Probing Antibacterial and Anticancer Potential of Selenicereus undatus, Pistacia vera L. and Olea europaea L. against Uropathogens, MCF-7 and A2780 Cancer Cells
Abstract
:1. Introduction
2. Results
2.1. Isolation and Molecular Characterization of Uropathogens
2.2. Quantitative Analysis of S. undatus, P. vera and O. europaea Extracts
2.3. GC-MS of S. undatus
2.4. GC-MS of P. vera
2.5. GCMS of O. europaea
2.6. Antibacterial Sensitivity of S. undatus, P. vera and O. europaea
2.7. Effect of H. undatus, P. vera and O. europaea on MCF-7 Cells (Breast Cancer Cell Line)
2.8. Effect of S. undatus, P. vera and O. europaea on A2780 Cells (Ovarian Cancer Cell Line)
2.9. Molecular Docking Studies
3. Discussion
4. Materials and Methods
4.1. Collection of Samples, Isolation and Characterization of Uropathogens
4.2. Preparation of S. undatus, P. vera and O. europaea Extracts
4.3. Quantitative Estimation of S. undatus, P. vera, and O. europaea Extracts
4.3.1. Total Phenolic Content
4.3.2. Total Flavonoid Content
4.3.3. Total Tannin Content
4.3.4. Total Alkaloid Content
4.3.5. Total Carotenoid Content
4.3.6. Total Steroid Content
4.4. Gas Chromatography–Mass Spectroscopy of Extracts
4.5. Preparation of Inoculums
4.6. Preparation of Plant Extract Disks
4.7. Agar Disk Diffusion Assay
4.8. Antimicrobial Susceptibility Testing
4.9. Culturing of Cell Lines
4.10. Molecular Docking
4.11. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elham, A.; Arken, M.; Kalimanjan, G.; Arkin, A.; Iminjan, M. A review of the phytochemical, pharmacological, pharmacokinetic, and toxicological evaluation of Quercus infectoria galls. J. Ethnopharmacol. 2021, 273, 113592. [Google Scholar] [CrossRef]
- Alesci, A.; Miller, A.; Tardugno, R.; Pergolizzi, S. Chemical analysis, biological and therapeutic activities of Olea europaea L. extracts. Nat. Prod. Res. 2022, 36, 2932–2945. [Google Scholar] [CrossRef]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef]
- Mandracchia, V.; Hayes, D.; Yoho, R.; Hayes, M. Diagnosis, differential and treatment options. Nat. Rev. Microbiol. 2000, 13, 269–284. [Google Scholar]
- Omoregie, R.; Erebor, J.O.; Ahonkhai, I.; Isibor, J.O.; Ogefere, H.O. Observed changes in the prevalence of uropathogens in Benin City, Nigeria. NZJ Med. Lab. Sci. 2008, 62, 29–31. [Google Scholar]
- Mahmood, T.; Yang, P.-C. Western blot: Technique, theory, and trouble shooting. N. Am. J. Med. Sci. 2012, 4, 429–434. [Google Scholar] [CrossRef]
- Tandogdu, Z.; Wagenlehner, F.M. Global epidemiology of urinary tract infections. Curr. Opin. Infect. Dis. 2016, 29, 73–79. [Google Scholar] [CrossRef]
- Beahm, N.P.; Nicolle, L.E.; Bursey, A.; Smyth, D.J.; Tsuyuki, R.T. The assessment and management of urinary tract infections in adults: Guidelines for pharmacists. Can. Pharm. J. 2017, 150, 298–305. [Google Scholar] [CrossRef]
- Odoki, M.; Almustapha, A.A.; Tibyangye, J.; Nyabayo, M.J.; Wampande, E.; Drago, K.C.; Agwu, E.; Bazira, J. Prevalence of bacterial urinary tract infections and associated factors among patients attending hospitals in Bushenyi district, Uganda. Int. J. Microbiol. 2019, 2019, 4246780. [Google Scholar] [CrossRef]
