Impact of the Substitution Pattern at the Basic Center and Geometry of the Amine Fragment on 5-HT6 and D3R Affinity in the 1H-Pyrrolo[3,2-c]quinoline Series
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Determination of Affinity of Compounds for 5-HT6R and D3R and Assessment of the Impact of the Selected Compounds on 5-HT6R-Dependent Gs Signaling
2.3. Structure–Activity Relationship Analysis
2.4. In Silico Studies
3. Experimental Methods
3.1. Chemistry
General Method
3.2. In Silico Evaluation
3.2.1. Structures of the Receptors
3.2.2. Molecular Docking
3.2.3. Molecular Dynamics
3.3. In Vitro Pharmacological Evaluation
3.3.1. The 5-HT6Rs Affinity Evaluation
Cell Culture and Preparation of Cell Membranes for Radioligand Binding Assays
Radioligand Binding Assays
3.3.2. Evaluation of Antagonism at Functional Activity on 5-HT6Rs
3.3.3. Determination of 5-HT6R Constitutive Activity at Gs Signaling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaumont-Dubel, S.; Dupuy, V.; Bockaert, J.; Bécamel, C.; Marin, P. The 5-HT6 receptor interactome: New insight in receptor signaling and its impact on brain physiology and pathologies. Neuropharmacology 2020, 172, 107839. [Google Scholar] [CrossRef] [PubMed]
- Meffre, J.; Chaumont-Dubel, S.; Mannoury la Cour, C.; Loiseau, F.; Watson, D.J.G.; Dekeyne, A.; Séveno, M.; Rivet, J.M.; Gaven, F.; Déléris, P.; et al. 5-HT6 Receptor recruitment of mTOR as a mechanism for perturbed cognition in schizophrenia. EMBO Mol. Med. 2012, 4, 1043. [Google Scholar] [CrossRef] [PubMed]
- Duhr, F.; Déléris, P.; Raynaud, F.; Séveno, M.; Morisset-Lopez, S.; Mannoury La Cour, C.; Millan, M.J.; Bockaert, J.; Marin, P.; Chaumont-Dubel, S. Cdk5 Induces constitutive activation of 5-HT6 receptors to promote neurite growth. Nat. Chem. Biol. 2014, 10, 590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Deurwaerdère, P.; Bharatiya, R.; Chagraoui, A.; Di Giovanni, G. Constitutive activity of 5-HT receptors: Factual analysis. Neuropharmacology 2020, 168, 107967. [Google Scholar] [CrossRef] [PubMed]
- Deraredj Nadim, W.; Chaumont-Dubel, S.; Madouri, F.; Cobret, L.; De Tauzia, M.L.; Zajdel, P.; Benedetti, H.; Marin, P.; Morisset-Lopez, S. Physical interaction between neurofibromin and serotonin 5-HT6 receptor promotes receptor constitutive activity. Proc. Natl. Acad. Sci. USA 2016, 113, 12310. [Google Scholar] [CrossRef] [Green Version]
- Lesiak, A.J.; Brodsky, M.; Cohenca, N.; Croicu, A.G.; Neumaier, J.F. Restoration of physiological expression of 5-HT6 receptor into the primary cilia of null mutant neurons lengthens both primary cilia and dendrites. Mol. Pharmacol. 2018, 94, 731–742. [Google Scholar] [CrossRef] [Green Version]
- Codony, X.; Vela, J.M.; Ramírez, M.J. 5-HT6 Receptor and cognition. Curr. Opin. Pharmacol. 2011, 11, 94. [Google Scholar] [CrossRef] [PubMed]
- de Jong, I.E.M.; Mørk, A. Antagonism of the 5-HT6 receptor—Preclinical rationale for the treatment of Alzheimer’s disease. Neuropharmacology 2017, 125, 50. [Google Scholar] [CrossRef]
