Iron(II) Mediated Supramolecular Architectures with Schiff Bases and Their Spin-Crossover Properties
Abstract
:1. Introduction
2. Schiff Base Ligand System in Supramolecular Architectures
3. Magnetic Properties of Iron(II) Spin-Crossover Schiff Base Supramolecular Architectures
3.1. Iron(II) SCO Compounds with Spiral Architectures
3.2. Iron(II) SCO Grid-Architectures
3.3. Iron(II) SCO Compounds with Cage Architectures
3.4. Iron(II) SCO Compounds with Cubic Architectures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Savastano, M. Words in Supramolecular Chemistry: The Ineffable Advances of Polyiodide Chemistry. Dalton Trans. 2021, 50, 1142–1165. [Google Scholar] [CrossRef] [PubMed]
- Sang, Y.; Liu, M. Hierarchical Self-Assembly into Chiral Nanostructures. Chem. Sci. 2022, 13, 633–656. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.X.; Wang, M.X. Exploring Anion-π Interactions and Their Applications in Supramolecular Chemistry. Acc. Chem. Res. 2020, 53, 1364–1380. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.B.; Lee, S.L. Supramolecular Chemistry: Host–Guest Molecular Complexes. Molecules 2021, 26, 3995. [Google Scholar] [CrossRef]
- Liu, G.; Sheng, J.; Teo, W.L.; Yang, G.; Wu, H.; Li, Y.; Zhao, Y. Control on Dimensions and Supramolecular Chirality of Self-Assemblies through Light and Metal Ions. J. Am. Chem. Soc. 2018, 140, 16275–16283. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, M.; Bierschenk, S.M.; Xia, K.T.; Bergman, R.G.; Raymond, K.N.; Toste, F.D. Advances in Supramolecular Host-Mediated Reactivity. Nat. Catal. 2020, 3, 969–984. [Google Scholar] [CrossRef]
- Shi, Q.; Zhou, X.; Yuan, W.; Su, X.; Neniškis, A.; Wei, X.; Taujenis, L.; Snarskis, G.; Ward, J.S.; Rissanen, K.; et al. Selective Formation of S4-and T-Symmetric Supramolecular Tetrahedral Cages and Helicates in Polar Media Assembled via Cooperative Action of Coordination and Hydrogen Bonds. J. Am. Chem. Soc. 2020, 142, 3658–3670. [Google Scholar] [CrossRef]
- Yokoya, M.; Kimura, S.; Yamanaka, M. Urea Derivatives as Functional Molecules: Supramolecular Capsules, Supramolecular Polymers, Supramolecular Gels, Artificial Hosts, and Catalysts. Chem. Eur. J. 2021, 27, 5601–5614. [Google Scholar] [CrossRef]
- Basak, T.; Frontera, A.; Chattopadhyay, S. Insight into Non-Covalent Interactions in Two Triamine-Based Mononuclear Iron(III) Schiff Base Complexes with Special Emphasis on the Formation of Br⋯π Halogen Bonding. CrystEngComm 2021, 23, 1578–1587. [Google Scholar] [CrossRef]
- Li, T.; Pang, H.; Wu, Q.; Huang, M.; Xu, J.; Zheng, L.; Wang, B.; Qiao, Y. Rigid Schiff Base Complex Supermolecular Aggregates as a High-Performance PH Probe: Study on the Enhancement of the Aggregation-Caused Quenching (ACQ) Effect via the Substitution of Halogen Atoms. Int. J. Mol. Sci. 2022, 23, 6259. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C.; Fu, K.; Liang, J.; Pang, S.; Liu, G. Multiple Chirality Inversion of Pyridine Schiff-Base Cholesterol-Based Metal–Organic Supramolecular Polymers. Chem. Commun. 2022, 58, 9520–9523. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.M.; Zhao, S.Z.; Wang, Y.T.; Xu, P.Y.; Qin, C.Y.; Li, Y.H.; Zhou, X.H.; Wang, S. Anion-Driven Supramolecular Modulation of Spin-Crossover Properties in Mononuclear Iron(III) Schiff-Base Complexes. Dalton Trans. 2021, 50, 15210–15223. [Google Scholar] [CrossRef] [PubMed]
- Berdiell, I.C.; Hochdörffer, T.; Desplanches, C.; Kulmaczewski, R.; Shahid, N.; Wolny, J.A.; Warriner, S.L.; Cespedes, O.; Schünemann, V.; Chastanet, G.; et al. Supramolecular Iron Metallocubanes Exhibiting Site-Selective Thermal and Light-Induced Spin-Crossover. J. Am. Chem. Soc. 2019, 141, 18759–18770. [Google Scholar] [CrossRef]
- Li, W.; Sun, L.; Garcia, Y. Subcomponent Self-Assembly of a Fe(II) Based Mononuclear Complex for Potential NH3 Sensing Applications. Hyperfine Interact. 2021, 242, 7. [Google Scholar] [CrossRef]