- Biswas, D.; Gupta, P.; Prasad, R.; Singh, V.; Arya, M.; Kumar, A. Choice of antibiotic for empirical therapy of acute cystitis in a setting of high antimicrobial resistance. Indian J. Med. Sci. 2006, 60, 53–58. [Google Scholar] [CrossRef]
- Planson, A.G.; Carbonell, P.; Grigoras, I.; Faulon, J.L. Engineering antibiotic production and overcoming bacterial resistance. Biotechnol. J. 2011, 6, 812–825. [Google Scholar] [CrossRef]
- Andersson, D.I.; Hughes, D. Persistence of antibiotic resistance in bacterial populations. FEMS Microbiol. Rev. 2011, 35, 901–911. [Google Scholar] [CrossRef]
- Yang, X.; Ye, W.; Qi, Y.; Ying, Y.; Xia, Z. Overcoming multidrug resistance in bacteria through antibiotics delivery in surface-engineered nano-cargos: Recent developments for future nano-antibiotics. Front. Bioeng. Biotechnol. 2021, 9, 696514. [Google Scholar] [CrossRef]
- Llor, C.; Bjerrum, L. Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Ther. Adv. Drug Saf. 2014, 5, 229–241. [Google Scholar] [CrossRef]
- Franci, G.; Folliero, V.; Cammarota, M.; Zannella, C.; Sarno, F.; Schiraldi, C.; de Lera, A.R.; Altucci, L.; Galdiero, M. Epigenetic modulator UVI5008 inhibits MRSA by interfering with bacterial gyrase. Sci. Rep. 2018, 8, 13117. [Google Scholar] [CrossRef]
- Dixit, A.; Kumar, N.; Kumar, S.; Trigun, V. Antimicrobial resistance: Progress in the decade since emergence of New Delhi metallo-β-lactamase in India. Indian J. Community Med. 2019, 44, 4–8. [Google Scholar]
- Holloway, K.A.; Rosella, L.; Henry, D. The impact of WHO essential medicines policies on inappropriate use of antibiotics. PLoS ONE 2016, 11, e0152020. [Google Scholar] [CrossRef]
- Maqbool, T.; Awan, S.J.; Malik, S.; Hadi, F.; Shehzadi, S.; Tariq, K. In-vitro anti-proliferative, apoptotic and antioxidative activities of medicinal herb Kalonji (Nigella sativa). Curr. Pharm. Biotechnol. 2019, 20, 1288–1308. [Google Scholar] [CrossRef]
- Comşa, Ş.; Cimpean, A.M.; Raica, M. The story of MCF-7 breast cancer cell line: 40 years of experience in research. Anticancer Res. 2015, 35, 3147–3154. [Google Scholar]
- Januchowski, R.; Zawierucha, P.; Ruciński, M.; Andrzejewska, M.; Wojtowicz, K.; Nowicki, M.; Zabel, M. Drug transporter expression profiling in chemoresistant variants of the A2780 ovarian cancer cell line. Biomed. Pharmacother. 2014, 68, 447–453. [Google Scholar] [CrossRef]
- Grigoryan, L.; Trautner, B.W.; Gupta, K. Diagnosis and management of urinary tract infections in the outpatient setting: A review. JAMA 2014, 312, 1677–1684. [Google Scholar] [CrossRef]
- Guettaf, S.; Abidli, N.; Kariche, S.; Bellebcir, L.; Bouriche, H. Phytochemical screening and antioxidant activity of aqueous extract of Genista saharae (Coss. & Dur.). Der. Pharm. Lett. 2016, 8, 50–60. [Google Scholar]
- Nurmahani, M.M.; Osman, A.; Hamid, A.A.; Ghazali, F.M.; Dek, M.S. Antibacterial property of Hylocereus polyrhizus and Hylocereus undatus peel extracts. Int. Food Res. J. 2012, 19, 59–66. [Google Scholar]
- Shirzadi-Ahodashti, M.; Mizwari, Z.M.; Mohammadi-Aghdam, S.; Ahmadi, S.; Ebrahimzadeh, M.A.; Mortazavi-Derazkola, S. Optimization and evaluation of anticancer, antifungal, catalytic, and antibacterial activities: Biosynthesis of spherical-shaped gold nanoparticles using Pistacia vera hull extract (AuNPs@ PV). Arab. J. Chem. 2023, 16, 104423–104434. [Google Scholar] [CrossRef]
