eEF2K Inhibitor Design: The Progression of Exemplary Structure-Based Drug Design
Abstract
:1. Introduction
2. The Alpha Kinase Family
2.1. Overview of the Alpha Kinase Family
2.2. Conventional Protein Kinase Inhibitors Do Not Inhibit Alpha Kinases
2.3. The ‘Early’ eEF2K Inhibitors
3. Structural Characterization of MHCKA Advanced eEF2K Drug Discovery
3.1. The MHCKA and eEF2K α-Kinase Domain Structures Demonstrate Conservation
3.2. Derivation of eEF2K Inhibitors from MHCKA Modeling
4. Inhibition of eEF2K with A-484954—A Promising Therapeutic
4.1. Development and Properties of A-484954
4.2. A-484954 Treatment in Animal Models Suggests Therapeutic Potential
4.3. An A-484954 PROTAC—A Case of Innovative eEF2K Inhibition
5. Inhibition of eEF2K as a Method of Disease Treatment
5.1. Neurological Disorders
5.2. Cancer
6. Computational Aids for eEF2K and General Drug Discovery
6.1. Accurate Protein Modeling is Essential to Drug Discovery and Development
6.2. Protein-Ligand Docking Simulations and Free Energy Score
6.3. Lead Compound Modification and In Vitro Evaluation
7. Finally a Crystal Structure: What Does It Mean for eEF2K Drug Design in the Future?
8. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Durrant, J.D.; McCammon, J.A. Molecular Dynamics Simulations and Drug Discovery. BMC Biol. 2011, 9, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Neville, N.; Jia, Z. Approaches to the Structure-Based Design of Antivirulence Drugs: Therapeutics for the Post-Antibiotic Era. Molecules 2019, 24, 378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drennan, D.; Ryazanov, A.G. Alpha-Kinases: Analysis of the Family and Comparison with Conventional Protein Kinases. Prog. Biophys. Mol. Biol. 2004, 85, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Middelbeek, J.; Clark, K.; Venselaar, H.; Huynen, M.A.; van Leeuwen, F.N. The Alpha-Kinase Family: An Exceptional Branch on the Protein Kinase Tree. Cell. Mol. Life Sci. 2010, 67, 875–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryazanov, A.G.; Ward, M.D.; Mendola, C.E.; Pavur, K.S.; Dorovkov, M.V.; Wiedmann, M.; Erdjument-Bromage, H.; Tempst, P.; Parmer, T.G.; Prostko, C.R.; et al. Identification of a New Class of Protein Kinases Represented by Eukaryotic Elongation Factor-2 Kinase. Proc. Natl. Acad. Sci. USA 1997, 94, 4884–4889. [Google Scholar] [CrossRef] [Green Version]
- Kaul, G.; Pattan, G.; Rafeequi, T. Eukaryotic Elongation Factor-2 (EEF2): Its Regulation and Peptide Chain Elongation. Cell Biochem. Funct. 2011, 29, 227–234. [Google Scholar] [CrossRef]
- Pavur, K.S.; Petrov, A.N.; Ryazanov, A.G. Mapping the Functional Domains of Elongation Factor-2 Kinase. Biochemistry 2000, 39, 12216–12224. [Google Scholar] [CrossRef]
- Tavares, C.D.J.; Ferguson, S.B.; Giles, D.H.; Wang, Q.; Wellmann, R.M.; O’Brien, J.P.; Warthaka, M.; Brodbelt, J.S.; Ren, P.; Dalby, K.N. The Molecular Mechanism of Eukaryotic Elongation Factor 2 Kinase Activation. J. Biol. Chem. 2014, 289, 23901–23916. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Kumar, E.A.; Dalby, K.N.; Ghose, R. The Role of Calcium in the Interaction between Calmodulin and a Minimal Functional Construct of Eukaryotic Elongation Factor 2 Kinase. Protein Sci. 2019, 28, 2089–2098. [Google Scholar] [CrossRef]