- Partyka, A.; Jastrzębska-Więsek, M.; Antkiewicz-Michaluk, L.; Michaluk, J.; Wąsik, A.; Canale, V.; Zajdel, P.; Kołaczkowski, M.; Wesołowska, A. Novel antagonists of 5-HT6 and/or 5-HT7 receptors affect the brain monoamines metabolism and enhance the anti-immobility activity of different antidepressants in rats. Behav. Brain Res. 2019, 359, 9. [Google Scholar] [CrossRef]
- Zajdel, P.; Grychowska, K.; Mogilski, S.; Kurczab, R.; Satała, G.; Bugno, R.; Kos, T.; Gołębiowska, J.; Malikowska-Racia, N.; Nikiforuk, A.; et al. Structure-based design and optimization of FPPQ, a dual-acting 5-HT3 and 5-HT6 receptor antagonist with antipsychotic and procognitive properties. J. Med. Chem. 2021, 64, 18. [Google Scholar] [CrossRef]
- Vanda, D.; Canale, V.; Chaumont-Dubel, S.; Kurczab, R.; Satała, G.; Koczurkiewicz-Adamczyk, P.; Krawczyk, M.; Pietruś, W.; Blicharz, K.; Pękala, E.; et al. Imidazopyridine-based 5-HT6 receptor neutral antagonists: Impact of N1-benzyl and N1-phenylsulfonyl fragments on different receptor conformational states. J. Med. Chem. 2021, 64, 1180. [Google Scholar] [CrossRef] [PubMed]
- Staroń, J.; Kurczab, R.; Warszycki, D.; Satała, G.; Krawczyk, M.; Bugno, R.; Lenda, T.; Popik, P.; Hogendorf, A.S.; Hogendorf, A.; et al. Virtual screening-driven discovery of dual 5-HT6/5-HT2A receptor ligands with pro-cognitive properties. Eur. J. Med. Chem. 2020, 185, 111857. [Google Scholar] [CrossRef]
- Kucwaj-Brysz, K.; Ali, W.; Kurczab, R.; Sudoł-Tałaj, S.; Wilczyńska-Zawal, N.; Jastrzębska-Więsek, M.; Satała, G.; Mordyl, B.; Żesławska, E.; Olejarz-Maciej, A.; et al. An exit beyond the pharmacophore model for 5-HT6R agents—A new strategy to gain dual 5-HT6/5-HT2A action for triazine derivatives with procognitive potential. Bioorg. Chem. 2022, 121, 105695. [Google Scholar] [CrossRef] [PubMed]
- Yahiaoui, S.; Hamidouche, K.; Ballandonne, C.; Davis, A.; Sopkova de Oliveira Santos, J.; Freret, T.; Boulouard, M.; Rochais, C.; Dallemagne, P. Design, synthesis, and pharmacological evaluation of multitarget-directed ligands with both serotonergic subtype 4 receptor (5-HT4R) partial agonist and 5-HT6R antagonist activities, as potential treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2016, 121, 283. [Google Scholar] [CrossRef]
- Claeysen, S.; Bockaert, J.; Giannoni, P. Serotonin: A New Hope in Alzheimer’s Disease? ACS Chem. Neurosci. 2015, 6, 940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcinkowska, M.; Mordyl, B.; Fajkis-Zajączkowska, N.; Siwek, A.; Karcz, T.; Gawalska, A.; Bucki, A.; Żmudzki, P.; Partyka, A.; Jastrzębska-Więsek, M.; et al. Hybrid molecules combining GABA-A and serotonin 5-HT6 receptors activity designed to tackle neuroinflammation associated with depression. Eur. J. Med. Chem. 2023, 247, 115071. [Google Scholar] [CrossRef] [PubMed]
- Wichur, T.; Pasieka, A.; Godyń, J.; Panek, D.; Góral, I.; Latacz, G.; Honkisz-Orzechowska, E.; Buski, A.; Siwek, A.; Głuch-Litwin, M.; et al. Discovery of 1-(phenylsulfonyl)-1H-indole-based multifunctional ligands targeting cholinesterases and 5-HT6 receptor with anti-aggregation properties against amyloid-beta and tau. Eur. J. Med. Chem. 2021, 225, 113783. [Google Scholar] [CrossRef]
- Canale, V.; Grychowska, K.; Kurczab, R.; Ryng, M.; Raheem Keeri, A.; Satała, G.; Olejarz-Maciej, A.; Koczurkiewicz, P.; Drop, M.; Blicharz, K.; et al. A dual-acting 5-HT6 receptor inverse agonist/MAO-B inhibitor displays glioprotective and pro-cognitive properties. Eur. J. Med. Chem. 2020, 208, 112765. [Google Scholar] [CrossRef]
