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Abstract: Anthraquinones are bioactive natural products, which are often found in medicinal herbs.
These compounds exert antioxidant-related pharmacological actions including neuroprotective effects,
anti-inflammation, anticancer, hepatoprotective effects and anti-aging, etc. Considering the benefits
from their pharmacological use, recently, there was an upsurge in the development and utilization of
anthraquinones as reactive oxygen species (ROS) regulators. In this review, a deep discussion was
carried out on their antioxidant activities and the structure-activity relationships. The antioxidant
mechanisms and the chemistry behind the antioxidant activities of both natural and synthesized
compounds were furtherly explored and demonstrated. Due to the specific chemical activity of ROS,
antioxidants are essential for human health. Therefore, the development of reagents that regulate the
imbalance between ROS formation and elimination should be more extensive and rational, and the
exploration of antioxidant mechanisms of anthraquinones may provide new therapeutic tools and
ideas for various diseases mediated by ROS.

Keywords: natural anthraquinone; anthraquinone derivatives; ROS; structure-activity relationship;
antioxidant mechanism

1. Introduction

According to the biological theory of free radicals, the generation and scavenging of
free radicals should be in a dynamic balance under normal circumstances. The broken
balance of free radicals will harm the body and cause diseases. Reactive oxygen species
(ROS), which include several kinds of oxygen related free radicals, are of Janus-faced
nature in cells. On one hand, ROS signaling is of vital importance in maintaining crucial
cellular functions. They are involved in the signaling cascades and the regulation of cellular
processes. On the other hand, they provide detrimental damages to macromolecules.
The overproduction of ROS can damage cells and induce a variety of diseases, such as
neurodegenerative diseases, cancer, hepatopathic diseases, and cardiovascular diseases,
etc. [1]. Mechanisms of ROS mediated diseases have also been studied. For example, the
brains often show oxidative damage in neurodegenerative diseases. Alzheimer’s disease
(AD) is a classic example. Long-lasting ROS generation via amyloid beta (Aβ)-Cu(II)
peptides and mitochondrial dysfunction may lead to neuronal damage and ultimately
dementia. Elevated ROS can damage DNA, transform normal cells into cancer cells, trigger
enhanced epidermal growth factor receptor signaling and promote tumor progression [2–4].
Excessive ROS can lead to fibrosis, liver inflammation and hepatocellular carcinom [5].
Endothelial cells and vascular smooth muscle cells, the most important cells for maintaining
the integrity and homeostasis of the vascular system, both represent targets of ROS and
ROS signaling. Excessive ROS may damage vascular cells, induce the proliferation and
migration of vascular smooth muscle cells, and then cause vascular remodeling [6,7].
Therefore, therapeutic strategy targeting ROS and ROS-generating system is to maintain
the dynamic balance of ROS.
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Antioxidants are a well-studied class of reagents that mainly include enzymes and non-
enzymes. Enzymatic antioxidants, including superoxide dismutase (SOD), catalase (CAT),
glutathione peroxidase (GPX), glutathione reductase (GR), and glutathione S-transferases
(GST), are involved in ROS production and peroxides reduction, thus playing a major
role in maintaining the redox balance. Nonenzymatic antioxidants, such as polyphenols,
anthocyanins, polyenes, etc., can directly increase rates of ROS degradation and halt
excessive ROS accumulation [8,9]. Another class of reagents can interact indirectly with
signaling pathways or key molecules involved in the production and elimination of ROS to
reduce oxidative damage [10].

Natural nonenzymatic antioxidants have attracted the attention of researchers be-
cause of their wide distribution and easy availability [11,12]. The largest group of natu-
ral quinones are phenol-substituted anthraquinones [13], which are abundant in many
plants, such as Rheum rhabarbarum L. (Polygonaceae), Polygonum cuspidatum Sieb. et Zucc.
(Polygonaceae), Polygonum multiflorum Thunb. (Polygonaceae), Rubia cordifolia Thunb.
(Rubiaceae), Cassia sieberiana DC. (Caesalpiniaceae), Rhamnus dahurica Pall. (Rhamnaceae),
Salvia mitiorrhiza Bge. (Labiatae), etc. [14–19]. The anthraquinone parent structure has
a three fused-ringed structure with two carbonyl groups (Figure 1). In the structure of
anthraquinone derivatives, the anthraquinone ring is the basic scaffold, with the substituent
groups connected to the position of C1–C8 [13,20]. Naturally occurring anthraquinones are
often substituted with hydroxyl, hydroxymethyl, methyl, methoxy, and carboxyl groups
on the parent structure and are present in the plant either in free form or in combination
with sugars to form glycosides. The structures of some natural anthraquinone compounds
are shown in Figure 1. Recently, a large number of studies have shown that natural an-
thraquinone compounds have not only strong antioxidant activity but also little toxicity or
few side effects [21–24]. Therefore, the natural anthraquinone compounds are particularly
attractive and have great potential as antioxidant agents. In this work, the antioxidant
potential of bioactive anthraquinone compounds has been reviewed. The main line of this
work is showed in Figure 2.
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2. Free Radicals and Oxidative Stress

Free radicals are present in any chemical entity with one or more unpaired electrons
in the outer orbital [25]. Humans are aerobic organisms, so the body inevitably produces
free radicals. The sources of free radicals can be endogenous or exogenous [26]. The most
important endogenous sources are mitochondrial respiratory chain enzymes, reduced
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, nitric oxide synthase and
xanthine oxidase. At the same time, external factors, such as environmental pollutants,
radiation, smoking and drugs, may also contribute to the generation of free radicals [27–30].

ROS or reactive nitrogen species (RNS) are products of cell metabolism [31]. ROS
can be in radical or nonradical forms, and they may interchange with each other in the
body. Common free radical ROS include hydroxyl radicals (•OH), hydroperoxyl radicals
(HO2

•), superoxide anions (O2
•−), nitric oxide (NO•) and peroxy radicals (ROO•) [32]. In

addition, the common nonradical ROS are hydrogen peroxide (H2O2), singlet oxygen (1O2),
hypochlorous acid (HOCl), and peroxynitrite (ONOO−) [33,34].

ROS have both beneficial and harmful effects on biological systems [31]. The delicate
balance between these two effects is achieved through the mechanism of “redox regula-
tion” [35]. Oxidative stress is caused by the imbalance between the antioxidant defense
system and the intracellular accumulation of ROS [36]. The excessive production of ROS
and oxidative stress play vital roles in several kinds of life-threatening diseases, such as
Alzheimer’s disease, liver injury, and cancer. Consequently, it is significant to counteract the
harmful effects generated by ROS, which is possible through the use of antioxidants [37].