- Lee, K.; Alphonse, S.; Piserchio, A.; Tavares, C.D.J.; Giles, D.H.; Wellmann, R.M.; Dalby, K.N.; Ghose, R. Structural Basis for the Recognition of Eukaryotic Elongation Factor 2 Kinase by Calmodulin. Structure 2016, 24, 1441–1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piserchio, A.; Will, N.; Giles, D.H.; Hajredini, F.; Dalby, K.N.; Ghose, R. Solution Structure of the Carboxy-Terminal Tandem Repeat Domain of Eukaryotic Elongation Factor 2 Kinase and Its Role in Substrate Recognition. J. Mol. Biol. 2019, 431, 2700–2717. [Google Scholar] [CrossRef] [PubMed]
- Proud, C.G. Regulation and Roles of Elongation Factor 2 Kinase. Biochem. Soc. Trans. 2015, 43, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Proud, C.G. Eukaryotic Elongation Factor 2 Kinase as a Drug Target in Cancer, and in Cardiovascular and Neurodegenerative Diseases. Acta Pharmacol. Sin. 2016, 37, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhen, Y.; Wang, G.; Yang, G.; Fu, L.; Liu, B.; Ouyang, L. Designing an EEF2K-Targeting PROTAC Small Molecule That Induces Apoptosis in MDA-MB-231 Cells. Eur. J. Med. Chem. 2020, 204, 112505. [Google Scholar] [CrossRef]
- Feng, T.; Zhou, S.; Shi, X.; Zhang, X.; Zhang, J.; Zhao, S.; Yang, X.; Meng, X.; Liu, M. Eef2k Is Not Required for Fertility in Male Mice. Transl. Androl. Urol. 2021, 10, 1988–1999. [Google Scholar] [CrossRef]
- Autry, A.E.; Adachi, M.; Nosyreva, E.; Na, E.S.; Los, M.F.; Cheng, P.; Kavalali, E.T.; Monteggia, L.M. NMDA Receptor Blockade at Rest Triggers Rapid Behavioural Antidepressant Responses. Nature 2011, 475, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Monteggia, L.M. The Role of EEF2 Kinase in the Rapid Antidepressant Actions of Ketamine. Adv. Pharmacol. 2020, 89, 79–99. [Google Scholar] [CrossRef]
- Gildish, I.; Manor, D.; David, O.; Sharma, V.; Williams, D.; Agarwala, U.; Wang, X.; Kenney, J.W.; Proud, C.G.; Rosenblum, K. Impaired Associative Taste Learning and Abnormal Brain Activation in Kinase-Defective EEF2K Mice. Learn Mem. 2012, 19, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Kenney, J.W.; Sorokina, O.; Genheden, M.; Sorokin, A.; Armstrong, J.D.; Proud, C.G. Dynamics of Elongation Factor 2 Kinase Regulation in Cortical Neurons in Response to Synaptic Activity. J. Neurosci. 2015, 35, 3034–3047. [Google Scholar] [CrossRef]
- Moore, C.E.; Regufe da Mota, S.; Mikolajek, H.; Proud, C.G. A Conserved Loop in the Catalytic Domain of Eukaryotic Elongation Factor 2 Kinase Plays a Key Role in Its Substrate Specificity. Mol. Cell Biol. 2014, 34, 2294–2307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Riazy, M.; Gold, M.; Tsai, S.-H.; McNagny, K.; Proud, C.; Duronio, V. Impairing Eukaryotic Elongation Factor 2 Kinase Activity Decreases Atherosclerotic Plaque Formation. Can. J. Cardiol. 2014, 30, 1684–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usui, T.; Okada, M.; Hara, Y.; Yamawaki, H. Eukaryotic Elongation Factor 2 Kinase Regulates the Development of Hypertension through Oxidative Stress-Dependent Vascular Inflammation. Am. J. Physiol. Heart Circ. Physiol. 2013, 305, H756–H768. [Google Scholar] [CrossRef]
- Abramczyk, O.; Tavares, C.D.J.; Devkota, A.K.; Ryazanov, A.G.; Turk, B.E.; Riggs, A.F.; Ozpolat, B.; Dalby, K.N. Purification and Characterization of Tagless Recombinant Human Elongation Factor 2 Kinase (EEF-2K) Expressed in Escherichia coli. Protein Expr. Purif. 2011, 79, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Piserchio, A.; Long, K.; Lee, K.; Kumar, E.A.; Abzalimov, R.; Dalby, K.N.; Ghose, R. Structural Dynamics of the Complex of Calmodulin with a Minimal Functional Construct of Eukaryotic Elongation Factor 2 Kinase and the Role of Thr348 Autophosphorylation. Protein Sci. 2021, 30, 1221–1234. [Google Scholar] [CrossRef] [PubMed]