- Gilday, L.C.; Robinson, S.W.; Barendt, T.A.; Langton, M.J.; Mullaney, B.R.; Beer, P.D. Halogen Bonding in Supramolecular Chemistry. Chem. Rev. 2015, 115, 7118–7195. [Google Scholar] [CrossRef]
- Pöthig, A.; Casini, A. Recent Developments of Supramolecular Metal-Based Structures for Applications in Cancer Therapy and Imaging. Theranostics 2019, 9, 3150–3169. [Google Scholar] [CrossRef]
- He, C.; Liu, D.; Lin, W. Nanomedicine Applications of Hybrid Nanomaterials Built from Metal−Ligand Coordination Bonds: Nanoscale Metal−Organic Frameworks and Nanoscale Coordination Polymers. Chem. Rev. 2015, 115, 11079–11108. [Google Scholar] [CrossRef]
- Pei, W.Y.; Lu, B.B.; Yang, J.; Wang, T.; Ma, J.F. Two New Calix[4]Resorcinarene-Based Coordination Cages Adjusted by Metal Ions for the Knoevenagel Condensation Reaction. Dalton Trans. 2021, 50, 9942–9948. [Google Scholar] [CrossRef]
- Liu, P.; Qin, R.; Fu, G.; Zheng, N. Surface Coordination Chemistry of Metal Nanomaterials. J. Am. Chem. Soc. 2017, 139, 2122–2131. [Google Scholar] [CrossRef]
- El-Sayed, E.S.M.; Yuan, D. Metal-Organic Cages (MOCs): From Discrete to Cage-Based Extended Architectures. Chem. Lett. 2020, 49, 28–53. [Google Scholar] [CrossRef]
- Cook, L.J.K.; Mohammed, R.; Sherborne, G.; Roberts, T.D.; Alvarez, S.; Halcrow, M.A. Spin State Behavior of Iron(II)/Dipyrazolylpyridine Complexes. New Insights from Crystallographic and Solution Measurements. Coord. Chem. Rev. 2015, 289–290, 2–12. [Google Scholar] [CrossRef]
- Rather, I.A.; Wagay, S.A.; Ali, R. Emergence of Anion-π Interactions: The Land of Opportunity in Supramolecular Chemistry and Beyond. Coord. Chem. Rev. 2020, 415, 213327. [Google Scholar] [CrossRef]
- Tomohiro, T.; Ogawa, Y.; Okuno, H.; Kodaka, M. Synthesis and Spectroscopic Analysis of Chromophoric Lipids Inducing PH-Dependent Liposome Fusion. J. Am. Chem. Soc. 2003, 125, 14733–14740. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, J.; Ye, J.; Jiao, J.; Liu, Z.; Zhao, C.; Li, B.; Fu, Y. Metal-Coordinated Supramolecular Self-Assemblies for Cancer Theranostics. Adv. Sci. 2021, 8, e2101101. [Google Scholar] [CrossRef] [PubMed]
- Schiff, H. Mittheilungen Aus Dem Universitätslaboratorium in Pisa: Eine Neue Reihe Organischer Basen. Justus Liebigs Ann. Chem. 1864, 131, 118–119. [Google Scholar] [CrossRef] [Green Version]
- Qin, W.; Long, S.; Panunzio, M.; Biondi, S. Schiff Bases: A Short Survey on an Evergreen Chemistry Tool. Molecules 2013, 18, 12264–12289. [Google Scholar] [CrossRef]
- Hameed, A.; al-Rashida, M.; Uroos, M.; Ali, S.A.; Khan, K.M. Schiff Bases in Medicinal Chemistry: A Patent Review (2010–2015). Expert Opin. Ther. Pat. 2017, 27, 63–79. [Google Scholar] [CrossRef]
- Lewiński, J.; Prochowicz, D. Assemblies Based on Schiff Base Chemistry. Compr. Supramol. Chem. II 2017, 6, 279–304. [Google Scholar] [CrossRef]
- Qiu, Y.R.; Cui, L.; Cai, P.Y.; Yu, F.; Kurmoo, M.; Leong, C.F.; D’Alessandro, D.M.; Zuo, J.L. Enhanced Dielectricity Coupled to Spin-Crossover in a One-Dimensional Polymer Iron(II) Incorporating Tetrathiafulvalene. Chem. Sci. 2020, 11, 6229–6235. [Google Scholar] [CrossRef]
- Gebretsadik, T.; Yang, Q.; Wu, J.; Tang, J. Hydrazone Based Spin Crossover Complexes: Behind the Extra Flexibility of the Hydrazone Moiety to Switch the Spin State. Coord. Chem. Rev. 2021, 431, 213666. [Google Scholar] [CrossRef]
- Lada, Z.G.; Andrikopoulos, K.S.; Polyzou, C.D.; Tangoulis, V.; Voyiatzis, G.A. Monitoring the Spin Crossover Phenomenon of [Fe(2-Mpz)2Ni(CN)4] 2D Hofmann-Type Polymer Nanoparticles via Temperature-Dependent Raman Spectroscopy. J. Raman Spectrosc. 2020, 51, 2171–2181. [Google Scholar] [CrossRef]
- Kumar, K.S.; Bayeh, Y.; Gebretsadik, T.; Elemo, F.; Gebrezgiabher, M.; Thomas, M.; Ruben, M. Spin-Crossover in Iron(II)-Schiff Base Complexes. Dalton Trans. 2019, 48, 15321–15337. [Google Scholar] [CrossRef] [PubMed]
- Gütlich, P.; Goodwin, H.A. Spin crossover-An overall perspective. In Spin Crossover in Transition Metal Compounds I. Topics in Current Chemistry; Gütlich, P., Goodwin, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 1, pp. 1–47. [Google Scholar] [CrossRef]