Metals play an important role in the processes of ROS formation and elimination [38,39].
Metal ions with redox activity, such as iron and copper, are cofactors of various enzymes.
However, the iron and copper ions may also produce ROS and further damage the organ-
ism in the process of reactions [40]. For example, Fe2+ is necessary for DNA synthesis,
hemoglobin synthesis and electron transport [41]. However, Fe2+ could catalyze the Haber–
Weiss reaction to generate more harmful •OH from O2

•−. When H2O2 reacts with Fe2+, the
Fenton reaction can occur to form •OH [42].

Fe2+ + H2O2 → •OH + OH− + Fe3+

Fe3+ + O2
•− → Fe2+ + O2
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Or merged into: O2
•− + H2O2 → O2 + •OH + OH−

Cu2+ catalyzes the oxidation of low-density lipoprotein, which has a similar Fenton
reaction, directly causing ROS production and significantly reducing glutathione (GSH)
levels with exposure to high concentrations of Cu2+ [43]. Zinc is also an essential nutrient
for the maintenance of all life forms. Zn2+ is the most abundant metal in the brain, mainly
protecting the mercapto group of proteins and enzymes from oxidation or inhibiting the
formation of •OH by H2O2 through the Fenton reaction [44]. •OH is the most destruc-
tive species in free radical pathology and can induce oxidative damage in almost all cell
molecules [45].

A detailed illustration of ROS formation is shown in Figure S1.

3. Theoretical Study on the Antioxidant Activity of Anthraquinone Compounds
3.1. General Mechanism of Antioxidant Activity of Anthraquinone Compounds with
Phenolic Substituents

Living cells contain both low molecular weight antioxidants and high molecular
weight antioxidant enzymes, both of which prevent and repair damage caused by free
radicals. Antioxidants, according to their properties, can be divided into two types: pre-
ventive antioxidants [46] and chain-breaking antioxidants. Preventive antioxidants can
scavenge free radicals in the chain initiation stage, such as SOD, CAT and metal (iron and
copper) chelators. Chain-breaking antioxidants, often referred to as free radical scavengers,
can capture peroxy radicals in the free radical reaction chain and prevent or slow down
the progress of the free radical chain reaction. A large number of studies have shown
that phenolic hydroxyl groups, such as ortho-phenolic hydroxyl groups and para-phenolic
hydroxyl groups, could react with free radicals to produce stable semiquinone free radicals.

Phenolic compounds have three main antioxidant mechanisms that are widely ac-
cepted [19,47–49]. The first is the hydrogen atom transfer (HAT) mechanism, in which R•

free radicals attract a hydrogen atom from the antioxidant ArOH (Equation (1)) [50–52].
In this mechanism, the bond dissociation enthalpy (BDE) of the O-H bond is a signifi-
cant parameter for scavenging activity evaluation. Although BDE is a thermodynamic
parameter, the BDE of the same type of antioxidant correlates well with the logarithm of
radical-scavenging rate constants (logKs) [53].

R• + ArOH → RH + ArO• (1)

The second kind of mechanism is a single-electron transfer followed by proton transfer
(SET-PT), namely, the rate determining step of ArOH losing one electron to generate
ArOH+• followed by a proton transfer step (Equation (2)) [54].

R• + ArOH → R− + ArOH+• → RH +ArO• (2)

In the SET-PT mechanism, the ionization potential (IP) is the most important parameter
for evaluating antioxidant activity. The lower the IP value is, the easier the formation of
phenoxy radicals [50]. Nevertheless, the extremely low IP may convert the antioxidant to a
prooxidant, because prooxidants can generate O2

•− by directly transferring an electron to
the surrounding O2 [55].

The third antioxidant mechanism is sequential proton loss and electron transfer
(SPLET). ArOH loses protons to form ArO−, and then electron transfer occurs [50,52,56,57].
According to Equation (3), the reaction enthalpy change is related mainly to the proton
affinity potential of the anion ArO−, and the subsequent reaction enthalpy change is related
mainly to the electron transfer enthalpy.

ArOH → ArO− + H+ (3)

ArO− + R• → ArO• + R−
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R− + H+ → RH

The mechanism adopted is also related to the solvent. HAT is clarified to be the
most favorable mechanism to describe the antioxidant activity of hydroxyanthraquinone
in the gas phase and non-aqueous solvent (e.g., benzene). While in a aqueous solution,
SPLET represents the most reasonable reaction pathway in thermodynamics. Because of the
intermolecular hydrogen bond between water and phenoxyl groups in an aqueous solution,
protons are more likely to be lost. Whereas, in a non-aqueous solution, intramolecular
hydrogen bonds are more likely formed, hydrogen atoms are more likely to be lost.

3.2. Calculation Study of Antioxidant Activity of Anthraquinone Compounds with
Phenolic Substituents

A density functional theory approach has been successfully used to calculate the
biochemical parameters of polyphenol extracts and to elucidate the structure-activity
relationship of phenolic antioxidants. Reza Nazifi et al. [58] predicted the antioxidant
activity of three aloe compounds (aloe-emodin (2), aloesone (2a) and isoeleutheol (2b))
by using the density functional theory calculation of the B3LYP hybrid functional and
the 6-311++G** basis set. HOMO-LUMO energy gaps showed that compound 2 had the
lowest Egap value (Table S1 in Supplementary Materials), so it was more prone to give
electrons and showed the best antioxidant activity among the compounds 2, 2a, and 2b
(Figure 3). From the structures of them, it clearly showed that compound 2 had more
electron-donating phenoxy groups.
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Jeremic et al. [59] used the M06-2X/6-311++G(d,p) theory to study the antioxidant
capacity of compounds 1, 2, 5, 6, 10 and 11. The results showed that compounds 10 and 11,
with the hydroxy groups on the ortho position, had the highest reactivity. Compounds 1
and 6 with three hydroxy groups had moderate antioxidant capacity. Compounds 2 and
5 with two hydroxy groups had the lowest antioxidant capacity. Isin [60] used B3LYP/6-
3111++G(2d,2p) and the conductor-like polarizable continuum model to study the free
radical scavenging activities of four hydroxyanthraquinones (compounds 11, 12, 13 and
14). The order of hydrogen supply capacity is compounds 11 > 12 > 14 > 13, and the BDE
values of compounds 11 and 12 (ortho-hydroxy groups) are lower than the BDE values of
compounds 13 and 14 (carboxyl group).

It was found that 1-OH and 8-OH are the most active sites of compounds 2 and 5,
while 3-OH is the most active site for compounds 1 and 6 [61]. Based on the theoretical
level of B3LYP/6-311++G**, Markovic et al. [62] analyzed the BDE values of all hydroxyl
positions of compound 1 and clarified the role of 3-OH in antioxidant properties. The
BDE values of 1-OH and 8-OH are higher because H removal also means the fracture of
hydrogen bonds (Table S2 in Supplementary Materials). These results can be explained by
the intramolecular hydrogen bonds formed between 1-OH/8-OH and 9-carbonyl group,
which make the hydrogen atom difficult to be lost.

