A Review on Bioactive Anthraquinone and Derivatives as the Regulators for ROS" Molecules 28, no. 24: 8139. https://doi.org/10.3390/molecules28248139
APA StyleZhao, L., & Zheng, L. (2023). A Review on Bioactive Anthraquinone and Derivatives as the Regulators for ROS. Molecules, 28(24), 8139. https://doi.org/10.3390/molecules28248139