- Kucheriv, O.I.; Fritsky, I.O.; Gural’skiy, I.A. Spin Crossover in FeII Cyanometallic Frameworks. Inorg. Chim. Acta 2021, 521, 120303. [Google Scholar] [CrossRef]
- Turo-Cortés, R.; Valverde-Muñoz, F.J.; Meneses-Sánchez, M.; Muñoz, M.C.; Bartual-Murgui, C.; Real, J.A. Bistable Hofmann-Type FeII Spin-Crossover Two-Dimensional Polymers of 4-Alkyldisulfanylpyridine for Prospective Grafting of Monolayers on Metallic Surfaces. Inorg. Chem. 2021, 60, 9040–9049. [Google Scholar] [CrossRef] [PubMed]
- Seredyuk, M.; Znovjyak, K.; Valverde-Muñoz, F.J.; Da Silva, I.; Muñoz, M.C.; Moroz, Y.S.; Real, J.A. 105 K Wide Room Temperature Spin Transition Memory Due to a Supramolecular Latch Mechanism. J. Am. Chem. Soc. 2022, 144, 14297–14309. [Google Scholar] [CrossRef]
- Hiiuk, V.M.; Shova, S.; Rotaru, A.; Ksenofontov, V.; Fritsky, I.O.; Gural’skiy, I.A. Room Temperature Hysteretic Spin Crossover in a New Cyanoheterometallic Framework. Chem. Commun. 2019, 55, 3359–3362. [Google Scholar] [CrossRef]
- Zhao, X.H.; Shao, D.; Chen, J.T.; Gan, D.X.; Yang, J.; Zhang, Y.Z. A Trinuclear {FeIII2FeII} Complex Involving Both Spin and Non-Spin Transitions Exhibits Three-Step and Wide Thermal Hysteresis. Sci. China Chem. 2022, 65, 532–538. [Google Scholar] [CrossRef]
- Kumar, B.; Paul, A.; Mondal, D.J.; Paliwal, P.; Konar, S. Spin-State Modulation in FeII-Based Hofmann-Type Coordination Polymers: From Molecules to Materials. Chem. Rec. 2022, 22, e202200135. [Google Scholar] [CrossRef]
- You, M.; Shao, D.; Deng, Y.F.; Yang, J.; Yao, N.T.; Meng, Y.S.; Ungur, L.; Zhang, Y.Z. [AuI(CN)2]-Armed [FeIII2FeII2] Square Complex Showing Unusual Spin-Crossover Behavior Due to a Symmetry-Breaking Phase Transition. Inorg. Chem. 2022, 61, 5855–5860. [Google Scholar] [CrossRef]
- Amin, N.; Said, S.; Salleh, M.; Afifi, A.; Ibrahim, N.; Hasnan, M.; Tahir, M.; Hashim, N. Review of Fe-Based Spin Crossover Metal Complexes in Multiscale Device Architectures. Inorg. Chim. Acta 2023, 544, 121168. [Google Scholar] [CrossRef]
- Halcrow, M.A. Structure: Function Relationships in Molecular Spin-Crossover Complexes. Chem. Soc. Rev. 2011, 40, 4119–4142. [Google Scholar] [CrossRef] [PubMed]
- Halcrow, M.A. The Foundation of Modern Spin-Crossover. Chem. Commun. 2013, 49, 10890–10892. [Google Scholar] [CrossRef] [PubMed]
- Pavlik, J.; Boča, R. Established Static Models of Spin Crossover. Eur. J. Inorg. Chem. 2013, 2013, 697–709. [Google Scholar] [CrossRef]
- Feng, M.; Ruan, Z.Y.; Chen, Y.C.; Tong, M.L. Physical Stimulus and Chemical Modulations of Bistable Molecular Magnetic Materials. Chem. Commun. 2020, 56, 13702–13718. [Google Scholar] [CrossRef]
- Real, J.A.; Gaspar, A.B.; Niel, V.; Muñoz, M.C. Communication between Iron(II) Building Blocks in Cooperative Spin Transition Phenomena. Coord. Chem. Rev. 2003, 236, 121–141. [Google Scholar] [CrossRef]
- Kumar, K.S.; Ruben, M. Emerging Trends in Spin Crossover (SCO) Based Functional Materials and Devices. Coord. Chem. Rev. 2017, 346, 176–205. [Google Scholar] [CrossRef]
- Ren, D.H.; Qiu, D.; Pang, C.Y.; Li, Z.; Gu, Z.G. Chiral Tetrahedral Iron(II) Cages: Diastereoselective Subcomponent Self-Assembly, Structure Interconversion and Spin-Crossover Properties. Chem. Commun. 2015, 51, 788–791. [Google Scholar] [CrossRef]
- Hogue, R.W.; Singh, S.; Brooker, S. Spin Crossover in Discrete Polynuclear Iron(II) Complexes. Chem. Soc. Rev. 2018, 47, 7303–7338. [Google Scholar] [CrossRef] [Green Version]
- Létard, J.-F.; Guionneau, P.; Goux-Capes, L. Towards Spin Crossover Applications. Spin Crossover Transit. Met. Compd. III 2006, 1, 221–249. [Google Scholar] [CrossRef]
- Murray, K.S. Advances in Polynuclear Iron(II), Iron(III) and Cobalt(II) Spin-Crossover Compounds. Eur. J. Inorg. Chem. 2008, 2008, 3101–3121. [Google Scholar] [CrossRef]
- Cavallini, M.; Melucci, M. Organic Materials for Time-Temperature Integrator Devices. ACS Appl. Mater. Interfaces 2015, 7, 16897–16906. [Google Scholar] [CrossRef] [PubMed]