- Millan, M.J.; Dekeyne, A.; Gobert, A.; Brocco, M.; Mannoury la Cour, C.; Ortuno, J.-C.; Watson, D.; Fone, K.C.F. Dual-acting agents for improving cognition and real-world function in Alzheimer’s disease: Focus on 5-HT6 and D3 receptors as hubs. Neuropharmacology 2020, 177, 108099. [Google Scholar] [CrossRef]
- Saavedra, O.M.; Karila, D.; Brossard, D.; Rojas, A.; Dupuis, D.; Gohier, A.; Mannoury la Cour, C.; Millan, M.J.; Ortuno, J.-C.; Hanessian, S. Design and synthesis of novel N-sulfonyl-2-indoles that behave as 5-HT6 receptor ligands with significant selectivity for D3 over D2 receptors. Bioorg. Med. Chem. 2017, 25, 38. [Google Scholar] [CrossRef]
- Chagraoui, A.; Di Giovanni, G.; De Deurwaerdère, P. Neurobiological and pharmacological perspectives of D3 receptors in Parkinson’s disease. Biomolecules 2022, 12, 243. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-C.; Lao, C.-L.; Chen, J.-C. The D3 dopamine receptor inhibits dopamine release in PC-12/hD3 cells by autoreceptor signaling via PP-2B, CK1, and Cdk-5. J. Neurochem. 2009, 110, 1180. [Google Scholar] [CrossRef] [PubMed]
- Salles, M.J.; Hervé, D.; Rivet, J.M.; Longueville, S.; Millan, M.J.; Girault, J.; Mannoury la Cour, C. Transient and rapid activation of Akt/GSK-3β and mTORC1 signaling by D3 dopamine receptor stimulation in dorsal striatum and nucleus accumbens. J. Neurochem. 2013, 125, 532. [Google Scholar] [CrossRef]
- Sokoloff, P.; Leriche, L.; Diaz, J.; Louvel, J.; Pumain, R. Direct and indirect interactions of the dopamine D3 receptor with glutamate pathways: Implications for the treatment of schizophrenia. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2013, 386, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupuis, D.S.; Mannoury la Cour, C.; Verrièle, C.L.; Lavielle, G.; Millan, M.J. Actions of novel agonists, antagonists and antipsychotic agents at recombinant rat 5-HT6 receptors: A comparative study of coupling to Gαs. Eur. J. Pharmacol. 2008, 588, 170. [Google Scholar] [CrossRef] [PubMed]
- Grychowska, K.; Chaumont-Dubel, S.; Kurczab, R.; Koczurkiewicz, P.; Deville, C.; Krawczyk, M.; Pietruś, W.; Satała, G.; Buda, S.; Piska, K.; et al. Dual 5-HT6 and D3 receptor antagonists in a group of 1H-pyrrolo[3,2-c]quinolines with neuroprotective and procognitive activity. ACS Chem. Neurosci. 2019, 10, 3183. [Google Scholar] [CrossRef] [PubMed]
- Grychowska, K.; Satała, G.; Kos, T.; Partyka, A.; Colacino, E.; Chaumont-Dubel, S.; Bantreil, X.; Wesołowska, A.; Pawłowski, M.; Martinez, J.; et al. Novel 1H-pyrrolo[3,2-c]quinoline based 5-HT6 receptor antagonists with potential application for the treatment of cognitive disorders associated with Alzheimer’s disease. ACS Chem. Neurosci. 2016, 7, 972. [Google Scholar] [CrossRef]
- Grychowska, K.; Olejarz-Maciej, A.; Blicharz, K.; Pietruś, W.; Karcz, T.; Kurczab, R.; Koczurkiewicz, P.; Doroz-Płonka, A.; Latacz, G.; Raheem Keeri, A.; et al. Overcoming undesirable hERG affinity by incorporating fluorine atoms: A case of MAO-B inhibitors derived from 1H-pyrrolo-[3,2-c]quinolines. Eur. J. Med. Chem. 2022, 236, 114329. [Google Scholar] [CrossRef]