- Ben-Amor, I.; Musarra-Pizzo, M.; Smeriglio, A.; D’Arrigo, M.; Pennisi, R.; Attia, H.; Gargouri, B.; Trombetta, D.; Mandalari, G.; Sciortino, M.T. Phytochemical characterization of Olea europea leaf extracts and assessment of their anti-microbial and anti-HSV-1 activity. Viruses 2021, 13, 1085. [Google Scholar] [CrossRef]
- Sahraoui, H.L.; Qasmaoui, A.; Charof, R.; Hamamouchi, J. Antibacterial power of Olea europaea extracts from different Moroccan regions. E3S Web Conf. 2021, 319, 01067. [Google Scholar] [CrossRef]
- Pham, H.N.T.; Sakoff, J.A.; Bond, D.R.; Vuong, Q.V.; Bowyer, M.C.; Scarlett, C.J. In vitro antibacterial and anticancer properties of Helicteres hirsuta Lour. leaf and stem extracts and their fractions. Mol. Biol. Rep. 2018, 45, 2125–2133. [Google Scholar] [CrossRef]
- Taghizadeh, S.F.; Rezaee, R.; Mehmandoust, M.; Badibostan, H.; Karimi, G. Assessment of in vitro bioactivities of Pis v 1 (2S albumin) and Pis v 2.0101 (11S globulin) proteins derived from pistachio (Pistacia vera L.). J. Food Measure. Charact. 2020, 14, 1054–1063. [Google Scholar] [CrossRef]
- Rahimi, H.; Ali, N.; Habib, E.; Babak, N.; Moosazadeh, M.M. Identification of novel bacterial DNA gyrase inhibitors. Res. Pharm. Sci. 2016, 11, 250–258. [Google Scholar]
- Salman, M.; Sharma, P.; Kumar, M.; Ethayathulla, A.S.; Kaur, P. Targeting novel sites in DNA gyrase for development of anti-microbials. Brief. Funct. Gen. 2023, 22, 180–194. [Google Scholar] [CrossRef]
- Canepari, P.; Boaretti, M.; Lleó, M.M.; Satta, G. Lipoteichoic acid as a new target for activity of antibiotics: Mode of action of daptomycin (LY146032). Antimicrob. Agents Chemother. 1990, 34, 1220–1226. [Google Scholar] [CrossRef]
- Canepari, P.; Boaretti, M. Lipoteichoic acid as a target for antimicrobial action. Microb. Drug Resist. 1996, 2, 85–89. [Google Scholar] [CrossRef]
- Pasquina, L.W.; Maria, J.P.S.; Walker, S. Teichoic acid biosynthesis as an antibiotic target. Curr. Opin. Microbiol. 2013, 16, 531–537. [Google Scholar] [CrossRef]
- Zhou, J.; Cai, Y.; Liu, Y.; An, H.; Deng, K.; Ashraf, M.A.; Zou, L.; Wang, J. Breaking down the cell wall: Still an attractive antibacterial strategy. Front. Microbiol. 2022, 13, 952633. [Google Scholar] [CrossRef]
- Serpi, M.; Pertusati, F.; Morozzi, C.; Novelli, G.; Giannantonio, D.; Duggan, K.; Vittorio, S.; Fallis, I.A.; De Luca, L.; Williams, D. Synthesis, molecular docking and antibacterial activity of an oxadiazole-based lipoteichoic acid inhibitor and its metabolites. J. Mol. Struct. 2023, 1278, 134977–134984. [Google Scholar] [CrossRef]
- Collin, F.; Karkare, S.; Maxwell, A. Exploiting bacterial DNA gyrase as a drug target: Current state and perspectives. Appl. Microbiol. Biotechnol. 2011, 92, 479–497. [Google Scholar] [CrossRef]
- Khan, T.; Sankhe, K.; Suvarna, V.; Sherje, A.; Patel, K.; Dravyaka, B. DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents. Biomed. Pharmacother. 2018, 103, 923–938. [Google Scholar] [CrossRef]