Jeremic et al. [63] evaluated the antioxidant activity of compound 10 by its BDE
and IP theoretically (Table S3 in Supplementary Materials). The free radical scavenging
characteristics of 10 in the gas phase were well explained by HAT. The lower IP value for
aqueous solution indicated that the SET-PT mechanism was reasonable.
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4. Antioxidant Experiments of Anthraquinone Compounds In Vitro

In terms of antioxidant properties, anthraquinone compounds can scavenge •OH,
1,1-diphenyl-2-picrylhydrazyl (DPPH•) and O2

•− free radicals and inhibit lipid peroxide
to exert their antioxidant effects, which is of great significance for the development of high
efficiency antioxidants. In this section, the antioxidant properties of natural and synthetic
anthraquinone compounds are discussed in detail according to scavenging activities of
different radicals.

4.1. Antioxidant Experiments of Natural Anthraquinone Compounds
4.1.1. Study on Scavenging Activities of •OH Radical

Jung et al. [64] found that compound 9 had a stronger inhibitory effect on •OH than
compound 1, with IC50 values of 3.05 ± 0.26 µM and 13.29 ± 3.20 µM, respectively. In
addition, compounds 1 and 9 exhibited hepatoprotective effects against tacrine-induced
cytotoxicity. Vargas et al. [65] investigated the ability of compounds 1, 2 and 3 to inhibit
ROS (•OH, 1O2, H2O2) in cell-free systems. The results showed that the scavenging ability
was in the following order: compounds 1 > 3 > 2. Kumar et al. [66] found that compound
11 was an extraordinarily fine scavenger of •OH, which in turn protected plasmid DNA
from damage. Lin et al. [67] found that the reason why Folium Sennae could protect against
DNA and mesenchymal stem cell damage induced by •OH. It might be because plant
phenols (especially compounds 1, 2, 3) played a protective role through HAT and/or
SET-PT mechanisms. Their phenolic hydroxyl groups were partially oxidized into stable
semiquinone forms. The stability of the semiquinone form ultimately determined the
protective or antioxidant effect of plant phenols.

4.1.2. Study on Scavenging Activity of DPPH• Radical

It was reported that compound 1 and 15 could significantly eliminate DPPH• radicals
and that the scavenging ability was dose-dependent at concentrations of 0.5~100 µM [23,68].
Both Nam et al. [69] and Baghiani et al. [70] found that compound 10 had a high radical
scavenging effect with an IC50 = 3.491 µg/mL. The experimental data demonstrated that
the number and site of the OH groups seemed to be the primary factors affecting the
abilities of antioxidants. The ortho-hydroxyl groups in compound 10 can react with free
radicals to form a more stable conjugated semiquinone free radical and thus interrupt the
free radical chain reaction. Therefore, compound 10 had stronger antioxidant properties.
Shi and Huang [71] found that compound 5 had a scavenging effect on DPPH• radicals
(IC50 = 26.56 µg/mL). Zengin et al. [22] estimated the free radical scavenging effects of
compounds 10 and 11 through ABTS and DPPH assays. The results showed that compound
10 had the greatest scavenging activity, followed by compound 11.

In general, scavenging of •OH radicals is often proceeded via a radical adduct forma-
tion mechanism. First, a radical adduct with phenol is formed. Then, water molecules are
eliminated [51]. Scavenging of DPPH• is often based on the abstraction of hydrogen atoms
from antioxidants or the transfer of electrons from phenoxide anions to DPPH• [72].

4.1.3. Study on Scavenging Activity of O2
•− Radical

Our group found that compound 1 showed weaker O2
•− scavenging capacity

(IC50 = 235.73 µM) than Vitamin C (IC50 = 12.68 µM) using pyrogallol autoxidation. The
mechanism for scavenging of O2

•− might be by electron donation from the reductants, so
Vitamin C had better ability [73].

4.1.4. Determination of Anti-Lipid Peroxidation

The lipid peroxidation reaction is shown in Figure S1. Lipid peroxidation is one of
the results of free radical formation in cells and tissues. O2

•−, H2O2 and •OH actively
participate in the initiation of lipid peroxidation.

Yen et al. [74] reported that anthraquinone compounds inhibited the peroxidation
of linoleic acid, and the order of the activity was anthrone compound > 2 > 3 > 1 >
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anthraquinone. Although the inhibitory activities of anthraquinone compounds were
weaker than anthrone, which may be attributed to the keto carbonyl group of C-10, other
reports showed that the above anthraquinone compounds were good antioxidants against
lipid peroxidation [75–77]. For example, the inhibitory effect of compound 1 was even
stronger than that of α-tocopherol. The activities could be tested with three kinds of
systems: (1) in linoleic acid; (2) 2′,7′-dichlorodihydrofluorescein diacetate (DCHF-DA);
(3) 3-morpholinosydnonimine (SIN-1) system. The inhibitory effect of anthraquinone
compounds might be related to radical scavenging, iron chelation, and enzyme affinity.

4.1.5. Natural Anthraquinone Compounds in Cell Culture-Based Experiments

Compared with other in vitro experiments, cellular experiments are performed in
an environment that more closely resembles the human physiological environment, and
some of the results are listed in Table 1. The results from cellular experiments showed that
anthraquinone compounds may have a series of beneficial bioactivities, such as oxidative
stress reducing, cytotoxicity prevention, and inflammatory inhibition. Some of the results
are listed as followings:

Table 1. Antioxidant activities of anthraquinone compounds with cellular experiments.

Comp. Model Major Discoveries and Proposed
Mechanisms a

Dosage of
Administration Refs.

Emodin (1) human embryonic kidney cells
(HEK 293) ↑ SOD, CAT, GPX, GR, GST 0.5 µM [68]

Aloe-emodin (2) H2O2-induced PC12 cells ↓ AChE
↓ Oxidative stress - [78]

Rhein (3) H2O2-induced human
umbilical vein endothelial cells

↑ NO, NOS, SOD, GSH-PX
↓ Caspase-3, -8, -9 mRNA, MDA, LDH 2, 4, 8, 16 µM [79]

Chrysophanol (5) BV-2 mucin microglia ↓ Drp1 (S637)
↓ MAPK, NF-κB, ROS 10 µM [80]

Purpurin (10) primary hepatocytes and
WRL-68 cells ↑ Nrf2, GST, GPX, GR, CAT, SOD 30, 100 µM [81]

a “↑” upregulating or activation. “↓” downregulating or inhibition.