- MacKenzie, R.G.; Van Leeuwen, D.; Pugsley, T.A.; Shih, Y.H.; Demattos, S.; Tang, L.; Todd, R.D.; O’Malley, K.L. Characterization of the human dopamine D3 receptor expressed in transfected cell lines. Eur. J. Pharmacol. 1994, 266, 79. [Google Scholar] [CrossRef]
- Cheng, Y.; Prusoff, W.H. Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50% inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 1973, 22, 3099. [Google Scholar]
- Grychowska, K.; Kurczab, R.; Śliwa, P.; Satała, G.; Dubiel, K.; Matłoka, M.; Moszczyński-Pętkowski, R.; Pieczykolan, J.; Bojarski, A.J.; Zajdel, P. Pyrroloquinoline scaffold-based 5-HT6R ligands: Synthesis, quantum chemical and molecular dynamic studies, and influence of nitrogen atom position in the scaffold on affinity. Bioorg. Med. Chem. 2018, 26, 3588. [Google Scholar] [CrossRef] [PubMed]
- Hogendorf, A.S.; Hogendorf, A.; Kurczab, R.; Kalinowska-Tluscik, J.; Popik, P.; Nikiforuk, A.; Krawczyk, M.; Satala, G.; Lenda, T.; Knutelska, J.; et al. 2-Aminoimidazole-based antagonists of the 5-HT6 Receptor—A new concept in aminergic GPCR ligand design. Eur. J. Med. Chem. 2019, 179, 1. [Google Scholar] [CrossRef] [PubMed]
- Kurczab, R.; Śliwa, P.; Rataj, K.; Kafel, R.; Bojarski, A.J. The salt bridge in ligand-protein complexes—Systematic theoretical and statistical investigations. J. Chem. Inf. Model. 2018, 58, 2224. [Google Scholar] [CrossRef] [PubMed]
- Chien, E.Y.T.; Liu, W.; Zhao, Q.; Katrich, V.; Won Han, G.; Hanson, M.H.; Shi, L.; Newman, A.H.; Javitch, J.A.; Cherezov, V.; et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 2010, 30, 1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, R.B.; Philipp, D.M.; Friesner, R.A. A Mixed Quantum Mechanics/Molecular Mechanics (QM/MM) Method for Large-Scale Modeling of Chemistry in Protein Environments. J. Comput. Chem. 2000, 21, 1442–1457. [Google Scholar] [CrossRef]
- Anighoro, A.; Bajorath, J.; Rastelli, G. Polypharmacology: Challenges and opportunities in drug discovery. J. Med. Chem. 2014, 57, 7874. [Google Scholar] [CrossRef]
- Shelley, J.C.; Cholleti, A.; Frye, L.L.; Greenwood, J.R.; Timlin, M.R.; Uchimaya, M. Epik: A software program for pK(a) prediction and protonation state generation for drug-like molecules. J. Comput. Aided. Mol. Des. 2007, 21, 681. [Google Scholar] [CrossRef]
- Halgren, T. New method for fast and accurate binding-site identification and analysis. Chem. Biol. Drug Des. 2007, 69, 146. [Google Scholar] [CrossRef]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004, 47, 1749. [Google Scholar] [CrossRef]
- Sherman, W.; Day, T.; Jacobson, M.P.; Friesner, R.A.; Farid, R. Novel procedure for modeling ligand/receptor induced fit effects. J. Med. Chem. 2006, 49, 534–553. [Google Scholar] [CrossRef]
- Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; et al. OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theor. Comput. 2016, 12, 281. [Google Scholar] [CrossRef] [PubMed]
- Bowers, K.J.; Chow, D.E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D.; et al. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. In Proceedings of the ACM/IEEE SC 2006 Conference (SC’06), Tampa, FL, USA, 11–17 November 2006 ; p. 43. [Google Scholar]