- Spencer, A.C.; Panda, S.S. DNA gyrase as a target for quinolones. Biomedicines 2023, 11, 371. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Abol-Fotouh, D.; AlHagar, O.E.A.; Hassan, M.A. Optimization, purification, and biochemical characterization of thermoalkaliphilic lipase from a novel Geobacillus stearothermophilus fmr12 for detergent formulations. Int. J. Biol. Macromol. 2021, 181, 125–135. [Google Scholar] [CrossRef]
- Gurnani, N.; Gupta, M.; Shrivastava, R.; Mehta, D.; Mehta, B. Effect of extraction methods on yield, phytochemical constituents, antibacterial andantifungal activity of Capsicum frutescens L. Indian J. Nat. Prod. Res. 2016, 7, 32–39. [Google Scholar]
- Gonelimali, F.D.; Lin, J.; Miao, W.; Xuan, J.; Charles, F.; Chen, M.; Hatab, S.R. Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front. Microbiol. 2018, 9, 1639. [Google Scholar] [CrossRef]
- Baba, S.A.; Malik, S.A. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. J. Taibah Univ. Sci. 2015, 9, 449–454. [Google Scholar] [CrossRef]
- Mohammed, S.; Manan, F.A. Analysis of total phenolics, tannins and flavonoids from Moringa oleifera seed extract. J. Chem. Pharm. Res. 2015, 7, 132–135. [Google Scholar]
- Tabasum, S.; Khare, S.; Jain, K. Spectrophotometric quantification of total phenolic, flavonoid, and alkaloid contents of Abrus precatorius L. seeds. Asian J. Pharm. Clin. Res. 2016, 9, 371–374. [Google Scholar]
- Fitriansyah, S.N.; Fidrianny, I.; Ruslan, K. Correlation of total phenolic, flavonoid and carotenoid content of Sesbania sesban (L. Merr) leaves extract with DPPH scavenging activities. Int. J. Pharmacog. Phytochem. Res. 2017, 9, 89–94. [Google Scholar] [CrossRef]
- Savithramma, N.; Rao, M.L.; Suhrulatha, D. Screening of medicinal plants for secondary metabolites. Middle-East J. Sci. Res. 2011, 8, 579–584. [Google Scholar]
- Starlin, T.; Prabha, P.S.; Thayakumar, B.K.A.; Gopalakrishnan, V.K. Screening and GC-MS profiling of ethanolic extract of Tylophora pauciflora. Bioinformation 2019, 15, 425–429. [Google Scholar] [CrossRef]
- Wajid, M.; Mushtaq, A.; Ahmad, M.; Jabeen, Q.; Rasheed, A.; Bashir, K.; Tulain, U.R. Evaluation of antimicrobial effects of Prosopis cineraria leaves. World J. Pharm. Sci. 2014, 2, 469–478. [Google Scholar]
- Ouattara, L.; Koudou, J.; Zongo, C.; Barro, N.; Savadogo, A.; Bassole, I.H.N.; Ouattara, A.S.; Traore, A.S. Antioxidant and antibacterial activities of three species of Lannea from Burkina Faso. J. Appl. Sci. 2011, 11, 157–162. [Google Scholar] [CrossRef]
- Can-Cauich, C.A.; Sauri-Duch, E.; Moo-Huchin, V.M.; Betancur-Ancona, D.; Cuevas-Glory, L.F. Effect of extraction method and specie on the content of bioactive compounds and antioxidant activity of pumpkin oil from Yucatan, Mexico. Food Chem. 2019, 285, 186–193. [Google Scholar] [CrossRef]
- Zaidan, M.R.; Noor Rain, A.; Badrul, A.R.; Adlin, A.; Norazah, A.; Zakiah, I. In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method. Trop. Biomed. 2015, 22, 165–170. [Google Scholar]
- Mudassar, S.; Ali, M.; Kiran, N.; Paracha, H.M.; Nayyar, M. Prevalence and antibiogram profile of uropathogens in a tertiary care hospital. Pak. J. Med. Health Sci. 2018, 12, 867–869. [Google Scholar]
