Evolution of the Composition and Melting Behavior of Spinnable Pitch during Incubation
Abstract
:1. Introduction
2. Results and Discussions
2.1. Extraction Separation and Fraction Distribution
2.2. HS Fraction Variation
2.3. HI-TS Fraction Variation
2.4. TI-THFS Fraction Variation
2.5. THFI Fraction Variation
2.6. Melting and Rheological Properties
3. Materials and Methods
3.1. Materials
3.2. Methods
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Niu, H.; Zuo, P.-P.; Shen, W.-Z.; Qu, S.-J. Evaluating multi-step oxidative stabilization behavior of coal tar pitch-based fiber. J. Appl. Polymer Sci. 2021, 138, e50002. [Google Scholar] [CrossRef]
- Li, H.-Q.; He, X.-J.; Wu, T.-T.; Jin, B.-Y.; Yang, L.; Qiu, J.-S. Synthesis, modification strategies and applications of coal-based carbon materials. Fuel Process. Technol. 2022, 230, 107203. [Google Scholar] [CrossRef]
- Zuo, P.-P.; Qu, S.-J.; Shen, W.-Z. Asphaltenes: Separations, structural analysis and applications. J. Energy Chem. 2019, 34, 186–207. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.C.; Huang, Y.; Yu, X.L.; Gao, F.; Gao, S.H.; Wang, F.L.; Li, D.; Xu, X.; Cui, L.W.; Fan, X.Y.; et al. Co-Carbonization of Medium- and Low-Temperature Coal Tar Pitch and Coal-Based Hydrogenated Diesel Oil Prepare Mesophase Pitch for Needle Coke Precursor. Adv. Eng. Mater. 2021, 23, 2001523. [Google Scholar] [CrossRef]
- Han, Y.J.; Kim, J.; Yeo, J.S.; An, J.C.; Hong, I.P.; Nakabayashi, K.; Miyawaki, J.; Jung, J.D.; Yoon, S.H. Coating of graphite anode with coal tar pitch as an effective precursor for enhancing the rate performance in Li-ion batteries: Effects of composition and softening points of coal tar pitch. Carbon 2015, 94, 432–438. [Google Scholar] [CrossRef]
- Lim, T.H.; Kim, M.S.; Yeo, S.Y.; Jeong, E. Preparation and evaluation of isotropic and mesophase pitch-based carbon fibers using the pelletizing and continuous spinning process. J. Ind. Text. 2019, 48, 1242–1253. [Google Scholar] [CrossRef]
- Lim, T.H.; Yeo, S.Y. Investigation of the degradation of pitch-based carbon fibers properties upon insufficient or excess thermal treatment. Sci. Rep. 2017, 7, 4733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, B.-J.; Wang, C.-Y.; Chen, M.-M.; Zheng, J.-M.; Qi, J. Two-step chemical conversion of coal tar pitch to isotropic spinnable pitch. Fuel Process. Technol. 2012, 104, 155–159. [Google Scholar] [CrossRef]
- Zhu, Y.-M.; Zhao, C.-L.; Hu, C.-S.; Yuan, J.; Xu, Y.-L.; Zhao, X.-F. Preparation and characterization of spinnable pitch for general-purpose carbon fiber from refined pitch. J. Appl. Polymer Sci. 2019, 136, 47880. [Google Scholar] [CrossRef]
- Xu, Z.-G.; Wang, Y.-X.; Cao, J.; Chai, J.-R.; Cao, C.; Si, Z.; Li, Y.-L. Adhesion between asphalt molecules and acid aggregates under extreme temperature: A ReaxFF reactive molecular dynamics study. Constr. Build. Mater. 2021, 285, 122882. [Google Scholar] [CrossRef]
- Hashmi, S.-M.; Zhong, X.-K.; Firoozabadi, A. Acid-base chemistry enables reversible colloid-to-solution transition of asphaltenes in non-polar systems. Soft Matter 2012, 8, 8778–8785. [Google Scholar] [CrossRef]
