New Triazine Derivatives as Serotonin 5-HT6 Receptor Ligands
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Compounds
2.2. Pharmacology
2.2.1. In Vitro Affinity for 5-HT6 Receptor
2.2.2. In Vitro Affinity at Other Tested Receptors
2.3. Additional Studies for Compound 3
2.3.1. Permeability of Compound 3
2.3.2. Hepatotoxicity of Compound 3
2.4. Salts of Compound 3
2.4.1. Pharmacological Evaluation
2.4.2. Salts of Compound 3—Solubility Evaluation
2.4.3. Crystallographic Studies of Compound 3 and Its Salts
3. Materials and Methods
3.1. Chemistry
3.1.1. Synthesis of Esters
3.1.2. Synthesis of 1,3,5-Triazines
4-((2-Isopropylphenoxy)methyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (2)
4-((2-(tert-Butyl)phenoxy)metyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (3)
4-((3-Isopropylphenoxy)methyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (4)
4-((3-(tert-Butyl)phenoxy)methyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (5)
4-((4-Isopropylphenoxy)methyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (6)
4-((4-(tert-Butyl)phenoxy)methyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (7)
4-((2-(tert-Butyl)-5-methylphenoxy)methyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine hydrochloride (8)
4-((2-(tert-Butyl)-4-methylphenoxy)methyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (9)
4-((2-(tert-Butyl)-6-methylphenoxy)methyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (10)
4-((2,6-Diisopropylphenoxy)methyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (11)
4-((2,6-(di-tert-Butyl)phenoxy)methyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine hydrochloride (12)
4-((2,4-(di-tert-Butyl)phenoxy)methyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine hydrochloride (13)
4-(3-(2-Isopropyl-5-methylphenoxy)propyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (14)
4-(3-(2-Isopropylphenoxy)propyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine hydrochloride (15)
4-(3-(4-Isopropylphenoxy)propyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (16)
4-(4-Methylpiperazin-1-yl)-6-(3-(m-tolyloxy)propyl)-1,3,5-triazin-2-amine (17)
4-(4-Methylpiperazin-1-yl)-6-(3-(o-tolyloxy)propyl)-1,3,5-triazin-2-amine (18)
4-(4-(2-Isopropyl-5-methylphenoxy)butyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine hydrochloride (19)
4-(4-(2-Isopropylphenoxy)butyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (20)
4-(4-Methylpiperazin-1-yl)-6-(4-(m-tolyloxy)butyl)-1,3,5-triazin-2-amine (21)
4-(5-(2-Isopropyl-5-methylphenoxy)pentyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (22)
4-(5-(2-Isopropylphenoxy)pentyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (23)
4-(4-Methylpiperazin-1-yl)-6-(5-(m-tolyloxy)pentyl) 1,3,5-triazin-2-amine (24)
4-(6-(2-Isopropyl-5-methylphenoxy)hexyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (25)
3.2. In Vitro Pharmacological Studies
3.3. PAMPA Assay
3.4. Hepatotoxicity
3.5. Water Solubility Determination
3.6. Crystal Structures of Compounds 3 and 3-SA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet 2021, 397, 1577–1590. [Google Scholar] [CrossRef] [PubMed]
- Pardo-Moreno, T.; González-Acedo, A.; Rivas-Domínguez, A.; García-Morales, V.; García-Cozar, F.J.; Ramos-Rodríguez, J.J.; Melguizo-Rodríguez, L. Therapeutic Approach to Alzheimer’s Disease: Current Treatments and New Perspectives. Pharmaceutics 2022, 14, 1117. [Google Scholar] [CrossRef] [PubMed]
- Mahase, E. Three FDA advisory panel members resign over approval of Alzheimer’s drug. BMJ 2021, 373, 1503. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.; Aisen, P.; Apostolova, L.G.; Atri, A.; Salloway, S.; Weiner, M. Aducanumab: Appropriate Use Recommendations. J. Prev. Alzheimer’s Dis. 2021, 8, 398–410. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=212304 (accessed on 29 November 2022).