- Hadi, F.; Awan, S.J.; Tayyeb, A.; Maqbool, T.; Shehzadi, S.; Malik, S.; Kausar, H.; Malik, A. Hepato-protective role of itraconazole mediated cytochrome p450 pathway inhibition in liver fibrosis. Pak. J. Pharm. Sci. 2020, 33, 2751–2758. [Google Scholar] [PubMed]
- Gospodinova, Z.; Bózsity, N.; Nikolova, M.; Krasteva, M.; Zupkó, I. Antiproliferative properties against human breast, cervical and ovarian cancer cell lines, and antioxidant capacity of leaf aqueous ethanolic extract from Cotinus coggygria Scop. Acta Med. Bulg. 2017, 44, 20–25. [Google Scholar] [CrossRef]
- Ahmed, M.; Khan, K.U.R.; Ahmad, S.; Aati, H.Y.; Ovatlarnporn, C.; Rehman, M.S.U.; Javed, T.; Khursheed, A.; Ghalloo, B.A.; Dilshad, R.; et al. Comprehensive phytochemical profiling, biological activities, and molecular docking studies of Pleurospermum candollei: An insight into potential for natural products development. Molecules 2022, 27, 4113–4137. [Google Scholar] [CrossRef]
Sr. No. | Bacterial Isolates | Total |
---|---|---|
Gram-negative | ||
1. | E. coli OR602871 | 144 |
2. | K. pneumoniae OR602899 | 26 |
3. | P. aeruginosa OR602900 | 15 |
4. | P. vulgaris OR602872 | 30 |
Gram-positive | ||
5. | S. aureus OR602898 | 18 |
6. | S. epidermidis OR602901 | 31 |
Total | 264 |
Antibiotics | Gram Negative Uropathogens | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E. coli OR602871 (n = 144) | K. penumoniae OR602899 (n = 26) | P. aeruginosa OR602900 (n =15) | P. vulgaris OR602872 (n = 30) | Total | |||||||||||
Total | R(n) | R(%) | Total | R(n) | R(%) | Total | R(n) | R(%) | Total | R(n) | R(%) | TT | R(n) | R(%) | |
Ampicillin | 87 | 85 | 97.7 | 19 | 19 | 100.0 | 5 | 5 | 100.0 | 12 | 7 | 58.3 | 123 | 116 | 94.3 |
Amoxil/Clav | 96 | 82 | 85.4 | 17 | 13 | 76.5 | 6 | 6 | 100.0 | 8 | 8 | 100.0 | 127 | 109 | 85.8 |
Ceftriaxone | 103 | 89 | 86.4 | 10 | 10 | 100.0 | 7 | 4 | 57.1 | 6 | 5 | 83.3 | 126 | 108 | 85.7 |
Cefixime | 3 | 3 | 100.0 | 2 | 2 | 100.0 | 1 | 0 | 0.0 | 0 | 0 | 0.0 | 6 | 5 | 83.3 |
Vancomycin | 1 | 0 | 0.0 | 0 | 0 | 0.0 | 2 | 2 | 100.0 | 18 | 12 | 66.7 | 21 | 14 | 66.7 |
Meropenem | 26 | 3 | 11.5 | 5 | 0 | 0.0 | 5 | 1 | 20.0 | 4 | 0 | 0.0 | 40 | 4 | 10.0 |
Imipenem | 102 | 9 | 8.8 | 6 | 0 | 0.0 | 9 | 4 | 44.4 | 10 | 0 | 0.0 | 127 | 13 | 10.2 |
Gentamycin | 98 | 59 | 60.2 | 17 | 6 | 35.3 | 9 | 5 | 55.6 | 18 | 10 | 55.6 | 142 | 80 | 56.3 |
Tobramycin | 21 | 13 | 61.9 | 8 | 0 | 0.0 | 3 | 3 | 100.0 | 6 | 6 | 100.0 | 38 | 22 | 57.9 |
Amikacin | 92 | 33 | 35.9 | 11 | 6 | 54.5 | 12 | 2 | 16.7 | 16 | 4 | 25.0 | 131 | 45 | 34.4 |
Ciprofloxacin | 109 | 86 | 78.9 | 19 | 13 | 68.4 | 8 | 5 | 62.5 | 25 | 18 | 72.0 | 161 | 122 | 75.8 |
Levofloxacin | 103 | 71 | 68.9 | 19 | 6 | 31.6 | 8 | 5 | 62.5 | 20 | 13 | 65.0 | 150 | 95 | 63.3 |
Nitrofurantion | 74 | 15 | 20.3 | 10 | 2 | 20.0 | 6 | 0 | 0.0 | 8 | 2 | 25.0 | 98 | 19 | 19.4 |
Tazobactam | 98 | 48 | 49.0 | 8 | 6 | 75.0 | 13 | 2 | 15.4 | 7 | 2 | 28.6 | 126 | 58 | 46.0 |
Azithromycin | 18 | 12 | 66.7 | 1 | 0 | 0.0 | 4 | 3 | 75.0 | 18 | 17 | 94.4 | 41 | 32 | 78.0 |
Doxycyclin | 18 | 14 | 77.8 | 2 | 2 | 100.0 | 1 | 1 | 100.0 | 16 | 3 | 18.8 | 37 | 20 | 54.1 |
Overall AMR | 1049 | 622 | 59.3 | 154 | 85 | 55.2 | 99 | 48 | 48.5 | 192 | 107 | 55.7 | 1494 | 862 | 57.7 |
Antibiotics | Gram-Positive Uropathogens | ||||
---|---|---|---|---|---|