- Gray, M.-R.; Tykwinski, R.-R.; Stryker, J.-M.; Tan, X.-L. Supramolecular assembly model for aggregation of petroleum asphaltenes. Energy Fuel. 2011, 25, 3125–3134. [Google Scholar] [CrossRef]
- Chatergoon, L.; Whiting, R.; Smith, C. Use of elemental and functional-group analysis for monitoring compositional changes occurring on air blowing and accelerated weathering of a natural asphalt. Analyst 1993, 118, 947–950. [Google Scholar] [CrossRef]
- Lu, Y.; Kocaefe, D.; Kocaefe, Y.; Huang, X.-A.; Bhattacharyay, D. The wettability of coke by pitches with different quinoline-insoluble contents. Fuel 2017, 199, 587–597. [Google Scholar] [CrossRef]
- Nie, Y.-H.; Zhang, Y.-L.; Yu, J.-Y.; Kuang, D.-L.; Zhang, X.-P. Research on aging mechanism and recycling mechanism based on asphalt four components analysis. Appl. Mech. Mater. 2012, 204–208, 1659–1664. [Google Scholar] [CrossRef]
- Xu, G.-J.; Wang, H. Molecular dynamics study of oxidative aging effect on asphalt binder properties. Fuel 2017, 188, 1–10. [Google Scholar] [CrossRef]
- Zhang, M.-Y.; Wang, X.-C.; Zhang, W.-G.; Ding, L.-T. Study on the relationship between nano-morphology parameters and properties of bitumen during the ageing process. Materials 2020, 13, 1472. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.-T.; Wang, X.-C.; Zhang, M.-Y.; Chen, Z.; Meng, J.-Q.; Shao, X.-S. Morphology and properties changes of virgin and aged asphalt after fusion. Constr. Build. Mater. 2021, 291, 123284. [Google Scholar] [CrossRef]
- Lu, X.-H.; Isacsson, U. Effect of ageing on bitumen chemistry and rheology. Constr. Build. Mater. 2002, 16, 15–22. [Google Scholar] [CrossRef]
- Kim, J.-G.; Kim, J.-H.; Song, B.-J.; Jeon, Y.-P.; Lee, C.-W.; Lee, Y.-S.; Im, J.-S. Characterization of pitch derived from pyrolyzed fuel oil using TLC-FID and MALDI-TOF. Fuel 2016, 167, 25–30. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Wu, C.-H. Asphalt material aging mechanism and characteristics analysis based on infrared spectrum. Adv. Mater. Res. 2013, 652–654, 1265–1268. [Google Scholar] [CrossRef]
- Zuo, P.-P.; Qu, S.-J.; Shen, W.-Z. Molecular growth from coal-based asphaltenes to spinnable pitch. Mater. Chem. Phys. 2022, 276, 125427. [Google Scholar] [CrossRef]
- Meldrum, B.-J.; Rochester, C.-H. Infrared-spectra of carbonaceous chars under carbonization conditions. Fuel 1991, 70, 57–63. [Google Scholar] [CrossRef]
- Rottmair, C.; Volek, A.; Jung, A.; Chau, P.-C.; Fathollahi, B. Functional group analysis of oxidative stabilized AR mesophase pitch. Carbon 2007, 45, 3052–3055. [Google Scholar] [CrossRef]
- Metzinger, T.; Huttinger, K.-J. Investigations on the cross-linking of binder pitch matrix of carbon bodies with molecular oxygen.1. Chemistry of reactions between pitch and oxygen. Carbon 1997, 35, 885–892. [Google Scholar] [CrossRef]
- Jiang, W.; Ni, G.-S.; Zuo, P.-P.; Qu, S.-J.; Li, Y.-M.; Niu, H.-X.; Shen, W.-Z. Controlling spinning pitch property by tetrahydrofuran-soluble fraction of coal tar pitch co-carbonization with petrolatum. Carbon Lett. 2019, 29, 505–519. [Google Scholar] [CrossRef]
- Kim, B.-J.; Kotegawa, T.; Eom, Y.; An, J.; Hong, I.-P.; Kato, O.; Nakabayashi, K.; Miyawaki, J.; Kim, B.-C.; Mochida, I.; et al. Enhancing the tensile strength of isotropic pitch-based carbon fibers by improving the stabilization and carbonization properties of precursor pitch. Carbon 2016, 99, 649–657. [Google Scholar] [CrossRef]