Compound 1 could fight cisplatin-induced oxidative stress in human embryonic
kidney 293 (HEK 293) cells by restoring the GSH and total antioxidant capacity (TAC)
depletion as well as augmenting the cisplatin-inhibited antioxidant enzymes, such as
SOD, CAT, GPX, GR, and GST [68].Compound 2 could prevent H2O2-induced cytotox-
icity of PC12 cells by significantly reducing both the extracellular release of NO and
lactate dehydrogenase and intracellular accumulation of ROS [78]. Compound 3 could
obviously increase the viability of H2O2-injured human umbilical vein endothelial cells
(HUVECs) by downregulating malondialdehyde (MDA), lactate dehydrogenase (LDH)
and the expression of caspase-3, caspase-8, caspase-9 mRNA, while upregulating the NO
content, nitric oxide synthase (NOS), SOD, and glutathione peroxidase (GSH-PX) [79].
Compound 5 could inhibit lipopolysaccharide (LPS)-induced inflammatory reaction
of BV-2 mucin microglia by downregulating dynamin-related protein 1 (Drp1) (S637),
mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB) and ROS
generation [80]. Compound 10 could ameliorate alcohol-induced hepatotoxicity by re-
ducing excess ROS generation, promoting nuclear factor erythroid-2 related factor 2
(Nrf2) expression and enhancing hepatic antioxidant defense systems [81]. Kim et al.
also determined that compound 10 could reduce neuronal damage and inflammatory
responses after oxidative stress in HT22 cells or ischemic damage in gerbils via MAPKs,
Bax, and oxidative stress cascades [82].
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4.2. Antioxidant Experiments of Synthetic Anthraquinone Compounds
4.2.1. Anthraquinone Metal Complexes and Antioxidation Activities

Metal complexes often have excellent antioxidant activity and are useful for diseases
related to oxidative stress. Many studies have reported that the combination of the active
ingredients of traditional Chinese medicine and metal ions may play a synergistic role.
Compared with ligands, metal complexes often have enhanced pharmacological activities
or produce some new pharmacological effects and may also reduce toxicity and side effects.
Our group found that metal complexes had higher antioxidant activity, which may be
due to the synergistic effect of metals and ligands [73,83–87]. Several reports studied the
antioxidative activities of the metal complexes of 1, such as Cu(II), Fe(II), Zn(II), Mg(II)
and Mn(II). The results showed that all of them have higher antioxidant activities than
the ligand. Compound 1 formed the metal complexes through the coordination of the
9-carbonyl group and 1-phenolic hydroxyl group and in the structures of the complexes,
the O atoms of 1-hydroxyl and 9-carbonyl coordinated with metal ions to form a stable
hexacoordinated ring structure [88–90].

In the case of metal complexes, the active center of the potential reaction is transferred
from the hydroxyl group to the metal ion. The C=O and phenolic hydroxyl groups in the
anthraquinone structure are the active sites with the electron donor before coordination.
For metals, the merged orbitals can be split into different energy levels when coordinating
with ligands. After absorbing the electromagnetic wave energy, the electrons can jump
from the low-level d orbital to the high-level d* orbital and generate absorption bands
in the visible region. As shown in Figure 4, the 1-hydroxyl group and 9-carbony1 group
of anthraquinone compounds can provide metal chelation sites. They have a completely
large π-conjugated system, strong coordination of oxygen atoms and an appropriate spatial
configuration, so they can be used as good chelating ligands for metal ions to coordinate
with metal ions and form complexes [50,73].
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Figure 4. The chelation of anthraquinone and metals.

4.2.2. Chemical Modification of Anthraquinone Compounds

Taking anthraquinone as the lead compound, it is of great practical significance
to study its structural modification to enhance its antioxidant activity. The structural
characteristics of the substituents have an important effect on the scavenging activity of
a single molecule. This effect is reflected mainly in the possibility of stabilizing the free
radicals [91].

As shown in Figure 5, compounds 17a and 18 have different parent structures with the
same substituent group. It could be found that the antioxidant capacity of compound 18
was higher than that of compound 17a. The possible reason was that the electronegativity of
S atom was lower than that of O atom. The reducing capacity was stronger, the antioxidant
activity was higher. As for the compounds 17a–17e, they had the same parent structure and
different R groups. The antioxidant assay showed that the chain length was related to the
antioxidant activity when comparing compounds 17a and 17b. When phenyl substitution
(compounds 17d and 17e) was introduced, the antioxidant activities were increased due to
the conjugation system formed between phenyl group and the parent structure. However,
compound 17c had a relatively lower inhibition which may be due to the breaking of
conjugation structure caused by the steric hindrance effect of the ortho substitution [92].
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5. In Vivo Antioxidant Experiments with Anthraquinone Compounds

Anthraquinones have a wide range of biological activities and can be used to treat
many kinds of diseases, such as Alzheimer’s disease, inflammation, cancer, liver injury,
diabetes, gastrointestinal disorders (e.g., diarrhea, constipation and dysentery), ulcers,
radiation injury, and burns [93–95]. Especially, anthraquinones have remarkable abilities
in scavenge free radicals and prevent oxidative damage to tissues [96]. Although the
specific relationship between the antioxidant mechanism and the antioxidant activity
in vivo has not been clarified, some information can be obtained from the bioactivity
and pharmacokinetic studies. In general, the mechanism for enhancing the activity of
antioxidant enzymes may relate to the redox activity of anthraquinones or their ability to
bind specific proteins or both. Some of the in vivo antioxidant activities of anthraquinones
are listed in Table 2.

5.1. Pharmacological Activities of Anthraquinone Compounds
5.1.1. Anti-Neurodegenerative Diseases

Oxidative stress is an early event in the development and progression of Alzheimer’s
disease [97]. As seen in Alzheimer’s disease patients, oxidative stress contributes signifi-
cantly to the perturbation of calcium homeostasis and subsequent apoptosis [98]. Many
clinical studies have reported strong evidence of the involvement of oxidative stress in
the pathogenesis of Alzheimer’s disease [99]. The Aβ aggregation inhibition assay of
compound 1 showed that compound 1 could block Aβ42 fibrillogenesis and Aβ-induced
cytotoxicity [100]. Chen et al. [101] found that compound 1 could protect nerve cells,
normalize synaptic damage by reducing the phosphorylation of the extracellular signal-
regulated kinase 1/2 (ERK1/2), decrease ROS and protect mitochondrial function. Tao
et al. [78] found that compound 2 could show an important role in cognitive deficits in a
scopolamine-induced amnesia animal model. In addition, compound 2 increased SOD, GPX
and the content of acetylcholine but decreased the level of MDA and acetylcholinesterase
activity. Therefore, the results indicated that compound 2 might have a neuroprotective
effect on Alzheimer’s disease by inhibiting the activity of acetylcholinesterase and reg-
ulating oxidative stress. In a mouse middle cerebral artery occlusion (MCAO) model,
Zhao et al. [102] found that compound 5 reduced neuronal damage related to nitric oxide
production by reducing the expression of cleaved caspase-3 and enhancing the activity of
SOD and manganese-dependent SOD. Zhang et al. [103] found that compound 5 could
alleviate hippocampal neuronal injury in lead-exposed neonatal mice, while significantly
alleviate the level of MDA in the brain, kidney, and liver and increase the activity of SOD
and GPX.
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5.1.2. Anticancer