- Tavares, C.D.J.; O’Brien, J.P.; Abramczyk, O.; Devkota, A.K.; Shores, K.S.; Ferguson, S.B.; Kaoud, T.S.; Warthaka, M.; Marshall, K.D.; Keller, K.M.; et al. Calcium/Calmodulin Stimulates the Autophosphorylation of Elongation Factor 2 Kinase on Thr-348 and Ser-500 to Regulate Its Activity and Calcium Dependence. Biochemistry 2012, 51, 2232–2245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Futey, L.M.; Medley, Q.G.; Côté, G.P.; Egelhoff, T.T. Structural Analysis of Myosin Heavy Chain Kinase A from Dictyostelium: Evidence for A Highly Divergent Protein Kinase Domain, An Amino-Terminal Coiled-Coil Domain, And A Domain Homologous to The β-Subunit Of Heterotrimeric G Protiens. J. Biol. Chem. 1995, 270, 523–529. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, H.; Matsushita, M.; Nairn, A.C.; Kuriyan, J. Crystal Structure of the Atypical Protein Kinase Domain of a TRP Channel with Phosphotransferase Activity. Mol. Cell 2001, 7, 1047–1057. [Google Scholar] [CrossRef]
- Ryazanov, A.G.; Pavur, K.S.; Dorovkov, M.V. Alpha-Kinases: A New Class of Protein Kinases with a Novel Catalytic Domain. Curr. Biol. 1999, 9, R43–R45. [Google Scholar] [CrossRef] [Green Version]
- Clark, K.; Middelbeek, J.; Dorovkov, M.V.; Figdor, C.G.; Ryazanov, A.G.; Lasonder, E.; van Leeuwen, F.N. The Alpha-Kinases TRPM6 and TRPM7, but Not EEF-2 Kinase, Phosphorylate the Assembly Domain of Myosin IIA, IIB and IIC. FEBS Lett. 2008, 582, 2993–2997. [Google Scholar] [CrossRef]
- Côte, G.P.; Bukiejko, U. Purification and Characterization of a Myosin Heavy Chain Kinase from Dictyostelium Discoideum. J. Biol. Chem. 1987, 262, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Clancy, C.E.; Mendoza, M.G.; Naismith, T.V.; Kolman, M.F.; Egelhoff, T.T. Identification of a Protein Kinase from Dictyostelium with Homology to the Novel Catalytic Domain of Myosin Heavy Chain Kinase A. J. Biol. Chem. 1997, 272, 11812–11815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gschwendt, M.; Kittstein, W.; Marks, F. Elongation Factor-2 Kinase: Effective Inhibition by the Novel Protein Kinase Inhibitor Rottlerin and Relative Insensitivity towards Staurosporine. FEBS Lett. 1994, 338, 85–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, Q.; Crawley, S.W.; Yang, Y.; Côté, G.P.; Jia, Z. Crystal Structure of the Alpha-Kinase Domain of Dictyostelium Myosin Heavy Chain Kinase A. Sci. Signal 2010, 3, ra17. [Google Scholar] [CrossRef] [Green Version]
- Piserchio, A.; Isiorho, E.A.; Long, K.; Bohanon, A.L.; Kumar, E.A.; Will, N.; Jeruzalmi, D.; Dalby, K.N.; Ghose, R. Structural Basis for the Calmodulin-Mediated Activation of Eukaryotic Elongation Factor 2 Kinase. Sci. Adv. 2022, 8, eabo2039. [Google Scholar] [CrossRef] [PubMed]
- Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L.J.; Cibrián-Uhalte, E.; et al. The ChEMBL Database in 2017. Nucleic Acids Res. 2017, 45, D945–D954. [Google Scholar] [CrossRef]
- Liu, T.; Lin, Y.; Wen, X.; Jorissen, R.N.; Gilson, M.K. BindingDB: A Web-Accessible Database of Experimentally Determined Protein-Ligand Binding Affinities. Nucleic Acids Res. 2007, 35, D198–D201. [Google Scholar] [CrossRef] [Green Version]
- Redpath, N.T.; Foulstone, E.J.; Proud, C.G. Regulation of Translation Elongation Factor-2 by Insulin via a Rapamycin-Sensitive Signalling Pathway. EMBO J. 1996, 15, 2291–2297. [Google Scholar] [CrossRef]