- Mallah, T.; Cavallini, M. Surfaces, Thin Films and Patterning of Spin Crossover Compounds. Comptes Rendus Chim. 2018, 21, 1270–1286. [Google Scholar] [CrossRef]
- Hiiuk, V.M.; Shova, S.; Rotaru, A.; Golub, A.A.; Fritsky, I.O.; Gural’Skiy, I.A. Spin Crossover in 2D Iron(II) Phthalazine Cyanometallic Complexes. Dalton Trans. 2020, 49, 5302–5311. [Google Scholar] [CrossRef] [PubMed]
- Pittala, N.; Cuza, E.; Pinkowicz, D.; Magott, M.; Marchivie, M.; Boukheddaden, K.; Triki, S. Antagonist Elastic Interactions Tuning Spin Crossover and LIESST Behaviours in FeII Trinuclear-Based One-Dimensional Chains. Inorg. Chem. Front. 2022, 9, 6468–6481. [Google Scholar] [CrossRef]
- Kulmaczewski, R.; Cook, L.J.K.; Pask, C.M.; Cespedes, O.; Halcrow, M.A. Iron(II) Complexes of 4-(Alkyldisulfanyl)-2,6-Di(Pyrazolyl)Pyridine Derivatives. Correlation of Spin-Crossover Cooperativity with Molecular Structure Following Single-Crystal-to-Single-Crystal Desolvation. Cryst. Growth Des. 2022, 22, 1960–1971. [Google Scholar] [CrossRef]
- Fujita, K.; Kawamoto, R.; Tsubouchi, R.; Sunatsuki, Y.; Kojima, M.; Iijima, S.; Matsumoto, N. Spin States of Mono- and Dinuclear Iron(II) Complexes with Bis(Imidazolylimine) Ligands. Chem. Lett. 2007, 36, 1284–1285. [Google Scholar] [CrossRef]
- Hagiwara, H.; Tanaka, T.; Hora, S. Synthesis, Structure, and Spin Crossover above Room Temperature of a Mononuclear and Related Dinuclear Double Helicate Iron(II) Complexes. Dalton Trans. 2016, 45, 17132–17140. [Google Scholar] [CrossRef] [PubMed]
- Sunatsuki, Y.; Kawamoto, R.; Fujita, K.; Maruyama, H.; Suzuki, T.; Ishida, H.; Kojima, M.; Iijima, S.; Matsumoto, N. Structures and Spin States of Bist (Tridentate)-Type Mononuclear and Triple Helicate Dinuclear Iron(II) Complexes of Lmidazole-4-Carbaldehyde Azine. Inorg. Chem. 2009, 48, 8784–8795. [Google Scholar] [CrossRef]
- Sunatsuki, Y.; Kawamoto, R.; Fujita, K.; Maruyama, H.; Suzuki, T.; Ishida, H.; Kojima, M.; Iijima, S.; Matsumoto, N. Structures and Spin States of Mono- and Dinuclear Iron(II) Complexes of Imidazole-4-Carbaldehyde Azine and Its Derivatives. Coord. Chem. Rev. 2010, 254, 1871–1881. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Q.; Thierer, L.M.; Weberg, A.B.; Gau, M.R.; Carroll, P.J.; Tomson, N.C. Tuning Metal-Metal Interactions through Reversible Ligand Folding in a Series of Dinuclear Iron Complexes. Inorg. Chem. 2019, 58, 12234–12244. [Google Scholar] [CrossRef]
- Nabei, A.; Kuroda-Sowa, T.; Shimizu, T.; Okubo, T.; Maekawa, M.; Munakata, M. Ferromagnetic Interaction in Iron(II)-Bis-Schiff Base Complexes. Polyhedron 2009, 28, 1734–1739. [Google Scholar] [CrossRef]
- Rezaeivala, M.; Keypour, H. Schiff Base and Non-Schiff Base Macrocyclic Ligands and Complexes Incorporating the Pyridine Moiety—The First 50 Years. Coord. Chem. Rev. 2014, 280, 203–253. [Google Scholar] [CrossRef]
- Powers, T.M.; Betley, T.A. Testing the Polynuclear Hypothesis: Multielectron Reduction of Small Molecules by Triiron Reaction Sites. J. Am. Chem. Soc. 2013, 135, 12289–12296. [Google Scholar] [CrossRef] [Green Version]
- Powers, T.M.; Fout, A.R.; Zheng, S.L.; Betley, T.A. Oxidative Group Transfer to a Triiron Complex to Form a Nucleophilic μ(3)-Nitride, [Fe3(μ(3)-N)]-. J. Am. Chem. Soc. 2011, 133, 3336–3338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartholomew, A.K.; Juda, C.E.; Nessralla, J.N.; Lin, B.; Wang, S.Y.G.; Chen, Y.S.; Betley, T.A. Ligand-Based Control of Single-Site vs. Multi-Site Reactivity by a Trichromium Cluster. Angew. Chem. Int. Ed. 2019, 58, 5687–5691. [Google Scholar] [CrossRef]
- Struch, N.; Brandenburg, J.G.; Schnakenburg, G.; Wagner, N.; Beck, J.; Grimme, S.; Lützen, A. A Case Study of Mechanical Strain in Supramolecular Complexes to Manipulate the Spin State of Iron(II) Centres. Eur. J. Inorg. Chem. 2015, 2015, 5503–5510. [Google Scholar] [CrossRef]
- Han, W.K.; Li, Z.H.; Zhu, W.; Li, T.; Li, Z.; Ren, X.; Gu, Z.G. Molecular Isomerism Induced Fe(II) Spin State Difference Based on the Tautomerization of the 4(5)-Methylimidazole Group. Dalton Trans. 2017, 46, 4218–4224. [Google Scholar] [CrossRef]