Previous reports showed that the oxidative stress level in cancer cells was higher than
that in healthy cells. This stress is accompanied mainly by the production of higher levels
of free radicals, causing DNA degradation leading to the carcinogenesis of normal cells and
their transformation into cancer cells [104]. In addition, reducing nuclear factor erythroid
2-related factor 2 signaling and strengthening the inflammatory pathway through ROS
production are related to carcinogenesis [105,106]. Compound 1/cisplatin combination
therapy inhibited the growth of human ovarian carcinoma cells and gallbladder carcinoma
cells in vivo. The mechanism may involve the downregulation of multidrug resistance-
related protein (MRP1) expression [107] and ATP-binding cassette superfamily G member
(ABCG2) expression [108]. Wang et al. [109] found that compound 1 could induce necrop-
tosis through ROS-mediated activation of the c-Jun N-terminal kinases (JNK) signaling
pathway and also inhibit glycolysis by downregulating GLUT1 through ROS-mediated
inactivation of the phosphoinositide 3-kinases (P13K)/AKT signaling pathway.

5.1.3. Anti-Hepatopathic Diseases

Oxidative stress is also a pathogen in liver inflammation that can lead to fibro-
sis and hepatocellular carcinoma [5]. Emodin and Rubiadin (compounds 1 and 16) are
well-known anthraquinone compounds whose hepatoprotective activity has been widely
studied [24,110–112]. The results showed that compounds 1 and 16 could inhibit ROS gener-
ation and mitochondrial damage through the AMP-activated protein kinase (AMPK)/Yes-
associated protein (YAP)-mediated pathway in a hepatocyte cell line and decrease ac-
etaminophen (APAP)-induced oxidative damage in mice. Increases in the levels of GSH,
glutathione reductase (GRD), GPX and GST by treatment with compound 1 were associated
with a decrease in the level of MDA, indicating a decrease in oxidative stress.

5.1.4. Anti-Cardiovascular Diseases

Excessive ROS may damage vascular cells, induce the proliferation and migration of
vascular smooth muscle cells, and then cause vascular remodeling [6,7]. Emodin (com-
pound 1) showed a potential protective effect on cardiovascular system and the mechanism
was connected with its antioxidation activities. The antioxidation activities might be related
to the inhibition of the contractile effect of 5-hydroxytryptamine and synergizing the dias-
tolic effect of acetylcholine related to up-regulation of free radicals, hydrogen peroxidation
and cGMP [7,113].

5.1.5. Anti-Inflammatory Activity

The inflammatory response produces a large amount of ROS and is related to many
kinds of diseases. The NF-κB transcription factor family has been considered the central
mediator of the inflammatory process and participates in adaptive and innate immune
responses [114]. A large number of studies have shown that ROS or metals can affect
nuclear NF-κB transcription factors [115]. Lipid peroxidation has been reported to occur
in acute pancreatitis [116,117]. ROS can activate NF-κB, which can in turn adjust the
expression of inflammatory cytokines [118].

Rat models of severe acute pancreatitis (SAP) was used to analyze the molecular mech-
anisms and effect of compound 1 [119,120]. As a natural antioxidant, compound 1 could
inhibit NF-κB activation and regulate the production of cytokines, such as tumor necrosis
factor (TNF)-α, interleukin (IL)-1β, and IL-6, and sequentially regulate the oxidative stress
response. Song et al. [121] used proteomics to investigate the antioxidant mechanism of
compound 1 on the liver of large herring. Compound 1 was found to significantly increase
the expression of antioxidant-related mRNAs, such as GPX-1, GST and heat shock 70 kDa
protein (HSP70), compared with the control group. mRNA expression of sorbitol dehy-
drogenase (SORD) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) decreased,
which was consistent with protein expression. There were also reports about the protection
activity of compound 1 from cigarette smoke-induced lung inflammation and oxidative
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damage. Xue et al. [122] found that compound 1 significantly attenuated the expression
of TNF-α, IL-6 and IL-1β and oxidative stress by enhancing the activities of SOD, CAT
and GPX in mice with acute pulmonary inflammation induced by cigarette smoke. The
results of anti-neuroinflammatory activities showed that compound 2 protected against
brain impairment, mainly attributed to the antioxidant activities of compound 2 via the
P13K/AKT/mTOR and NF-κB activation [123]. Compound 5 was also found to have
good hepatoprotective activity, which was expressed by significantly reducing of inducible
nitric oxide synthase (iNOS), TNF-α, IL-6 and IL-10 through inhibiting the expression of
NF-κB and receptor-interacting protein 140 (RIP140) in LPS-induced acute liver injury in
mice [124].

Table 2. In vivo antioxidant activities of anthraquinone compounds.

Comp. Model a Major Discoveries and Proposed
Mechanisms b

Dosage of
Administration Refs.

Emodin (1)

C57B/6 mice orally injected
with APAP ↓ Oxidative damage 10, 30 mg/kg [110]

CCl4-intoxicated mice
↑ GSH, GRD, GPX, GST

↓ MDA
↓ Oxidative stress

2.6 mg/g [112]

SAP-induced mice

↑ SOD
↓ NF-κB, TNF-α, IL-6, IL-1β

↓ MDA
↓ Oxidative stress

1 mg/kg [120]

SAP-induced mice

↑ VDAC1
↓ ROS

↓ Serum amylase, lipase, TNF-α, IL-18,
caspase-1, NLRP3

6 mg/mL [119]

Female C57B1/6 mice ↑ SOD, CAT, GPX
↓ TNF-α, IL-6, IL-1β 40 mg/kg [122]

Healthy M. amblycephala
fingerlings

↑ GPX1, GSTm, HSP70
↓ GAPDH, Sord 30 mg/kg [78]

6-week-old BALB/c-nu/nu
mice ↓ ABCG2 expression 20, 40, 60 mM [108]

Aloe-emodin (2)

Scopolamine-induced
amnesia animal model

↑ SOD, GPX, ACh
↓ MDA, AChE IC50 = 18.37 µg/mL [78]

Male C57BL mice ↑ SOD, MnSOD
↓ Cleaved caspase-3 0.1–10 mg/kg [102]

Chrysophanol (5)

Male BALB/c mice

↑ SOD, GPX, GSH, CAT
↓ MDA

↓ Oxidative stress
↓ TNF-α, IL-6, IL-10, iNOS, NF-κB,

RIP140

1, 10 mg/kg [124]

Lead poisoned Kunming
mice

↑ SOD, GPX
↓ MDA 10.0 mg/kg [103]

a Cell lines: APAP (acetaminophen), CCl4 (carbon tetrachloride), SAP (severe acute pancreatitis) b “↑” upregulating
or activation. “↓” downregulating or inhibition.