- Cho, S.I.; Koketsu, M.; Ishihara, H.; Matsushita, M.; Nairn, A.C.; Fukazawa, H.; Uehara, Y. Novel Compounds, “1,3-Selenazine Derivatives” as Specific Inhibitors of Eukaryotic Elongation Factor-2 Kinase. Biochim. Biophys. Acta 2000, 1475, 207–215. [Google Scholar] [CrossRef]
- Arora, S.; Yang, J.-M.; Kinzy, T.G.; Utsumi, R.; Okamoto, T.; Kitayama, T.; Ortiz, P.A.; Hait, W.N. Identification and Characterization of an Inhibitor of Eukaryotic Elongation Factor 2 Kinase against Human Cancer Cell Lines. Cancer Res. 2003, 63, 6894–6899. [Google Scholar]
- Chen, Z.; Gopalakrishnan, S.M.; Bui, M.-H.; Soni, N.B.; Warrior, U.; Johnson, E.F.; Donnelly, J.B.; Glaser, K.B. 1-Benzyl-3-Cetyl-2-Methylimidazolium Iodide (NH125) Induces Phosphorylation of Eukaryotic Elongation Factor-2 (EEF2). J. Biol. Chem. 2011, 286, 43951–43958. [Google Scholar] [CrossRef] [PubMed]
- Hillisch, A.; Pineda, L.F.; Hilgenfeld, R. Utility of Homology Models in the Drug Discovery Process. Drug Discov. Today 2004, 9, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Muhammed, M.T.; Aki-Yalcin, E. Homology Modeling in Drug Discovery: Overview, Current Applications, and Future Perspectives. Chem. Biol. Drug Des. 2019, 93, 12–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The UniProt Consortium UniProt: The Universal Protein Knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [CrossRef]
- Crawley, S.W.; Gharaei, M.S.; Ye, Q.; Yang, Y.; Raveh, B.; London, N.; Schueler-Furman, O.; Jia, Z.; Côté, G.P. Autophosphorylation Activates Dictyostelium Myosin II Heavy Chain Kinase A by Providing a Ligand for an Allosteric Binding Site in the Alpha-Kinase Domain. J. Biol. Chem. 2011, 286, 2607–2616. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Ye, Q.; Jia, Z.; Côté, G.P. Characterization of the Catalytic and Nucleotide Binding Properties of the α-Kinase Domain of Dictyostelium Myosin-II Heavy Chain Kinase A. J. Biol. Chem. 2015, 290, 23935–23946. [Google Scholar] [CrossRef] [Green Version]
- Ye, Q.; Yang, Y.; van Staalduinen, L.; Crawley, S.W.; Liu, L.; Brennan, S.; Côté, G.P.; Jia, Z. Structure of the Dictyostelium Myosin-II Heavy Chain Kinase A (MHCK-A) α-Kinase Domain Apoenzyme Reveals a Novel Autoinhibited Conformation. Sci. Rep. 2016, 6, 26634. [Google Scholar] [CrossRef] [Green Version]
- Devkota, A.K.; Edupuganti, R.; Yan, C.; Shi, Y.; Jose, J.; Wang, Q.; Kaoud, T.S.; Cho, E.J.; Ren, P.; Dalby, K.N. Reversible Covalent Inhibition of EEF-2K by Carbonitriles. Chembiochem 2014, 15, 2435–2442. [Google Scholar] [CrossRef]
- Wang, Q.; Edupuganti, R.; Tavares, C.D.J.; Dalby, K.N.; Ren, P. Using Docking and Alchemical Free Energy Approach to Determine the Binding Mechanism of EEF2K Inhibitors and Prioritizing the Compound Synthesis. Front. Mol. Biosci. 2015, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Jiang, A.; Wang, Y.; Xu, P.; Zhang, Q.; Wang, Y.; He, S.; Wang, N.; Jin, H.; Zhang, B. In Silico, Synthesis and Anticancer Evaluation of Benzamide Tryptamine Derivatives as Novel EEF2K Inhibitors. Bioorganic Med. Chem. Lett. 2022, 67, 128759. [Google Scholar] [CrossRef]
- Usui, T.; Nijima, R.; Sakatsume, T.; Otani, K.; Kameshima, S.; Okada, M.; Yamawaki, H. Eukaryotic Elongation Factor 2 Kinase Controls Proliferation and Migration of Vascular Smooth Muscle Cells. Acta Physiol. (Oxf.) 2015, 213, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Kodama, T.; Okada, M.; Yamawaki, H. Mechanisms Underlying the Relaxation by A484954, a Eukaryotic Elongation Factor 2 Kinase Inhibitor, in Rat Isolated Mesenteric Artery. J. Pharm. Sci. 2018, 137, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Kodama, T.; Okada, M.; Yamawaki, H. Eukaryotic Elongation Factor 2 Kinase Inhibitor, A484954 Lowered Blood Pressure in Spontaneously Hypertensive Rats via Inducing Vasorelaxation. J. Pharmacol. Sci. 2020, 144, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Kameshima, S.; Kazama, K.; Okada, M.; Yamawaki, H. Eukaryotic Elongation Factor 2 Kinase Mediates Monocrotaline-Induced Pulmonary Arterial Hypertension via Reactive Oxygen Species-Dependent Vascular Remodeling. Am. J. Physiol. Heart Circ. Physiol. 