- Lomize, M.A.; Pogozheva, I.D.; Joo, H.; Mosberg, H.I.; Lomize, A.L. OPM database and PPM web server: Resources for positioning of proteins in membranes. Nucleic Acids Res. 2011, 40, 370. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.I.; Collins, J.; Davis, R.; Lin, K.-M.; DeCamp, D.; Roach, T.; Hsueh, R.; Rebres, R.A.; Ross, E.M.; Taussig, R.; et al. Use of a cAMP BRET sensor to characterize a novel regulation of cAMP by the sphingosine 1-phosphate/G13 pathway. J. Biol. Chem. 2007, 282, 10576. [Google Scholar] [CrossRef] [PubMed]
Compd | R | Ki 5-HT6R [nM]a | %inh Binding to D3R @1μMb |
PZ-1643 | 27 c | 98% (7 nM) c | |
8 | 11 | – | |
9 | 6 | 54% | |
10 | 84 | – | |
11 | 17 | 25% | |
12 | 556 | – |
Compd | R1 | Ki5-HT6R [nM]a | %inh Binding to D3R @1μMb |
13 | 27 | 58% | |
14 | 72 | – | |
15 | 38 | – | |
16 | 64 | – | |
17 | 27 | 57% | |
18 | 65 | – | |
19 | 58 | – | |
20 | 77 | – | |
21 | 87 | – |
Compound | D3R | Freq. (%) | 5-HT6R | Freq. (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
SB angle (o) | SB distance (Å) | SB angle (o) | SB distance (Å) | |||||||
N-H···O= | N-H···O¯ | N···O= | N···O¯ | N-H···O= | N-H···O¯ | N···O= | N···O¯ | |||
PZ-1643 | 145.7 | 146.9 | 3.8 | 3.8 | 84 | 149.8 | 144.1 | 3.5 | 3.9 | 98 |
9 | 135.8 | 129.6 | 5.2 | 4.1 | 30 | 131.2 | 145.7 | 3.8 | 3.4 | 89 |
12 | 142.2 | 143.0 | 4.8 | 5.8 | 0 | 139.6 | 129.9 | 5.3 | 3.6 | 77 |
13 | 145.0 | 145.5 | 4.2 | 4.3 | 44 | 155.9 | 161.5 | 3.8 | 3.2 | 98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grychowska, K.; Pietruś, W.; Kulawik, L.; Bento, O.; Satała, G.; Bantreil, X.; Lamaty, F.; Bojarski, A.J.; Gołębiowska, J.; Nikiforuk, A.; et al. Impact of the Substitution Pattern at the Basic Center and Geometry of the Amine Fragment on 5-HT6 and D3R Affinity in the 1H-Pyrrolo[3,2-c]quinoline Series. Molecules 2023, 28, 1096. https://doi.org/10.3390/molecules28031096
Grychowska K, Pietruś W, Kulawik L, Bento O, Satała G, Bantreil X, Lamaty F, Bojarski AJ, Gołębiowska J, Nikiforuk A, et al. Impact of the Substitution Pattern at the Basic Center and Geometry of the Amine Fragment on 5-HT6 and D3R Affinity in the 1H-Pyrrolo[3,2-c]quinoline Series. Molecules. 2023; 28(3):1096. https://doi.org/10.3390/molecules28031096
Chicago/Turabian StyleGrychowska, Katarzyna, Wojciech Pietruś, Ludmiła Kulawik, Ophélie Bento, Grzegorz Satała, Xavier Bantreil, Frédéric Lamaty, Andrzej J. Bojarski, Joanna Gołębiowska, Agnieszka Nikiforuk, and et al. 2023. "Impact of the Substitution Pattern at the Basic Center and Geometry of the Amine Fragment on 5-HT6 and D3R Affinity in the 1H-Pyrrolo[3,2-c]quinoline Series" Molecules 28, no. 3: 1096. https://doi.org/10.3390/molecules28031096
APA StyleGrychowska, K., Pietruś, W., Kulawik, L., Bento, O., Satała, G., Bantreil, X., Lamaty, F., Bojarski, A. J., Gołębiowska, J., Nikiforuk, A., Marin, P., Chaumont-Dubel, S., Kurczab, R., & Zajdel, P. (2023). Impact of the Substitution Pattern at the Basic Center and Geometry of the Amine Fragment on 5-HT6 and D3R Affinity in the 1H-Pyrrolo[3,2-c]quinoline Series. Molecules, 28(3), 1096. https://doi.org/10.3390/molecules28031096