5.2. Pharmacokinetic Studies of Anthraquinone Compounds In Vivo

Pharmacokinetic studies, as an important part of preclinical and clinical studies during
the development of innovative drugs, provide a theoretical basis for guiding the clinical and
rational use of drugs, predicting drug interactions, understanding drug action mechanisms,
exploring new modification methods for natural products, and designing drug delivery
systems, etc. [125]. Since traditional Chinese medicine is mostly administered orally,
the metabolism of anthraquinones contained in traditional Chinese medicine will first
enter the absorption phase. The absorption of anthraquinone compounds depends on
their physicochemical properties. The main site of absorption of anthraquinones is the
intestine, not the stomach. The absorption of anthraquinone is related to the weak acidity
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of anthraquinones and the pH conditions in the intestine. When placed in a weakly acidic
environment, since most anthraquinones are weakly acidic, resulting in lower ionization.
In contrast, at higher pH values, the degree of ionization of anthraquinones increases,
resulting in little absorption of anthraquinones [126].

In general, the pharmacokinetic data of anthraquinones are in a wide range in vivo.
This may be due to differences in drug dosages, detection instruments, and protocols. As
described in Table S4 within the Supplementary Materials, compound 3 had the minimum
peak time (Tmax), the highest peak concentration (Cmax) and area under the curve (AUC)
in dogs. A large number of pharmacokinetic studies have shown that compound 3 is the
main component absorbed into the blood after gastrointestinal administration of rhubarb
and its compound preparation containing rhubarb in both rats and humans. The peak
concentration of oral absorption and bioavailability of compound 3 are superior to other free
anthraquinones contained in rhubarb [127–130]. The water solubility of compound 3 may be
improved due to its carboxyl group. A better lipid water distribution coefficient is favorable
for compound 3 penetrate the amphiphilic biofilm, leading to the best bioavailability.

Biotransformation is a significant process during which anthraquinones are converted
into inactive or more active metabolites and removed from the body. The transformation
occurs mainly in the liver. Phase II conjugates, in particular glucuronides of rhubarb an-
thraquinones, were considered to be the predominant form in vivo [131,132]. The metabolic
pathways and metabolites of anthraquinones are listed in Table 3.

Xu et al. [133] found that in a rat liver microsome incubation system, both compounds
1 and 5 were hydroxylated. Compounds 2 and 5 could be converted to compound 3 by
oxidation. Compound 5 was transformed to demethylated forms and acetylated forms
as dihydroxy-5, while compound 4 was transformed to demethylation forms as com-
pound 1 isomer. Notably, the demethylation of compound 4 may be the reason for the
low bioavailability of 4 [134]. Song et al. [132] separated and identified the metabolites in
rat urine, bile and plasma after oral administration of rhubarb decoction and found that
compounds 1–5 might be metabolized to sulfonated forms. Compound 2 was transformed
to 2-1-O-glucoside-8-O-glucuronide or 2-8-O-glucoside-1-O-glucuronide, 2-hydroxyaloe-1-
ω-O-glucuronide through hydroxylation, hydrogenation, glucuronidation and oxidized
to compound 3 by oxidation. The oxidation reaction increases the bioavailability of an-
thraquinones. The order of bioavailability of anthraquinones was compounds 3 > 1 > 5
> 2, which may result from compounds 2 and 5 being oxidized to compound 3 [135]. In
addition, compounds 1–5 could be metabolized to sulfonated forms [132], which may result
in a decrease in the oral bioavailability of anthraquinones [131].

Table 3. Metabolic pathways and metabolites of anthraquinones.

Comp. Models Dosage of
Administration Metabolic Pathway Metabolites Refs.

Emodin (1)

Sprague-
Dawley rats

10 mL/kg
rhubarb

decoction

glucuronidation
oxidation

hydroxylation
hydrogenation

sulfation

emodin-O-diglucuronides,
emodin-O-glucoside-O-glucuronide,

1,8-dihydroxy-3-carboxy-6-
methylanthraquinone-1 or 8-O-glucoside,

emodin-1 or 8-O-glucuronide-3-O-sulfate or
emodin-1 or 8-O-sulfate-3-O-glucuronide,
1,3,8-trihydroxy-6-methyl-10-oxanthranol
glucuronide, emodin-O-diglucuronides,

1,3,8-trihydroxy-6-
(glucuronidyl)methylanthrquinone,

emodin acid-O-glucuronide,
emodin-2-C-glucuronide,
emodin-3-O-glucuronide

[132]

Sprague-
Dawley rats 0.0156 mg/mL

transhydroxylation
hydroxylation

reduction
oxidation

dihydroxylation

hydroxy-emodin, dihydroxy-emodin,
hydroxy-aloe-emodin, hydroxy-rhein,

aloe-emodin isomer, aloe-emodin, emodin,
1,3,8-trihydroxy-6-methyl-9-

oxanthranol/1,3,8-trihydroxy-6-methyl-10-
oxanthranol

[133]
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Table 3. Cont.

Comp. Models Dosage of
Administration Metabolic Pathway Metabolites Refs.

Aloe-emodin (2)

Sprague-
Dawley rats

10 mg/kg
rhubarb

decoction

glucuronidation
oxidation

hydrogenation
hydroxylation

aloe-emodin-8-O-glucoside-1-O-
glucuronide or

aloe-emodin-1-O-glucoside-8-O-
glucuronide,

2-hydroxyaloe-emodin-ω-O-glucuronide

[132]

Sprague-
Dawley rats 0.035 mg/mL

hydroxylation
reduction
oxidation

dihydroxy-aloe-emodin,
hydroxy-aloe-emodin, hydroxy-rhein,

hydroxyl-1,8-dihydroxy-3-hydroxymethyl-
9-oxanthranol/hydroxyl-1,

8-dihydroxy-3-hydroxymethyl-10-
oxanthranol, aloe-emodin, rhein isomer

[133]

Rhein (3) Sprague-
Dawley rats 0.195 mg/mL hydroxylation

reduction

rhein, rhein isomer,
dihydroxyl-1,8-dihydroxy-3-carboxyl-9-

oxanthranol/dihydroxyl-1,8-dihydroxy-3-
carboxyl-10-oxanthranol

[133]

Physcion (4)

Sprague-
Dawley rats 0.16 mg/mL

demethylation
hydroxylation

reduction

emodin isomer, hydroxy-emodin, emodin,
dihydroxy-1,8-dihydroxy-3-methoxy-6-
methyl-9-oxanthranol/1,8-dihydroxy-3-

methoxy-6-methyl-10-oxanthranol

[133]

Sprague-
Dawley rats

10 mg/kg
rhubarb

decoction

glucuronidation
sulfation

physcion-1-O-glucoside-8-O-glucuronide or
physcion-8-O-glucoside-1-O-glucuronide,

physcion-1,8-O-diglucuronides
[132]