2015, 308, H1298–H1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodama, T.; Okada, M.; Yamawaki, H. Eukaryotic Elongation Factor 2 Kinase Inhibitor, A484954 Inhibits Noradrenaline-Induced Acute Increase of Blood Pressure in Rats. J. Vet. Med. Sci. 2019, 81, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Kodama, T.; Okada, M.; Yamawaki, H. Eukaryotic Elongation Factor 2 Kinase Inhibitor, A484954 Potentiates β-Adrenergic Receptor Agonist-Induced Acute Decrease in Diastolic Blood Pressure in Rats. J. Vet. Med. Sci. 2019, 81, 1509–1514. [Google Scholar] [CrossRef] [Green Version]
- Kodama, T.; Kameshima, S.; Otani, K.; Okada, M.; Yamawaki, H. Eukaryotic Elongation Factor 2 Kinase Inhibitor, A484954 Induces Diuretic Effect via Renal Vasorelaxation in Spontaneously Hypertensive Rats. Eur. J. Pharm. 2021, 913, 174637. [Google Scholar] [CrossRef]
- Kodama, T.; Otani, K.; Okada, M.; Yamawaki, H. Eukaryotic Elongation Factor 2 Kinase Inhibitor, A484954 Inhibits Perivascular Sympathetic Nerve Stimulation-Induced Vasoconstriction in Isolated Renal Artery. Eur. J. Pharm. 2022, 926, 175042. [Google Scholar] [CrossRef]
- Gadd, M.S.; Testa, A.; Lucas, X.; Chan, K.-H.; Chen, W.; Lamont, D.J.; Zengerle, M.; Ciulli, A. Structural Basis of PROTAC Cooperative Recognition for Selective Protein Degradation. Nat. Chem. Biol. 2017, 13, 514–521. [Google Scholar] [CrossRef]
- Weng, G.; Shen, C.; Cao, D.; Gao, J.; Dong, X.; He, Q.; Yang, B.; Li, D.; Wu, J.; Hou, T. PROTAC-DB: An Online Database of PROTACs. Nucleic Acids Res. 2021, 49, D1381–D1387. [Google Scholar] [CrossRef]
- Ma, T.; Chen, Y.; Vingtdeux, V.; Zhao, H.; Viollet, B.; Marambaud, P.; Klann, E. Inhibition of AMP-Activated Protein Kinase Signaling Alleviates Impairments in Hippocampal Synaptic Plasticity Induced by Amyloid β. J. Neurosci. 2014, 34, 12230–12238. [Google Scholar] [CrossRef] [PubMed]
- Walden, W.E.; Thach, R.E. Translational Control of Gene Expression in a Normal Fibroblast. Characterization of a Subclass of MRNAs with Unusual Kinetic Properties. Biochemistry 1986, 25, 2033–2041. [Google Scholar] [CrossRef] [PubMed]
- Warburg, O. On the Origin of Cancer Cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Ren, X.; Yuan, Y.; Shan, Y.; Li, L.; Chen, X.; Zhang, L.; Takahashi, Y.; Yang, J.W.; Han, B.; et al. EEF-2 Kinase Is a Critical Regulator of Warburg Effect through Controlling PP2A-A Synthesis. Oncogene 2016, 35, 6293–6308. [Google Scholar] [CrossRef] [PubMed]
- Bircan, H.A.; Gurbuz, N.; Pataer, A.; Caner, A.; Kahraman, N.; Bayraktar, E.; Bayraktar, R.; Erdogan, M.A.; Kabil, N.; Ozpolat, B. Elongation Factor-2 Kinase (EEF-2K) Expression Is Associated with Poor Patient Survival and Promotes Proliferation, Invasion and Tumor Growth of Lung Cancer. Lung Cancer 2018, 124, 31–39. [Google Scholar] [CrossRef]
- Tekedereli, I.; Alpay, S.N.; Tavares, C.D.J.; Cobanoglu, Z.E.; Kaoud, T.S.; Sahin, I.; Sood, A.K.; Lopez-Berestein, G.; Dalby, K.N.; Ozpolat, B. Targeted Silencing of Elongation Factor 2 Kinase Suppresses Growth and Sensitizes Tumors to Doxorubicin in an Orthotopic Model of Breast Cancer. PLoS ONE 2012, 7, e41171. [Google Scholar] [CrossRef] [Green Version]