- Seredyuk, M.; Muñoz, M.C.; Castro, M.; Romero-Morcillo, T.; Gaspar, A.B.; Real, J.A. Unprecedented Multi-Stable Spin Crossover Molecular Material with Two Thermal Memory Channels. Chem. Eur. J. 2013, 19, 6591–6596. [Google Scholar] [CrossRef]
- Tuna, F.; Lees, M.R.; Clarkson, G.J.; Hannon, M.J. Readily Prepared Metallo-Supramolecular Triple Helicates Designed to Exhibit Spin-Crossover Behaviour. Chem. Eur. J. 2004, 10, 5737–5750. [Google Scholar] [CrossRef]
- Pelleteret, D.; Clérac, R.; Mathonière, C.; Harté, E.; Schmitt, W.; Kruger, P.E. Asymmetric Spin Crossover Behaviour and Evidence of Light-Induced Excited Spin State Trapping in a Dinuclear Iron(II) Helicate. Chem. Commun. 2009, 221–223. [Google Scholar] [CrossRef]
- Tanaka, T.; Sunatsuki, Y.; Suzuki, T. Iron(II) Complexes Having Dinuclear Mesocate or Octanuclear Bicapped Trigonal Prism Structures Dependent on the Rigidity of Bis(Bidentate) Schiff Base Ligands Containing Imidazole Groups. Bull. Chem. Soc. Jpn. 2020, 93, 427–437. [Google Scholar] [CrossRef]
- Harding, L.P.; Jeffery, J.C.; Riis-Johannessen, T.; Rice, C.R.; Zeng, Z. Anion Control of the Formation of Geometric Isomers in a Triple Helical Array. Dalton Trans. 2004, 44, 2396–2397. [Google Scholar] [CrossRef] [PubMed]
- Garcia, Y.; Robert, F.; Naik, A.D.; Zhou, G.; Tinant, B.; Robeyns, K.; Michotte, S.; Piraux, L. Spin Transition Charted in a Fluorophore-Tagged Thermochromic Dinuclear Iron(II) Complex. J. Am. Chem. Soc. 2011, 133, 15850–15853. [Google Scholar] [CrossRef] [PubMed]
- Scott, H.S.; Ross, T.M.; Moubaraki, B.; Murray, K.S.; Neville, S.M. Spin Crossover in Polymeric Materials Using Schiff Base Functionalized Triazole Ligands. Eur. J. Inorg. Chem. 2013, 2013, 803–812. [Google Scholar] [CrossRef]
- Roubeau, O.; Gamez, P.; Teat, S.J. Dinuclear Complexes with a Triple N1,N2-Triazole Bridge That Exhibit Partial Spin Crossover and Weak Antiferromagnetic Interactions. Eur. J. Inorg. Chem. 2013, 2013, 934–942. [Google Scholar] [CrossRef]
- Cheng, X.; Yang, Q.; Gao, C.; Wang, B.W.; Shiga, T.; Oshio, H.; Wang, Z.M.; Gao, S. Thermal and Light Induced Spin Crossover Behavior of a Dinuclear Fe(II) Compound. Dalton Trans. 2015, 44, 11282–11285. [Google Scholar] [CrossRef]
- Wu, D.Q.; Shao, D.; Wei, X.Q.; Shen, F.X.; Shi, L.; Kempe, D.; Zhang, Y.Z.; Dunbar, K.R.; Wang, X.Y. Reversible On-Off Switching of a Single-Molecule Magnet via a Crystal-to-Crystal Chemical Transformation. J. Am. Chem. Soc. 2017, 139, 11714–11717. [Google Scholar] [CrossRef]
- Kolnaar, J.J.A.; de Heer, M.I.; Kooijman, H.; Spek, A.L.; Schmitt, G.; Ksenofontov, V.; Gütlich, P.; Haasnoot, J.G.; Reedijk, J. Synthesis, Structure and Properties of a Mixed Mononuclear/Dinuclear Iron(II) Spin-Crossover Compound with the Ligand 4-(p-Tolyl)-1,2,4-Triazole. Eur. J. Inorg. Chem. 1999, 1999, 881–886. [Google Scholar] [CrossRef]
- McConnell, A.J. Spin-State Switching in Fe(II) Helicates and Cages. Supramol. Chem. 2018, 30, 858–868. [Google Scholar] [CrossRef]
- Darawsheh, M.; Barrios, L.A.; Roubeau, O.; Teat, S.J.; Aromí, G. Guest-, Light- and Thermally-Modulated Spin Crossover in [FeII2] Supramolecular Helicates. Chem. Eur. J. 2016, 22, 8635–8645. [Google Scholar] [CrossRef] [Green Version]
- Clements, J.E.; Airey, P.R.; Ragon, F.; Shang, V.; Kepert, C.J.; Neville, S.M. Guest-Adaptable Spin Crossover Properties in a Dinuclear Species Underpinned by Supramolecular Interactions. Inorg. Chem. 2018, 57, 14930–14938. [Google Scholar] [CrossRef] [PubMed]
- Schneider, B.; Demeshko, S.; Neudeck, S.; Dechert, S.; Meyer, F. Mixed-Spin [2 × 2] Fe4 Grid Complex Optimized for Quantum Cellular Automata. Inorg. Chem. 2013, 52, 13230–13237. [Google Scholar] [CrossRef] [PubMed]
- Ruben, M.; Rojo, J.; Romero-Salguero, F.J.; Uppadine, L.H.; Lehn, J.M. Grid-Type Metal Ion Architectures: Functional Metallosupramolecular Arrays. Angew. Chem. Int. Ed. 2004, 43, 3644–3662. [Google Scholar] [CrossRef] [PubMed]