- Cummings, J.; Lee, G.; Nahed, P.; Kambar, M.E.Z.N.; Zhong, K.; Fonseca, J.; Taghva, K. Alzheimer’s disease drug development pipeline: 2022. Alzheimer’s Dement. 2022, 8, e12295. [Google Scholar] [CrossRef]
- Khoury, R.; Grysman, N.; Gold, J.; Patel, K.; Grossberg, G.T. The role of 5 HT6-receptor antagonists in Alzheimer’s disease: An update. Expert Opin. Investig. Drugs 2018, 27, 523–533. [Google Scholar] [CrossRef]
- Kucwaj-Brysz, K.; Baltrukevich, H.; Czarnota, K.; Handzlik, J. Chemical update on the potential for serotonin 5-HT6 and 5-HT7 receptor agents in the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2021, 49, 128275. [Google Scholar] [CrossRef]
- De Jong, I.E.M.; Mørk, A. Antagonism of the 5-HT6 receptor—Preclinical rationale for the treatment of Alzheimer’s disease. Neuropharmacology 2017, 125, 50–63. [Google Scholar] [CrossRef]
- Courault, P.; Emery, S.; Bouvard, S.; Liger, F.; Chauveau, F.; Meyronet, D.; Fourier, A.; Billard, T.; Zimmer, L.; Lancelot, S. Change in Expression of 5-HT6 Receptor at Different Stages of Alzheimer’s Disease: A Postmortem Study with the PET Radiopharmaceutical [18F]2FNQ1P. J. Alzheimer’s Dis. 2020, 75, 1329–1338. [Google Scholar] [CrossRef]
- Coray, R.; Quednow, B.B. The role of serotonin in declarative memory: A systematic review of animal and human research. Neurosci. Biobehav. Rev. 2022, 139, 104729. [Google Scholar] [CrossRef]
- Łażewska, D.; Kurczab, R.; Więcek, M.; Kamińska, K.; Satała, G.; Jastrzębska-Więsek, M.; Partyka, A.; Bojarski, A.J.; Wesołowska, A.; Kieć-Kononowicz, K.; et al. The computer-aided discovery of novel family of the 5-HT6 serotonin receptor ligands among derivatives of 4-benzyl-1,3,5-triazine. Eur. J. Med. Chem. 2017, 135, 117–124. [Google Scholar] [CrossRef]
- Kurczab, R.; Ali, W.; Łażewska, D.; Kotańska, M.; Jastrzębska-Więsek, M.; Satała, G.; Więcek, M.; Lubelska, A.; Latacz, G.; Partyka, A.; et al. Computer-Aided Studies for Novel Arylhydantoin 1,3,5-Triazine Derivatives as 5-HT6 Serotonin Receptor Ligands with Antidepressive-Like, Anxiolytic and Antiobesity Action In Vivo. Molecules 2018, 23, 2529. [Google Scholar] [CrossRef] [Green Version]
- Łażewska, D.; Kurczab, R.; Więcek, M.; Satała, G.; Kieć-Kononowicz, K.; Handzlik, J. Synthesis and computer-aided analysis of the role of linker for novel ligands of the 5-HT6 serotonin receptor among substituted 1,3,5-triazinylpiperazines. Bioorg. Chem. 2019, 84, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Ali, W.; Więcek, M.; Łażewska, D.; Kurczab, R.; Jastrzębska-Więsek, M.; Satała, G.; Kucwaj-Brysz, K.; Lubelska, A.; Głuch-Lutwin, M.; Mordyl, B.; et al. Synthesis and computer-aided SAR studies for derivatives of phenoxyalkyl-1,3,5-triazine as the new potent ligands for serotonin receptors 5-HT6. Eur. J. Med. Chem. 2019, 178, 740–751. [Google Scholar] [CrossRef] [PubMed]
- Latacz, G.; Lubelska, A.; Jastrzębska-Więsek, M.; Partyka, A.; Marć, M.A.; Satała, G.; Wilczyńska, D.; Kotańska, M.; Więcek, M.; Kamińska, K.; et al. The 1,3,5-Triazine Derivatives as Innovative Chemical Family of 5-HT6 Serotonin Receptor Agents with Therapeutic Perspectives for Cognitive Impairment. Int. J. Mol. Sci. 2019, 20, 3420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudoł, S.; Kucwaj-Brysz, K.; Kurczab, R.; Wilczyńska, N.; Jastrzębska-Więsek, M.; Satała, G.; Latacz, G.; Głuch-Lutwin, M.; Mordyl, B.; Żesławska, E.; et al. Chlorine substituents and linker topology as factors of 5-HT6R activity for novel highly active 1,3,5-triazine derivatives with procognitive properties in vivo. Eur. J. Med. Chem. 2020, 203, 112529. [Google Scholar] [CrossRef] [PubMed]