- Fu, Q.; Liu, X.; Li, Y.; Wang, P.; Wu, T.; Xiao, H.; Zhao, Y.; Liao, Q.; Song, Z. Discovery of New Inhibitors of EEF2K from Traditional Chinese Medicine Based on In Silico Screening and In Vitro Experimental Validation. Molecules 2022, 27, 4886. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Alexander, L.T.; Lepore, R.; Kryshtafovych, A.; Adamopoulos, A.; Alahuhta, M.; Arvin, A.M.; Bomble, Y.J.; Böttcher, B.; Breyton, C.; Chiarini, V.; et al. Target Highlights in CASP14: Analysis of Models by Structure Providers. Proteins 2021, 89, 1647–1672. [Google Scholar] [CrossRef]
- Tunyasuvunakool, K.; Adler, J.; Wu, Z.; Green, T.; Zielinski, M.; Žídek, A.; Bridgland, A.; Cowie, A.; Meyer, C.; Laydon, A.; et al. Highly Accurate Protein Structure Prediction for the Human Proteome. Nature 2021, 596, 590–596. [Google Scholar] [CrossRef]
- Du, Z.; Su, H.; Wang, W.; Ye, L.; Wei, H.; Peng, Z.; Anishchenko, I.; Baker, D.; Yang, J. The TrRosetta Server for Fast and Accurate Protein Structure Prediction. Nat. Protoc. 2021, 16, 5634–5651. [Google Scholar] [CrossRef] [PubMed]
- Irwin, J.J.; Shoichet, B.K. ZINC—A Free Database of Commercially Available Compounds for Virtual Screening. J. Chem. Inf. Model 2005, 45, 177–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, C.W.; Rees, D.C. The Rise of Fragment-Based Drug Discovery. Nat. Chem. 2009, 1, 187–192. [Google Scholar] [CrossRef]
- de Vries, S.J.; van Dijk, M.; Bonvin, A.M.J.J. The HADDOCK Web Server for Data-Driven Biomolecular Docking. Nat. Protoc. 2010, 5, 883–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosdidier, A.; Zoete, V.; Michielin, O. SwissDock, a Protein-Small Molecule Docking Web Service Based on EADock DSS. Nucleic Acids Res. 2011, 39, W270–W277. [Google Scholar] [CrossRef] [Green Version]
- Jendele, L.; Krivak, R.; Skoda, P.; Novotny, M.; Hoksza, D. PrankWeb: A Web Server for Ligand Binding Site Prediction and Visualization. Nucleic Acids Res. 2019, 47, W345–W349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Xiao, T.; Liu, R.; Proud, C.G.; Wang, M.-W. A High-Throughput Screening Assay for Eukaryotic Elongation Factor 2 Kinase Inhibitors. Acta Pharm. Sin. B 2016, 6, 557–563. [Google Scholar] [CrossRef] [Green Version]
- Zegzouti, H.; Zdanovskaia, M.; Hsiao, K.; Goueli, S.A. ADP-Glo: A Bioluminescent and Homogeneous ADP Monitoring Assay for Kinases. Assay Drug Dev. Technol. 2009, 7, 560–572. [Google Scholar] [CrossRef]
- Hogg, T.; Hilgenfeld, R. Protein Crystallography in Drug Discovery. Compr. Med. Chem. II 2007, 3, 875–900. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klupt, K.A.; Jia, Z. eEF2K Inhibitor Design: The Progression of Exemplary Structure-Based Drug Design. Molecules 2023, 28, 1095. https://doi.org/10.3390/molecules28031095
Klupt KA, Jia Z. eEF2K Inhibitor Design: The Progression of Exemplary Structure-Based Drug Design. Molecules. 2023; 28(3):1095. https://doi.org/10.3390/molecules28031095
Chicago/Turabian StyleKlupt, Kody A., and Zongchao Jia. 2023. "eEF2K Inhibitor Design: The Progression of Exemplary Structure-Based Drug Design" Molecules 28, no. 3: 1095. https://doi.org/10.3390/molecules28031095
APA StyleKlupt, K. A., & Jia, Z. (2023). eEF2K Inhibitor Design: The Progression of Exemplary Structure-Based Drug Design. Molecules, 28(3), 1095. https://doi.org/10.3390/molecules28031095