- Gargiulo, V.; Apicella, B.; Stanzione, F.; Tregrossi, A.; Milian, M.; Ciajolo, A.; Russo, C. Structural Characterization of Large Polycyclic Aromatic Hydrocarbons. Part 2: Solvent-Separated Fractions of Coal Tar Pitch and Naphthalene-Derived Pitch. Energy Fuel 2016, 30, 2574–2583. [Google Scholar] [CrossRef]
- Yoshida, T.; Nakata, Y.; Yoshida, R.; Ueda, S.; Kanda, N.; Maekawa, Y. Elucidation of structural and hydroliquefaction characteristics of Yallourn brown coal by C-13 CP/MAS NMR spectrometry. Fuel 1982, 61, 824–830. [Google Scholar] [CrossRef]
- Oner, F.-O.; Yurum, A.; Yurum, Y. Structural characterization of semicokes produced from the pyrolysis of petroleum pitches. J. Anal. Appl. Pyrolysis 2015, 111, 15–26. [Google Scholar] [CrossRef]
- Zhou, B.; Liu, Q.-Y.; Shi, L.; Liu, Z.-Y. Electron spin resonance studies of coals and coal conversion processes: A review. Fuel Process. Technol. 2019, 188, 212–227. [Google Scholar] [CrossRef]
- Liu, J.-X.; Jiang, X.-M.; Shen, J.; Zhang, H. Chemical properties of superfine pulverized coal particles. Part 1. Electron paramagnetic resonance analysis of free radical characteristics. Adv. Powder Technol. 2014, 25, 916–925. [Google Scholar] [CrossRef]
- Tian, L.-W.; Koshland, C.-P.; Yano, J.; Yachandra, V.-K.; Yu, I.T.; Lee, S.-C.; Lucas, D. Carbon-centered free radicals in particulate matter emissions from wood and coal combustion. Energy Fuel 2009, 23, 2523–2526. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.-Q.; Liu, Q.-Y.; Shi, L.; Yan, Y.-X.; Liu, Z.-Y. Behaviors of coking and radicals during reaction of volatiles generated from fixed-bed pyrolysis of a lignite and a subbituminous coal. Fuel Process. Technol. 2017, 161, 304–310. [Google Scholar] [CrossRef]
- Pilawa, B.; Wieckowski, A.-B.; Pietrzak, R.; Wachowska, H. Oxidation of demineralized coal and coal free of pyrite examined by EPR spectroscopy. Fuel 2002, 81, 1925–1931. [Google Scholar] [CrossRef]
- Xie, L.-Y.; Shao, Y.-J.; Zhong, W.-Q.; Ben, H.-X.; Li, K.-X. Molecular dynamic simulation on the oxidation process of coal tar pitch. Fuel 2019, 242, 50–61. [Google Scholar] [CrossRef]
- Wang, Z.-C.; Wei, C.; Shui, H.-F.; Ren, S.-B.; Pan, C.-X.; Wang, Z.-S.; Li, H.-P.; Lei, Z.-P. Synchronous fluorimetric characterization of heavy intermediates of coal direct liquefaction. Fuel 2012, 98, 67–72. [Google Scholar] [CrossRef]
- Graessley, W.-W. Effect of long branches on the temperature dependence of viscoelastic properties in polymer melts. Macromolecules 1982, 15, 1164–1167. [Google Scholar] [CrossRef]
- Saad, S.; Zeraati, A.-S.; Roy, S.; Saadi, M.A.-S.-R.; Radovi, J.-R.; Rajeev, A.; Miller, K.-A.; Bhattacharyya, S.; Larter, S.-R.; Natale, G.; et al. Transformation of petroleum asphaltenes to carbon fibers. Carbon 2022, 190, 92–103. [Google Scholar] [CrossRef]
- Cheng, Y.-C.; Tao, J.-L.; Jiao, Y.-B.; Guo, Q.-L.; Li, C. Influence of diatomite and mineral powder on thermal oxidative ageing properties of asphalt. Adv. Mater. Sci. Eng. 2015, 2015, 947834. [Google Scholar] [CrossRef]