- Ruben, M.; Breuning, E.; Lehn, J.M.; Ksenofontov, V.; Renz, F.; Gütlich, P.; Vaughan, G.B.M. Supramolecular Spintronic Devices: Spin Transitions and Magnetostructural Correlations in [Fe4IIL4]8+ [2 × 2]-Grid-Type Complexes. Chem. Eur. J. 2003, 9, 4422–4429. [Google Scholar] [CrossRef]
- Steinert, M.; Schneider, B.; Dechert, S.; Demeshko, S.; Meyer, F. Spin-State Versatility in a Series of Fe4 [2 × 2] Grid Complexes: Effects of Counteranions, Lattice Solvent, and Intramolecular Cooperativity. Inorg. Chem. 2016, 55, 2363–2373. [Google Scholar] [CrossRef] [Green Version]
- Stefankiewicz, A.R.; Lehn, J.M. Highly Sensitive Magnetic Effects Induced by Hydrogen-Bonding Interactions in a High-Spin Metallosupramolecular Fe4II [2×2] Grid-Type Complex. Chem. Eur. J. 2009, 15, 2500–2503. [Google Scholar] [CrossRef]
- Ruben, M.; Breuning, E.; Lehn, J.M.; Ksenofontov, V.; Gütlich, P.; Vaughan, G. Magneto-Structural Correlations in Self-Assembled Spin-Transition Nano-Architectures of the [Fe4IIL4] N+ [2×2]-Grid-Type. J. Magn. Magn. Mater. 2004, 272–276, E715–E717. [Google Scholar] [CrossRef]
- Gütlich, P.; Gaspar, A.B.; Garcia, Y. Spin State Switching in Iron Coordination Compounds. Beilstein J. Org. Chem. 2013, 9, 342–391. [Google Scholar] [CrossRef] [Green Version]
- Breuning, E.; Ruben, M.; Lehn, J.M.; Renz, F.; Garcia, Y.; Ksenofontov, V.; Gütlich, P.; Wegelius, E.; Rissanen, K. Spin Crossover in Supramolecular Fe4II [2×2] Grid Triggered by Temperature, Pressure, and Light. Angew. Chem. Int. Ed. Engl. 2001, 14, 266–270. [Google Scholar] [CrossRef]
- Nitschke, J.R.; Lehn, J.M. Self-Organization by Selection: Generation of a Metallosupramolecular Grid Architecture by Selection of Components in a Dynamic Library of Ligands. Proc. Natl. Acad. Sci. USA 2003, 100, 11970–11974. [Google Scholar] [CrossRef] [Green Version]
- Nitschke, J.R. Construction, Substitution, and Sorting of Metallo-Organic Structures via Subcomponent Self-Assembly. Acc. Chem. Res. 2007, 40, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Breuning, E.; Ruben, M.; Lehn, J.M.; Renz, F.; Garcia, Y.; Ksenofontov, V.; Gütlich, P.; Wegelius, E.; Rissanen, K. Spin Crossover in a Supramolecular Fe(4)(II). Angew. Chem. Int. Ed. Engl. 2000, 39, 2504–2507. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.T.; Li, S.T.; Wu, S.Q.; Cui, A.L.; Shen, D.Z.; Kou, H.Z. Spin Transitions in Fe(II) Metallogrids Modulated by Substituents, Counteranions, and Solvents. J. Am. Chem. Soc. 2013, 135, 5942–5945. [Google Scholar] [CrossRef] [PubMed]
- Dhers, S.; Mondal, A.; Aguilà, D.; Ramírez, J.; Vela, S.; Dechambenoit, P.; Rouzières, M.; Nitschke, J.R.; Clérac, R.; Lehn, J.M. Spin State Chemistry: Modulation of Ligand p K a by Spin State Switching in a [2×2] Iron(II) Grid-Type Complex. J. Am. Chem. Soc. 2018, 140, 8218–8227. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, A.; Squire, M.A.; Siretanu, D.; Mitcov, D.; Mathoniere, C.; Clerac, R.; Kruger, P.E. A face-capped [Fe4L4]8+ spin crossover tetrahedral cage. Chem. Commun. 2013, 49, 1597–1599. [Google Scholar] [CrossRef] [Green Version]
- McConnell, A.J. Metallosupramolecular Cages: From Design Principles and Characterisation Techniques to Applications. Chem. Soc. Rev. 2022, 51, 2957–2971. [Google Scholar] [CrossRef]
- Bilbeisi, R.A.; Zarra, S.; Feltham, H.L.C.; Jameson, G.N.L.; Clegg, J.K.; Brooker, S.; Nitschke, J.R. Guest Binding Subtly Influences Spin Crossover in an FeII4L4 Capsule. Chem. Eur. J. 2013, 19, 8058–8062. [Google Scholar] [CrossRef]
- Li, L.; Saigo, N.; Zhang, Y.; Fanna, D.J.; Shepherd, N.D.; Clegg, J.K.; Zheng, R.; Hayami, S.; Lindoy, L.F.; Aldrich-Wright, J.R.; et al. A Large Spin-Crossover [Fe4L4]8+ Tetrahedral Cage. J. Mater. Chem. C 2015, 3, 7878–7882. [Google Scholar] [CrossRef] [Green Version]
- Anhäuser, J.; Puttreddy, R.; Glanz, L.; Schneider, A.; Engeser, M.; Rissanen, K.; Lützen, A. Subcomponent Self-Assembly of a Cyclic Tetranuclear FeII Helicate in a Highly Diastereoselective Self-Sorting Manner. Chem. Eur. J. 2019, 25, 12294–12297. [Google Scholar] [CrossRef]