S. aureus OR602898 (n = 18) | S. epidermidis OR602901 (n = 31) | Total | |||
Total | R (%) | Total | R (%) | R (%) | |
Penicillin | 12 | 91.7 | 17 | 100 | 96.5 |
Vancomycin | 06 | 0 | 23 | 34.8 | 27.6 |
Amikacin | 05 | 0 | 07 | 71.4 | 41.7 |
Ciprofloxacin | 13 | 69.2 | 20 | 65.0 | 66.7 |
Levofloxacin | 07 | 33 | 12 | 58.3 | 47.4 |
Imipenem | 06 | 0 | 08 | 0 | 0 |
Septran | 11 | 100 | 13 | 53.8 | 75.0 |
Overall AMR for a bacterium | 50 | 66.0 | 100 | 57.0 | 60.0 |
(a) Ethanol Extract | ||||||
---|---|---|---|---|---|---|
Medicinal Plants | Phenols (GAE) | Tannins (GAE) | Alkaloids (ATE) | Flavonoids (QAE) | Carotenoids (GAE) | Steroids (CAE) |
S. undatus | 10.08 ± 1.76 | 27.87 ± 2.54 | 17.87 ± 2.58 | 56.87 ± 3.98 | 24.09 ± 3.87 | 10.78 ± 0.67 |
P. vera | 9.64 ± 0.65 | 14.39 ± 1.71 | 18.84 ± 2.69 | 30.62 ± 2.31 | 13.27 ± 1.56 | 7.34 ± 0.86 |
O. europaea | 15.87 ± 2.76 | 5.87 ± 0.89 | 28.62 ± 1.31 | 47.34 ± 0.86 | 17.27 ± 1.51 | 12.78 ± 0.57 |
(b) Hexane Extract | ||||||
Medicinal Plants | Phenols (GAE) | Tannins (GAE) | Alkaloids (ATE) | Flavonoids (QAE) | Carotenoids (GAE) | Steroids (CAE) |
S. undatus | 16.84 ± 2.39 | 21.87 ± 3.54 | 25.87 ± 2.38 | 60.87 ± 4.98 | 10.27 ± 1.04 | 9.98 ± 0.67 |
P. vera | 12.64 ± 0.64 | 12.39 ± 1.70 | 19.84 ± 1.69 | 71.07 ± 2.67 | 19.27 ± 1.31 | 18.84 ± 2.30 |
O. europaea | 20.87 ± 1.76 | 11.87 ± 0.67 | 35.39 ± 1.31 | 49.94 ± 5.08 | 25.37 ± 1.06 | 8.84 ± 0.69 |
(c) Chloroform Extract | ||||||
Medicinal Plants | Phenols (GAE) | Tannins (GAE) | Alkaloids (ATE) | Flavonoids (QAE) | Carotenoids (GAE) | Steroids (CAE) |
S. undatus | 13.48 ± 1.45 | 25.63 ± 3.12 | 22.63 ± 2.41 | 58.91 ± 4.71 | 17.16 ± 2.56 | 10.32 ± 0.87 |
P. vera | 10.65 ± 0.65 | 13.78 ± 1.45 | 18.99 ± 1.98 | 54.18 ± 2.72 | 15.73 ± 1.45 | 13.48 ± 1.65 |
O. europaea | 17.56 ± 1.96 | 06.12 ± 0.76 | 32.54 ± 1.81 | 48.23 ± 3.45 | 21.32 ± 1.34 | 10.81 ± 0.61 |
Phytoconstituents | Molecular Formula (mf) | Molecular Weight (mw) | Retention Index (n-alkane Scale in IU) | Antibacterial Activity |
---|---|---|---|---|
2,2-Dimethoxybutane | C6H14O2 | 118 | 685 | No |
Glyceraldehyde | C3H6O3 | 90 | 913 | Yes |
Furfural | C5H4O2 | 96 | 831 | Yes |
Furyl alcohol | C5H6O2 | 98 | 885 | Yes |
Propanoic acid, 3-nitro-, methyl ester | C4H7NO4 | 133 | 968 | Yes |
Dihydroxyacetone | C3H6O3 | 90 | 941 | Yes |
Thymine | C5H6N2O2 | 126 | 1118 | Yes |
Methyl furoate | C6H6O3 | 126 | 909 | Yes |
4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- | C6H8O4 | 144 | 1269 | Yes |
Hydroxymethylfurfural | C6H6O3 | 126 | 1163 | Yes |
Acetoglyceride | C5H10O4 | 134 | 1091 | Yes |
2-Amino-2-cyano-4-methylpentanethioamide | C7H13N3S | 171 | 1686 | Yes |
Vanillin | C8H8O3 | 152 | 1392 | Yes |
Cis-Ethyl3-methyl-3-phenylglycidatephenylethyl2methylbutyrate | C12H14O3 | 206 | 1484 | Yes |
Benzenebutanoic acid, 4-ethyl-ˠ-oxo | C12H14O3 | 206 | 1797 | No |
Phenol, 2,4-ditert-butyl | C14H22O | 206 | 1555 | Yes |
Mandelic acid, α-methyl-, DL- | C12H14O3 | 206 | 1484 | Yes |
Atrolactic acid | C9H10O3 | 166 | 1441 | No |
Tetradecanoic acid | C14H28O2 | 228 | 1769 | Yes |
1,4-Hydroxy-4-isopropyl-5-methyl-2-hexyl acetate | C12H20O3 | 212 | 1362 | No |
n-Hexadecanoic acid | C16H32O2 | 256 | 1968 | No |