- Cong, P.-L.; Wang, J.; Li, K.; Chen, S.-F. Physical and rheological properties of asphalt binders containing various antiaging agents. Fuel 2012, 97, 678–684. [Google Scholar] [CrossRef]
Sample | HS (wt. %) | HI-TS (wt. %) | TI-THFS (wt. %) | THFI (wt. %) |
---|---|---|---|---|
R-0 | 1.55 | 35.05 | 5.50 | 57.9 |
R-30 | 2.23 | 35.47 | 5.56 | 56.74 |
R-60 | 2.95 | 30.82 | 6.66 | 59.57 |
R-90 | 2.04 | 37.18 | 2.61 | 58.17 |
R-120 | 2.19 | 35.97 | 4.20 | 57.64 |
R-150 | 2.16 | 34.97 | 6.07 | 56.80 |
Sample | Elemental Composition (wt. %) | H/C | O/C | ||||
---|---|---|---|---|---|---|---|
N | C | H | S | O * | |||
R-0 | 0.92 | 93.27 | 4.01 | 0.54 | 1.25 | 0.51 | 0.0101 |
R-30 | 0.88 | 93.09 | 4.12 | 0.51 | 1.40 | 0.53 | 0.0113 |
R-60 | 0.92 | 93.05 | 4.07 | 0.47 | 1.49 | 0.52 | 0.012 |
R-90 | 0.89 | 93.13 | 4.06 | 0.48 | 1.45 | 0.52 | 0.0116 |
R-120 | 0.90 | 93.12 | 4.01 | 0.55 | 1.42 | 0.51 | 0.0112 |
R-150 | 0.94 | 92.83 | 3.78 | 0.47 | 1.97 | 0.48 | 0.0159 |
Fraction | HS-0 | HS-30 | HS-60 | HS-90 | HS-120 | HS-150 |
---|---|---|---|---|---|---|
Mn (g/mol) | 257.9 | 263.8 | 256.9 | 255.9 | 252.7 | 255.8 |
Mw (g/mol) | 274.4 | 288.5 | 275.7 | 273.1 | 267.8 | 265.8 |
Sample | Two Rings (%) | Three Rings (%) | Four Rings (%) | Five Rings and More (%) |
---|---|---|---|---|
HI-TS-0 | 8.41 | 15.35 | 14.31 | 61.91 |
HI-TS-30 | 8.27 | 14.20 | 14.50 | 63.03 |
HI-TS-60 | 6.54 | 13.4 | 13.52 | 66.53 |
HI-TS-90 | 7.03 | 13.17 | 14.42 | 65.37 |
HI-TS-120 | 7.44 | 13.21 | 14.37 | 64.98 |
HI-TS-150 | 8.68 | 14.55 | 14.77 | 61.99 |
Sample | g-Value | Free radical Concentration (spins/g) | Linewidth (G) |
---|---|---|---|
HI-TS-0 | 2.00428 | 3.81 × 1017 | 5.1 |
HI-TS-30 | 2.00429 | 1.72 × 1017 | 5.3 |
HI-TS-60 | 2.00405 | 7.85 × 1017 | 5.4 |
HI-TS-90 | 2.00438 | 1.19 × 1017 | 5.6 |
HI-TS-120 | 2.00437 | 2.61 × 1017 | 6.8 |
HI-TS-150 | 2.00425 | 4.00 × 1017 | 5.8 |
Sample | g-Value | Free Radical Concentration (spins/g) | Linewidth (G) |
---|---|---|---|
TI-THFS-0 | 2.00403 | 2.15 × 1017 | 5.6 |
TI-THFS-30 | 2.00399 | 2.41 × 1017 | 5.5 |
TI-THFS-60 | 2.00399 | 1.97 × 1017 | 5.2 |
TI-THFS-90 | 2.00406 | 1.94 × 1017 | 5.3 |
TI-THFS-120 | 2.00400 | 3.55 × 1017 | 5.5 |
TI-THFS-150 | 2.00396 | 3.88 × 1017 | 5.6 |
Sample | R-0 | R-30 | R-60 | R-90 | R-120 | R-150 |
---|---|---|---|---|---|---|
Ea (KJ/mol) | −257.15 | −273.61 | −319.67 | −257.32 | −263.63 | −366.64 |
EAI (%) | 0 | 6.43 | 24.31 | 0.07 | 2.52 | 42.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Zuo, P.; Qu, S.; Shen, W. Evolution of the Composition and Melting Behavior of Spinnable Pitch during Incubation. Molecules 2023, 28, 1097. https://doi.org/10.3390/molecules28031097
Li Q, Zuo P, Qu S, Shen W. Evolution of the Composition and Melting Behavior of Spinnable Pitch during Incubation. Molecules. 2023; 28(3):1097. https://doi.org/10.3390/molecules28031097
Chicago/Turabian StyleLi, Qian, Pingping Zuo, Shijie Qu, and Wenzhong Shen. 2023. "Evolution of the Composition and Melting Behavior of Spinnable Pitch during Incubation" Molecules 28, no. 3: 1097. https://doi.org/10.3390/molecules28031097
APA StyleLi, Q., Zuo, P., Qu, S., & Shen, W. (2023). Evolution of the Composition and Melting Behavior of Spinnable Pitch during Incubation. Molecules, 28(3), 1097. https://doi.org/10.3390/molecules28031097