- Chen, L.J.; Yang, H.B.; Shionoya, M. Chiral Metallosupramolecular Architectures. Chem. Soc. Rev. 2017, 46, 2555–2576. [Google Scholar] [CrossRef]
- Sinha, I.; Mukherjee, P.S. Chemical Transformations in Confined Space of Coordination Architectures. Inorg. Chem. 2018, 57, 4205–4221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Xu, Y.-W.; Li, K.; Xiao, L.-M.; Chen, S.; Wu, K.; Chen, X.-D.; Fan, Y.-Z.; Liu, J.-M.; Su, C.-Y. Regio- and Enantioselective Photodimerization within the Confined Space of a Homochiral Ruthenium/Palladium Heterometallic Coordination Cage. Angew. Chem. 2017, 129, 3910–3914. [Google Scholar] [CrossRef]
- Hardy, M.; Tessarolo, J.; Holstein, J.J.; Struch, N.; Wagner, N.; Weisbarth, R.; Engeser, M.; Beck, J.; Horiuchi, S.; Clever, G.H.; et al. A Family of Heterobimetallic Cubes Shows Spin-Crossover Behaviour Near Room Temperature. Angew. Chem. Int. Ed. 2021, 60, 22562–22569. [Google Scholar] [CrossRef]
- Struch, N.; Bannwarth, C.; Ronson, T.K.; Lorenz, Y.; Mienert, B.; Wagner, N.; Engeser, M.; Bill, E.; Puttreddy, R.; Rissanen, K.; et al. An Octanuclear Metallosupramolecular Cage Designed To Exhibit Spin-Crossover Behavior. Angew. Chem. Int. Ed. 2017, 56, 4930–4935. [Google Scholar] [CrossRef] [PubMed]
- Smulders, M.M.J.; Jiménez, A.; Nitschke, J.R. Integrative Self-Sorting Synthesis of a Fe8Pt6L24 Cubic Cage. Angew. Chem. Int. Ed. 2012, 51, 6681–6685. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Brooker, S. Extension of Azine-Triazole Synthesis to Azole-Triazoles Reduces Ligand Field, Leading to Spin Crossover in Tris-L Fe(II). Inorg. Chem. 2020, 59, 1265–1273. [Google Scholar] [CrossRef]
- Struch, N.; Bannwarth, C.; Ronson, T.K.; Lorenz, Y.; Mienert, B.; Wagner, N.; Engeser, M.; Bill, E.; Puttreddy, R.; Rissanen, K.; et al. Ein Achtkerniger Metallosupramolekularer Würfel Mit Spin-Crossover-Eigenschaften. Angew. Chem. 2017, 129, 5012–5017. [Google Scholar] [CrossRef]
- Castilla, A.M.; Ramsay, W.J.; Nitschke, J.R. Stereochemistry in Subcomponent Self-Assembly. Acc. Chem. Res. 2014, 47, 2063–2073. [Google Scholar] [CrossRef]
- Lu, H.S.; Han, W.K.; Yan, X.; Xu, Y.X.; Zhang, H.X.; Li, T.; Gong, Y.; Hu, Q.T.; Gu, Z.G. Supramolecular Assemblies Based on Fe8L12 Cubic Metal–Organic Cages: Synergistic Adsorption and Spin-Crossover Properties. Dalton Trans. 2020, 49, 4220–4224. [Google Scholar] [CrossRef]
- Miller, R.G.; Brooker, S. Reversible Quantitative Guest Sensing via Spin Crossover of an Iron(II) Triazole. Chem. Sci. 2016, 7, 2501–2505. [Google Scholar] [CrossRef] [Green Version]
- McConnell, A.J.; Aitchison, C.M.; Grommet, A.B.; Nitschke, J.R. Subcomponent Exchange Transforms an FeII4L4 Cage from High- to Low-Spin, Switching Guest Release in a Two-Cage System. J. Am. Chem. Soc. 2017, 139, 6294–6297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zenere, K.A.; Duyker, S.G.; Trzop, E.; Collet, E.; Chan, B.; Doheny, P.W.; Kepert, C.J.; Neville, S.M. Increasing Spin Crossover Cooperativity in 2D Hofmann-Type Materials with Guest Molecule Removal. Chem. Sci. 2018, 9, 5623–5629. [Google Scholar] [CrossRef] [PubMed]
Fe-8H | Fe-6H | Fe-4H | |||||
---|---|---|---|---|---|---|---|
120 K | 290 K | SCO of Individual Fe Centers | 120 K | 290 K | SCO of Individual Fe Centers | 120 K | |
Fe1 | LS | HS | SCO | LS | LS | No SCO | LS |
Fe2 | LS-HS | LS-HS | Disorder | LS-HS | HS | SCO | LS-HS |
Fe3 | LS | HS | SCO | LS | LS | No SCO | LS |
Fe4 | LS-HS | LS-HS | Disorder | LS-HS | HS | SCO | LS-HS |
Nature of Spin state of the grid | Mixed | Mixed | Mixed | Mixed | Mixed |
Supramolecular Complex and Number | Nuclearity | Coordination Environment | Coordination Structure | SCO Temperature (T1/2) | Ref. |
---|---|---|---|---|---|
[Fe2(H2L1)3]4+ (1) | Dinuclear | N6 | Triple helicate | 240 K | [57,59] |
[Fe2(H2L2)3]4+ (2) | Dinuclear | N6 | Triple helicate | - | [57,59] |
[Fe2(L3)3] (3) | Dinuclear | N6 | Meso-helicate | - | [67] |