Chrysophanol (5)

Sprague-
Dawley rats

10 mg/kg
rhubarb

decoction

glucuronidation
sulfation

chrysophanol-1-O-glucoside-8-O-
glucuronide,

chrysophanol-8-O-glucoside-1-O-
glucuronide,

chrysophanol-1,8-biglucuronides,
chrysophanol-1-O-glucuronide,
chrysophanol-8-O-glucuroniede

[132]

Sprague-
Dawley rats 0.0755 mg/mL

hydroxylation
acetylation

demethylation,
reduction,
oxidation

dihydroxy-chrysophanol,
chrysophanol,

dihydroxyl-1,8-dihydroxy-3-methyl-9-
oxanthranol/dihydroxyl-1,

8-dihydroxy-3-methyl-10-oxanthranol,
hydroxy-chrysophanol,

rhein

[133]

Note that anthraquinones are not only phenols but also p-quinones, and the oxidation
process of phenols also involves different forms of quinones. As such, quinones undergo
enzyme-catalyzed one- or two-electron reduction reactions generating the corresponding
semiquinone or hydroquinone, respectively. As shown in Figure S2, semiquinone, gen-
erated through the one-electron reduction pathway, undergoes rapid autoxidation under
atmospheric conditions, transferring excess electrons to molecular oxygen, thereby gener-
ating O2

•− and regenerating the parent quinone. The redox cycling of enzyme-catalyzed
reduction of quinone and the aerobic oxidation cycle of the semiquinone producing O2

•−

continue until the system becomes anaerobic. At this time, the production of O2
•− is

reduced, and the accumulation of semiquinone occurs. The result of this redox cycle is
oxidative stress. Under anaerobic conditions, semiquinone is disproportionate to quinone
and hydroquinone. However, hydroquinone from the two-electron reduction pathway,
depending on its stability, may be discharged through four different pathways: (1) the
detoxification pathway; (2) oxidized by O2 one electron at a time to produce O2

•− and
the semiquinone; (3) forming reactive alkylating agents by a rearrangement reaction; and
(4) undergoing a comproportionation reaction with quinone to produce semiquinone [136].

After oral administration, natural anthraquinones are absorbed into the blood by
the intestinal mucosa, combined with glucuronic acid or sulfuric acid in the liver and
intestinal tract, and then transported by blood circulation to various tissues and organs
throughout the body to exert a variety of pharmacological effects. Anthraquinones undergo
oxidation, methylation, esterification and glycosidation reactions when being metabolized.
Anthraquinones have good biological activity in vitro, but due to their low solubility and
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rapid elimination rate, the oral absorption utilization ratio is low. In addition, side effects of
anthraquinones have also been reported, including genotoxic [137], nephrotoxic [138], and
hepatotoxic effects [139]. Therefore, it is necessary to modify the structure, add absorption
promoters, or change drug dosage forms to improve the bioavailability of anthraquinones.
Further systematic studies on the absorption and metabolism of anthraquinone compounds
in vivo on the basis of pharmacology are needed to ensure their safety and effectiveness in
clinical applications.

6. Analysis of the Structure-Activity Relationship

The following three structural characteristics of anthraquinone compounds are closely
related to their antioxidant activity: (1) the benzene ring and carbonyl group in the parent
structure; (2) the number and position of the hydroxyl groups; (3) the position and number
of other substituents, such as carboxyl group, methyl group and methoxyl group. The
benzene ring in anthraquinone compounds is hydrophobic, while the phenolic hydroxyl
group is hydrophilic. As shown in Figure 1, anthraquinone compounds can be roughly
divided into two types according to their structure: emodin type and alizarin type. The
hydroxyl groups of the emodin type, such as compounds 1–9, are distributed on both sides
of the benzene ring. Hydroxyl groups of the alizarin type are distributed on the benzene
ring on one side, such as compounds 10–12.

The antioxidant activity of anthraquinones is mainly related to phenolic hydroxyl
groups. There are three main types of phenolic hydroxy-related antioxidant mechanisms.
The first is the HAT mechanism, in which the hydrogen atom is extracted from ArOH. So,
BDE of the O-H bond is a significant parameter for scavenging activity evaluation. The
second mechanism is SET-PT, namely, the rate determining step is losing one electron from
ArOH to generate ArOH+• and then followed by a proton transfer step. Therefore, IP is
the most important parameter for evaluating antioxidant activity. The third mechanism is
SPLET, which means a proton is first lost to form ArO−, and then electron transfer occurs.
Therefore, pKa of ArO-H bond is main determining factor in this mechanism.

The experimental results also supported these mechanisms and the results will be
discussed according to the following structural characteristics: (1) The position and the
number of the phenoxyl groups (Table S5 in the supplementary materials) [54,59,60]: the
distribution of hydroxyl groups on the ipsilateral benzene ring improved the free radical
scavenging activity, which may be related to the o-diphenol structure (e.g., compounds 9,
10, 11). In this kind of structure, the formation of intramolecular hydrogen bonds leads to
lower BDE values of OH bonds and lower pKa of ArO-H, and thus higher antioxidative
activity, which accord to both HAT and SPLET mechanism; (2) The position of other
substitutions: When the carboxyl group is on the ortho position to the hydroxyl group
(compounds 12 and 13) or the methoxyl group is on the meta position (compound 4),
they are the electron withdrawing groups. The electron density on the hydroxyl group
decreases and the electron is difficult to lose with a higher IP value. The antioxidant activity
decreases, which is consistent with the mechanism of SET-PT; (3) The carbonyl group on
the parent structure will also affect the free radical scavenging activity. It worth to mention
that 1-OH/8-OH group and carbonyl group can work as the chelating sites to coordinate
with Fe(II) or Cu(I) ions, which may terminate the Fenton reaction. Furthermore, natural
compounds with similar structure have antioxidative activities following this path, which
has been proved by the research results from our group [73,83–88].

7. The Neutraceutical Properties of Natural Anthraquinone Compounds for
Clinical Application

Anthraquinones are widely distributed in various botanicals, such as rhubarb, aloe
and Fo-Ti [140,141], which are commonly clinically used in traditional Chinese medicines
and dietary supplements. As shown in Table 4, various levels of compounds 1, 2 and 3
have been reported in three botanicals, rhubarb, Fo-Ti and aloe. The daily intake levels of
the three botanicals in traditional Chinese medicines and dietary supplements were also
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identified. In addition, the diseases that could be treated by these botanicals were listed in
Table 4.

Table 4. Anthraquinone levels in botanical and botanical usage.

Comp. Source Botantical Botanical Daily Intake
a (g/day)

Neutraceutical
Properties Refs.