- Sudoł, S.; Cios, A.; Jastrzębska-Więsek, M.; Honkisz-Orzechowska, E.; Mordyl, B.; Wilczyńska-Zawal, N.; Satała, G.; Kucwaj-Brysz, K.; Partyka, A.; Latacz, G.; et al. The Phenoxyalkyltriazine Antagonists for 5-HT6 Receptor with Promising Procognitive and Pharmacokinetic Properties In Vivo in Search for a Novel Therapeutic Approach to Dementia Diseases. Int. J. Mol. Sci. 2021, 22, 10773. [Google Scholar] [CrossRef] [PubMed]
- Łażewska, D.; Więcek, M.; Ner, J.; Kamińska, K.; Kottke, T.; Schwed, J.S.; Zygmunt, M.; Karcz, T.; Olejarz, A.; Kuder, K.; et al. Aryl-1,3,5-triazine derivatives as histamine H4 receptor ligands. Eur. J. Med. Chem. 2014, 83, 534–546. [Google Scholar] [CrossRef]
- Tabernilla, A.; Dos Santos Rodrigues, B.; Pieters, A.; Caufriez, A.; Leroy, K.; Van Campenhout, R.; Cooreman, A.; Gomes, A.R.; Arnesdotter, E.; Gijbels, E.; et al. In Vitro Liver Toxicity Testing of Chemicals: A Pragmatic Approach. Int. J. Mol. Sci. 2021, 22, 5038. [Google Scholar] [CrossRef]
- Gupta, D.; Bhatia, D.; Dave, V.; Sutariya, V.; Varghese Gupta, S. Salts of Therapeutic Agents: Chemical, Physicochemical, and Biological Considerations. Molecules 2018, 23, 1719. [Google Scholar] [CrossRef] [PubMed]
- Załuski, M.; Stanuch, K.; Karcz, T.; Hinz, S.; Latacz, G.; Szymańska, E.; Schabikowski, J.; Doroz-Płonka, A.; Handzlik, J.; Drabczyńska, A.; et al. Tricyclic Xanthine Derivatives Containing a Basic Substituent: Adenosine Receptor Affinity and Drug-Related Properties. MedChemComm 2018, 9, 951–962. [Google Scholar] [CrossRef] [PubMed]
- Szymańska, E.; Drabczyńska, A.; Karcz, T.; Müller, C.E.; Köse, M.; Karolak-Wojciechowska, J.; Fruziński, A.; Schabikowski, J.; Doroz-Płonka, A.; Handzlik, J.; et al. Similarities and Differences in Affinity and Binding Modes of Tricyclic Pyrimido- and Pyrazinoxanthines at Human and Rat Adenosine Receptors. Bioorg. Med. Chem. 2016, 24, 4347–4362. [Google Scholar] [CrossRef] [PubMed]
- Ali, W.; Garbo, S.; Kincses, A.; Nové, M.; Spengler, G.; Di Bello, E.; Honkisz-Orzechowska, E.; Karcz, T.; Szymańska, E.; Żesławska, E.; et al. Seleno-vs. thioether triazine derivatives in search for new anticancer agents overcoming multidrug resistance in lymphoma. Eur. J. Med. Chem. 2022, 243, 114761. [Google Scholar] [CrossRef] [PubMed]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2016, 72 Pt 2, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Murawski, A.; Patel, K.; Crespi, C.L.; Balimane, P.V. A novel design of artificial membrane for improving the PAMPA model. Pharm. Res. 2008, 25, 1511–1520. [Google Scholar] [CrossRef]
- Burla, M.C.; Caliandro, R.; Carrozzini, B.; Cascarano, G.L.; Cuocci, C.; Giacovazzo, C.; Mallamo, M.; Mazzone, A.; Polidori, G. Crystal structure determination and refinement via SIR2014. J. Appl. Crystallogr. 2015, 48, 306–309. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Cryst. 2020, 53, 226–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogendorf, A.; Hogendorf, A.S.; Kurczab, R.; Satała, G.; Szewczyk, B.; Cieślik, P.; Latacz, G.; Handzlik, J.; Lenda, T.; Kaczorowska, K.; et al. N-Skatyltryptamines-Dual 5-HT6R/D2R Ligands with Antipsychotic and Procognitive Potential. Molecules 2021, 26, 4605. [Google Scholar] [CrossRef]