[Fe2(L4)3] (4) | Dinuclear | N6 | Meso-helicate | 400 K | [67] |
[Fe2(L5)3](PF6)4 (5) | Dinuclear | N6 | Triple helicate | 165 K | [70] |
[Fe2(L5)3](BF4)4 (6) | Dinuclear | N6 | Triple helicate | - | [70] |
[Fe2(L5)3](ClO4)4 (7) | Dinuclear | N6 | Triple helicate | 50 K | [70] |
[Fe2(L6)3](ClO4)4 (8) | Dinuclear | N6 | Triple helicate | 140 K | [71] |
[Fe2(H2L8)3](ClO4)4.1.5H2O (9) | Dinuclear | N6 | Meso-helicate | 212 K, 134 K | [72] |
[Fe2(μ-o-NTrz)3(o-NTrz)2(NCS)4]·3MeOH (10·3MeOH) | Dinuclear | N6 | 135 K | [82] | |
[Fe2(μ-o-NTrz)3(o-NTrz)2(NCS)4]·3H2O (10.3H2O) | Dinuclear | N6 | T1/2↓↑:150, 172 K | [82] | |
[Fe2(μ-o-NTrz)3(o-NTrz)2(NCS)4] (10·Ø) | Dinuclear | N6 | 175 K | [82] | |
[Fe4(L11)4](BF4)8 (11) | Tetranuclear | N4O2 | Grid | - | [87] |
[Fe4(L13)4]Cl4 (12 ), | Tetranuclear | N6 | Grid | 400 K | [94] |
[Fe4(L13)4](BF4)4 (13) | Tetranuclear | N6 | Grid | 400 K | [94] |
[Fe4(L13)4](ClO4)4 (14) | Tetranuclear | N6 | Grid | - | [94] |
[Fe4(H2L14)4](BF4)8 (15) | Tetranuclear | N6 | Grid | - | [95] |
[Fe4(HL14)2(H2L14)2](BF4)8 (16) | Tetranuclear | N6 | Grid | - | [95] |
[Fe4(L14)2(H2L14)2](BF4)8 (17) | Tetranuclear | N6 | Grid | - | [95] |
[Fe4(L15)4](BF4)8 (18) fresh synthesis | Tetranuclear | N6 | Tetrahedral cage | 284 K | [96] |
[Fe4(L15)4](BF4)8 (18) diluted with acetone | Tetranuclear | N6 | Tetrahedral cage | 288 K | [96] |
[Fe4(L15)4](BF4)8 (18) dried | Tetranuclear | N6 | Tetrahedral cage | - | [96] |
[Fe4(L16)4](OTf)8 (19) | Tetranuclear | N6 | Tetrahedral cage | - | [98] |
[Fe4(L17)4](OTf)8 (20) | Tetranuclear | N6 | Tetrahedral cage | - | [98] |
[Fe4(L17)4](OTf)8 (20) Br− encapsuled | Tetranuclear | N6 | Tetrahedral cage | 328 K | [98] |
[Fe4(L17)4](OTf)8 (20) CS2 encapsuled | Tetranuclear | N6 | Tetrahedral cage | 324 K | [98] |
[Fe4(L18)4](BF4)8 (21) (28.16CH3CN)-solvated | Tetranuclear | N6 | Tetrahedral cage | - | [99] |
[Fe4(L18)4](BF4)8 (21)-non solvated | Tetranuclear | N6 | Tetrahedral cage | - | [99] |
[Fe4(L19)6]8+ (22) | Tetranuclear | N6 | Tetrahedral cage | - | [48] |
[Fe4(L20)6]8+ (23) | Tetranuclear | N6 | Tetrahedral cage | - | [48] |
[Fe4(L21)6]8+ (24) | Tetranuclear | N6 | Tetrahedral cage | - | [48] |
[Fe8(PtL22)6]28+ (25) | Octanuclear | N6 | Cubic | 215 K | [104] |
[Fe8(PtL23)6]28+ (26) | Octanuclear | N6 | Cubic | 281 K | [104] |
[Fe8(PtL24)6]28+ (27) | Octanuclear | N6 | Cubic | 324 K | [104] |
[Fe8L25]16+ (28) | Octanuclear | N6 | Cubic | 249.6 K | [105] |
[Fe8L25]16+ (28) (C70 encapsuled) | Octanuclear | N6 | Cubic | 229.9 K | [105] |
[Fe8L26]16+ (29) | Octanuclear | N6 | Cubic | 247.7 K | [105] |
[Fe8L26]16+ (29) (C70 encapsuled) | Octanuclear | N6 | Cubic | 236.3 K | [105] |
[Fe8(HL27)12] (30) | Octanuclear | N6 | Cubic | 256 K | [110] |
[Fe8(MeL28)12] (31) | Octanuclear | N6 | Cubic | - | [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tesfaye, D.; Linert, W.; Gebrezgiabher, M.; Bayeh, Y.; Elemo, F.; Sani, T.; Kalarikkal, N.; Thomas, M. Iron(II) Mediated Supramolecular Architectures with Schiff Bases and Their Spin-Crossover Properties. Molecules 2023, 28, 1012. https://doi.org/10.3390/molecules28031012
Tesfaye D, Linert W, Gebrezgiabher M, Bayeh Y, Elemo F, Sani T, Kalarikkal N, Thomas M. Iron(II) Mediated Supramolecular Architectures with Schiff Bases and Their Spin-Crossover Properties. Molecules. 2023; 28(3):1012. https://doi.org/10.3390/molecules28031012
Chicago/Turabian StyleTesfaye, Dawit, Wolfgang Linert, Mamo Gebrezgiabher, Yosef Bayeh, Fikre Elemo, Taju Sani, Nandakumar Kalarikkal, and Madhu Thomas. 2023. "Iron(II) Mediated Supramolecular Architectures with Schiff Bases and Their Spin-Crossover Properties" Molecules 28, no. 3: 1012. https://doi.org/10.3390/molecules28031012
APA StyleTesfaye, D., Linert, W., Gebrezgiabher, M., Bayeh, Y., Elemo, F., Sani, T., Kalarikkal, N., & Thomas, M. (2023). Iron(II) Mediated Supramolecular Architectures with Schiff Bases and Their Spin-Crossover Properties. Molecules, 28(3), 1012. https://doi.org/10.3390/molecules28031012