Diisooctyl phthalate | C24H38O4 | 390 | 2704 | No |
Phytoconstituents | Molecular Formula (mf) | Molecular Weight (mw) | Retention index (n-alkane Scale in IU) | Antibacterial Activity |
---|---|---|---|---|
2,2-Dimethoxybutane | C6H14O2 | 118 | 685 | Yes |
Glycerin | C3H8O3 | 92 | 967 | Yes |
4,5-Diamino-2-hydroxypyrimidine | C4H6N4O | 126 | 1512 | Yes |
Threo-4-Hydroxy-l-lysine lactone | C6H12N2O2 | 144 | 1433 | Yes |
N-Methylpyrrole-2-carboxylic acid | C6H7NO2 | 125 | 1123 | Yes |
2-Furancarboxaldehyde,5-(hydroxymethyl) | C6H6O3 | 126 | 1176 | Yes |
4-Hydroxy-2-methylpyrrolidine-2-carboxylic acid | C6H11NO3 | 145 | 1424 | No |
Isosorbide Dinitrate | C6H8N2O8 | 236 | - | Yes |
Thymol | C10H14O | 150 | 1266 | Yes |
Sucrose | C12H22O11 | 342 | 3139 | Yes |
Hexadecanoic acid, methyl ester | C17H34O2 | 270 | 1878 | Yes |
n-Hexadecanoic acid | C16H32O2 | 256 | 1968 | Yes |
Hexadecanoic acid, ethyl ester | C18H36O2 | 284 | 1978 | Yes |
9, 12-Octadecanoic acid (Z, Z)-, methyl ester | C19H34O2 | 294 | 2093 | Yes |
10, Octadecanoic acid, methyl ester | C19H36O2 | 296 | 2085 | No |
9, 12-Octadecadienoic acid | C18H32O2 | 280 | 2183 | Yes |
cis-Vaccenic acid | C18H34O2 | 282 | 2175 | Yes |
9, 12-Octadecanoic acid, ethyl ester | C20H36O2 | 308 | 2193 | Yes |
Octadecanoic acid | C18H36O2 | 284 | - | Yes |
Ethyl Oleate | C20H38O2 | 310 | 2185 | No |
5alpha-Cholestan-3beta-ol, 2-methylene- | C28H48O | 400 | 2652 | No |
1,2-15,16-Diepoxyhexadecane | C16H30O2 | 254 | 1792 | No |
9-Oximino-2, 7-diethoxyfluorene | C17H17NO3 | 283 | 2403 | No |
1-Heptatriacotanol | C37H76O | 536 | 3942 | No |
Ethyl iso-allocholate | C26H44O5 | 436 | 3094 | Yes |
1,2-Benzenedicarboxylic acid, diisooctyl ester | C24H38O4 | 390 | 2704 | Yes |
9,12-Octadecanoic acid (Z,Z)-,2,3-dihydroxypropyl ester | C21H38O4 | 354 | 2697 | Yes |
9-Octadecanoic acid (Z)-, 2-hydroxy-1-(hydroxymethyl) ethyl ester | C21H40O4 | 356 | 2705 | Yes |
ˠ-Tocopherol | C28H48O2 | 416 | 3036 | Yes |
Phytoconstituents | Molecular Formula (mf) | Molecular Weight (mw) | Retention Index (n-Alkane Scale in IU) | Antibacterial Activity |
---|---|---|---|---|
2,2-Dimethoxybutane | C6H14O2 | 118 | 685 | No |
2,3 butanediol | C4H10O2 | 90 | 743 | No |
3-Hexen-1-ol | C6H12O | 100 | 868 | No |
N-Propylacetamide | C5H11NO | 101 | 918 | Yes |
Phenylmethanol | C7H8O | 108 | 1036 | Yes |
Phenylacetaldehyde | C8H8O | 120 | 1081 | No |
Cis-2,6-Dimethyl-2,6-octadiene | C10H18 | 138 | 985 | No |
Β-Lactose | C12H22O11 | 342 | 3131 | Yes |
α-methyl-α-[4-methyl-3-pentenyl]oxiranemethanol | C10H18O2 | 170 | 1182 | No |
Furyl hydroxymethyl ketone | C6H6O3 | 126 | 1121 | No |
Linalyl oxide | C10H18O2 | 170 | 1164 | Yes |
Phenylethyl alcohol | C8H10O | 122 | 1136 | Yes |
4H-Pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl- | C6H8O4 | 144 | 1269 | No |
Benzoic acid | C7H6O2 | 122 | 1150 | Yes |
Triethylamine | C6H15N | 101 | 667 | Yes |
Benzeneacetic acid | C8H8O2 | 136 | 1249 | Yes |
Nonanoic acid | C9H18O2 | 158 | 1272 | Yes |
Thymol | C10H14O | 150 | 1262 | Yes |
Eugenol | C10H12O2 | 164 | 1392 | Yes |
Tyrosol | C8H10O2 | 138 | 1356 | Yes |
4-Hydroxybenzyl cyanide | C8H7NO | 133 | 1359 | No |
Levoglucosan | C6H10O5 | 162 | 1404 | Yes |