- Kucwaj-Brysz, K.; Ali, W.; Kurczab, R.; Sudoł-Tałaj, S.; Wilczyńska-Zawal, N.; Jastrzębska-Więsek, M.; Satała, G.; Mordyl, B.; Żesławska, E.; Olejarz-Maciej, A.; et al. An exit beyond the pharmacophore model for 5-HT6R agents—A new strategy to gain dual 5-HT6/5-HT2A action for triazine derivatives with procognitive potential. Bioorg. Chem. 2022, 121, 105695. [Google Scholar] [CrossRef] [PubMed]
Ki [nM] | ||||||
Compound | R | n | 5-HT6R | 5-HT2AR | 5-HT7R | D2R |
MST4 | 1 | 11 a | 430 a | 11,950 a | 1094 a | |
1 a | 1 | 207 a | 2274 a | 10,660 a | 740 a | |
2 | 1 | 21 | 1267 | 16,260 | nt b | |
3 | 1 | 13 | 2183 | 6336 | 1616 | |
4 | 1 | 41 | 2613 | 5726 | 1790 | |
5 | 1 | 108 | 3112 | 15,460 | nt b | |
6 | 1 | 416 | 248 | 10,130 | nt b | |
7 | 1 | 150 | 549 | 4138 | 3134 | |
Reference ligands | Olanzapine 7 a | Aripiprazole 21 c | Clozapine 62 a | Olanzapine 9 a |
Ki [nM] | ||||||
Compound | R | n | 5-HT6R | 5-HT2AR | 5-HT7R | D2R |
MST4 | 1 | 11 a | 430 a | 11,950 a | 1094 a | |
8 | 1 | 6 | 1245 | 15,090 | 1570 | |
9 | 1 | 48 | 1933 | 10,920 | 2295 | |
10 | 1 | 236 | nt b | 16,570 | nt b | |
11 | 1 | 825 | 7799 | 33,580 | nt b | |
12 | 1 | 379 | nt b | 8085 | nt b | |
13 | 1 | 162 | 760 | 8475 | 2743 |
Ki [nM] | ||||||
Compound | R | n | 5-HT6R | 5-HT2AR | 5-HT7R | D2R |
MST4 | 1 | 11 a | 430 a | 11,950 a | 1094 a | |
14 | 3 | 412 | 1695 | 6660 | 1592 | |
15 | 3 | 221 | 489 | 8870 | 2429 | |
16 | 3 | 1107 | 1169 | 5125 | 704 | |
17 | 3 | 1455 | 3846 | 30,250 | 2600 | |
18 | 3 | 574 | 1445 | 14,880 | 1760 | |
19 | 4 | 142 | 687 | 638 | 3198 | |
20 | 4 | 43 | 677 | 665 | 5689 | |
21 | 4 | 559 | 952 | 6254 | 612 | |
22 | 5 | 282 | 709 | 771 | 837 | |
23 | 5 | 189 | 597 | 3431 | 196 | |
24 | 5 | 644 | 854 | 1886 | 481 | |
25 | 6 | 78 | 364 | 1031 | 149 |
Study a | Study b b | |||
---|---|---|---|---|
3 | CFN a | MST4 | CFN a | |
Pe (×10−6 cm/s) ± SD | 4.7 ± 0.2 | 9.8 ± 1.8 | 12.3 ± 2.0 | 15.1 ± 0.4 |
Ki [nM] a | ||
---|---|---|
5-HT6R | 5-HT7R | |
3 | 13 | 6336 |
3-HCl | 35 | 15,500 |
3-SA | 135 | 3674 |
Compound | Solubility in Water [mg/mL] | Solubility in Water [µmol/L] |
---|---|---|
3 | 0.0160 | 45 |
3-HCl | 6.8017 | 17,310 |
3-SA | 0.3529 | 618 |
Compound 3 Molecule A | Compound 3 Molecule B | Compound 3-SA | |
---|---|---|---|
C2-N6 | 1.345 (3) | 1.347 (3) | 1.329 (2) |
C4-N2 | 1.355 (3) | 1.355 (3) | 1.364 (1) |
C6-C12-O1-C13 | 168.4 (2) | −174.5 (2) | −172.2 (2) |
C12-O1-C13-C18 | 30.4 (3) | −19.2 (3) | −6.0 (2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łażewska, D.; Więcek, M.; Satała, G.; Chałupnik, P.; Żesławska, E.; Honkisz-Orzechowska, E.; Tarasek, M.; Latacz, G.; Nitek, W.; Szymańska, E.; et al. New Triazine Derivatives as Serotonin 5-HT6 Receptor Ligands. Molecules 2023, 28, 1108. https://doi.org/10.3390/molecules28031108
Łażewska D, Więcek M, Satała G, Chałupnik P, Żesławska E, Honkisz-Orzechowska E, Tarasek M, Latacz G, Nitek W, Szymańska E, et al. New Triazine Derivatives as Serotonin 5-HT6 Receptor Ligands. Molecules. 2023; 28(3):1108. https://doi.org/10.3390/molecules28031108
Chicago/Turabian StyleŁażewska, Dorota, Małgorzata Więcek, Grzegorz Satała, Paulina Chałupnik, Ewa Żesławska, Ewelina Honkisz-Orzechowska, Monika Tarasek, Gniewomir Latacz, Wojciech Nitek, Ewa Szymańska, and et al. 2023. "New Triazine Derivatives as Serotonin 5-HT6 Receptor Ligands" Molecules 28, no. 3: 1108. https://doi.org/10.3390/molecules28031108
APA StyleŁażewska, D., Więcek, M., Satała, G., Chałupnik, P., Żesławska, E., Honkisz-Orzechowska, E., Tarasek, M., Latacz, G., Nitek, W., Szymańska, E., & Handzlik, J. (2023). New Triazine Derivatives as Serotonin 5-HT6 Receptor Ligands. Molecules, 28(3), 1108. https://doi.org/10.3390/molecules28031108