1
Emodin

Rhubarb (Da Huang,
Rheum officinale,

Rheum palmatum,
Rheum tanguticum), root

or rhizome

3–30
[141]

Tumor,
Inflammation,

Gastrointestinal disease,
Hepatoprotective activity,

Diabetic nephropathy,
Atherosclerosis

[142–144]

Fo-Ti (Polygonum
multiflorum), root

3–12
[145]

Alzheimer’s disease,
Parkinson’s disease,

Hyperlipidaemia,
Inflammation,

Cancer

[146]

2
Aloe-emodin

Rhubarb (Da Huang,
Rheum officinale,

Rheum palmatum,
Rheum tanguticum), root

or rhizome

3–30
[141]

Tumor,
Inflammation,

Gastrointestinal disease,
Hepatoprotective activity,

Diabetic nephropathy,
Atherosclerosis

[142–144]

Fo-Ti (Polygonum
multiflorum), root

3–12
[145]

Alzheimer’s disease,
Parkinson’s disease,

Hyperlipidaemia,
Inflammation,

Cancer

[146]

Aloe (Aloe vera, Aloe
barbadensis),

leaf

0.005–174
National Institutes of
Health, (2019) [147]

Inflammation,
Cancer [148]

3
Rhein

Rhubarb (Da Huang,
Rheum officinale,

Rheum palmatum,
Rheum tanguticum), root

or rhizome

3–30
[141]

Tumor,
Inflammation,

Gastrointestinal disease,
Hepatoprotective activity,

Diabetic nephropathy,
Atherosclerosis

[142–144]

Fo-Ti (Polygonum
multiflorum), root

3–12
[145]

Alzheimer’s disease,
Parkinson’s disease,

Hyperlipidaemia,
Inflammation,

Cancer

[146]

a Values used to calculate to estimate the daily intake of compounds 1, 2 and 3.

8. Conclusions and Future Perspectives

Natural anthraquinones are a class of natural products with important biological
activities, commonly found in many plants and microorganisms. These compounds have
been extensively studied and proven to be promising for a wide range of applications in
many fields, one of which is as antioxidants. In recent years, numerous studies have shown
that natural anthraquinones possess strong antioxidant activity. As shown in this review,
anthraquinones (1) have a significant free radical scavenging ability, (2) can modulate
complex antioxidant enzymes and non-enzymatic systems to reduce oxidative stress, and
(3) inhibit the formation of ROS or inhibit enzymes involved in free radical generation
by chelating trace elements. Therefore, natural anthraquinones have a broad application
prospect in the field of antioxidants. However, more in-depth research is needed in the
following two aspects to make anthraquinones more reliably and widely used in medicine
in the future.
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First, although drugs based on anthraquinone compounds, such as doxorubicin, mi-
toxantrone, and idarubicin, etc., have been used successfully to treat diseases and the
anthraquinone core may continue to be a potential scaffold for developing novel ther-
apeutic candidates, side effects and low absorption of anthraquinones have also been
reported. Therefore, further systematic studies in relation to its SAR as well as the absorp-
tion and metabolism in vivo are needed to accelerate the development and utilization of
anthraquinone compounds as promising drug candidates in the future. And in this regard,
a brief summary of SAR studies on anthraquinone compounds was provided in Section 6 of
this review. At the same time, it is also necessary to optimize the structure of anthraquinone
compounds by chemical modification. In this review, the summary of the properties of
some synthetic anthraquinone compounds was reported in the Section 4.1 and recently our
group also reported a series of anthraquinone compounds with tertiary amine substituents
with promising anti-AD activities [73].

Second, although antioxidants are essential for human health, due to the specific
complicated activities of ROS, drugs that regulate the imbalance between the formation
and elimination of ROS should be developed more rationally to provide new treatments for
various diseases mediated by ROS. After in-depth literature research, we believe that more
detailed studies on the mechanism are needed in the future, especially in the following two
kinds of relationship. One is about the relationship between the concentration of the an-
thraquinone compounds clinically applied and their ROS mediation properties. As shown
in the review, most of literature reported anthraquinone compounds’ inhibition of the
expression of ROS via SOD, H2O2, superoxide and NF-κB pathway. However, some groups
reported that anthraquinone of high concentration may alter the subcellular redox equi-
librium and produce cytotoxicity induced by ROS. For example, emodin (1–25 µg·mL−1)
induced mitochondria-induced cell apoptosis associated with generation of ROS [7,121].
So, in Section 7 of this review, botanical daily intake (g/day) values were given for the
neutraceutical application of natural anthraquinone compounds. The other one is about
the relationship between scavenging of ROS and the treatment of diseases. Most time,
decreasing of ROS is needed for the treatment of diseases with anthraquinone compounds.
However, there were reports about elevation of ROS in the process of disease treatment. For
example, Anthraquinones [149], were reported to increase ROS and reduce the activities of
antioxidant enzymes in cells, and thus induce autophagy and apoptosis in cancer cells.

The results of this work can be applied to further understand the antioxidant mecha-
nism of anthraquinone compounds and it also has guiding significance for the study of
antioxidant ability of other natural products with similar structure.
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Abbreviations

ABCG2: ATP-binding cassette superfamily G member; AD: Alzheimer’s disease; AMPK:
AMP-activated protein kinase; APAP: acetaminophen; AUC: area under the curve; Bax: B-cell
lymphoma-2 associated X protein; BDE: bond dissociation enthalpy; CAT: catalase; DPPH: 1,1-
diphenyl-2-picrylhydrazyl; Drp1: dynamin-related protein 1; GAPDH: Glyceraldehyde-3-phosphate
dehydrogenase; GPX: glutathione peroxidase; GR: Glutathione reductase; GSH: glutathione; GSH-PX:
glutathione peroxidase; GST: Glutathione S-transferase; HAT: hydrogen atom transfer; HSP70: heat
shock 70 kDa protein; HUVECs: human umbilical vein endothelial cells; IL: interleukin; iNOS:
inducible nitric oxide synthase; IP: ionization potential; JNK: c-Jun N-terminal kinases; LDH: lactate
dehydrogenase; LPS: lipopolysaccharide; MAPK: mitogen-activated protein kinase; MCAO: middle
cerebral artery occlusion; MDA: malondialdehyde; MRP1: multidrug resistance-related protein;
NADPH: nicotinamide adenine dinucleotide phosphate; NF-κB: nuclear factor-kappa B; NOS: nitric
oxide synthase; NLRP3: NOD-like receptor thermal protein domain associated protein 3; Nrf2: nu-
clear factor erythroid-2 related factor 2; P13K: phosphoinositide 3-kinases; RNS: reactive nitrogen
species; ROS: reactive oxygen species; SAP: severe acute pancreatitis; SAR: structure and activity
relationship; SET-PT: single electron transfer followed by proton transfer: SOD: superoxide dismutase;
SORD: sorbitol dehydrogenase; SPLET: sequential proton loss and electron transfer; TNF: tumour
necrosis factor; VDAC1: voltage-dependent anion channel 1; YAP: yes-associated protein.
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