1-Oxaspiro [2.5]octane,5,5-dimethyl-4-(3-methyl-1,3-butadienyl)- | C14H22O | 206 | 1431 | No |
Dihydroactinidiolide | C11H16O2 | 180 | 1426 | No |
Dodecanoic acid | C12H24O2 | 200 | 1570 | Yes |
Fumaric acid, ethyl 2-methylallyl ester | C10H14O4 | 198 | 1325 | No |
3,3,4,6-tetramethyl-1-indanone | C13H16O | 188 | 1579 | No |
Vanillacetic acid | C9H10O4 | 182 | 1659 | No |
Heptadecanoic acid | C17H34O2 | 270 | 2067 | No |
2-methyl-6-(4-methylphenyl)hept-2-ene-4-one | C29H50O2 | 430 | - | No |
Stigmasterol | C29H48O | 412 | 2739 | No |
Oleuropein | C25H32O13 | 540 | 2731 | Yes |
(a) Antibacterial Sensitivity of S. undatus | ||||||
---|---|---|---|---|---|---|
Sr. No. | Bacterial Isolates | Positive Control | Negative Control | Ethanol | Chloroform | Hexane |
1. | E. coli | 4 mm | 1 mm | R | S (25 mm) | R |
2. | K. pneumoniae | 31 mm | 0 mm | S (23 mm) | R | R |
3. | P. vulgaris | 39 mm | 0 mm | R | S (24 mm) | R |
4. | P. aeruginosa | 41 mm | 0 mm | R | R | S (27 mm) |
5. | S. aureus | 2 mm | 0 mm | S (26 mm) | R | S (25 mm) |
(b) Antibacterial Sensitivity of P. vera | ||||||
Sr. No. | Bacterial Isolates | Positive Control | Negative Control | Ethanol | Chloroform | Hexane |
1. | E. coli | 3 mm | 1 mm | S (28 mm) | R | R |
2. | K. pneumoniae | 38 mm | 0 mm | R | R | S (18 mm) |
3. | P. vulgaris | 50 mm | 0 mm | S (22 mm) | R | R |
4. | P. aeruginosa | 51 mm | 0 mm | S (25 mm) | R | S (21 mm) |
5. | S. aureus | 3 mm | 0 mm | S (22 mm) | S (25 mm) | R |
(c) Antibacterial Sensitivity of O. europaea | ||||||
Sr. No. | Bacterial Isolates | Positive Control | Negative Control | Ethanol | Chloroform | Hexane |
1. | E. coli | 35 mm | 1 mm | S (15 mm) | R | R |
2. | K. pneumoniae | 1 mm | 0 mm | S (16 mm) | R | R |
3. | P. vulgaris | 55 mm | 0 mm | S (8 mm) | R | R |
4. | P. aeruginosa | 60 mm | 0 mm | S (15 mm) | R | R |
5. | S. aureus | 3 mm | 0 mm | R | R | R |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safdar, S.; Shamim, S.; Khan, M.; Imran, A.; Khan, M.A.; Ali, Q.; Han, S. Probing Antibacterial and Anticancer Potential of Selenicereus undatus, Pistacia vera L. and Olea europaea L. against Uropathogens, MCF-7 and A2780 Cancer Cells. Molecules 2023, 28, 8148. https://doi.org/10.3390/molecules28248148
Safdar S, Shamim S, Khan M, Imran A, Khan MA, Ali Q, Han S. Probing Antibacterial and Anticancer Potential of Selenicereus undatus, Pistacia vera L. and Olea europaea L. against Uropathogens, MCF-7 and A2780 Cancer Cells. Molecules. 2023; 28(24):8148. https://doi.org/10.3390/molecules28248148
Chicago/Turabian StyleSafdar, Sahar, Saba Shamim, Maryam Khan, Ali Imran, Mudassar Ali Khan, Qurban Ali, and Shiming Han. 2023. "Probing Antibacterial and Anticancer Potential of Selenicereus undatus, Pistacia vera L. and Olea europaea L. against Uropathogens, MCF-7 and A2780 Cancer Cells" Molecules 28, no. 24: 8148. https://doi.org/10.3390/molecules28248148
APA StyleSafdar, S., Shamim, S., Khan, M., Imran, A., Khan, M. A., Ali, Q., & Han, S. (2023). Probing Antibacterial and Anticancer Potential of Selenicereus undatus, Pistacia vera L. and Olea europaea L. against Uropathogens, MCF-7 and A2780 Cancer Cells. Molecules, 28(24), 8148. https://doi.org/10.3390/molecules28248148