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Abstract: The efficiency of an advanced oxidation process (AOP) using direct and indirect ozonation
for the removal of pharmaceutical residues from deliberately spiked deionized water was examined.
Both direct and indirect ozonation demonstrated 34% to 100% removal of the parent compounds.
However, based on the products’ chemical structure and toxicity, we suggest that despite using
accepted and affordable ozone and radical concentrations, the six parent compounds were not
fully degraded, but merely transformed into 25 new intermediate products. The transformation
products (TPs) differed slightly in structure but were mostly similar to their parent compounds in
their persistence, stability and toxicity; a few of the TPs were found to be even more toxic than
their parent compounds. Therefore, an additional treatment is required to improve and upgrade the
traditional AOP toward degradation and removal of both parent compounds and their TPs for safer
release into the environment.
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1. Introduction

Domestic wastewater treatment based on conventional activated sludge does not
remove persistent micropollutants, such as pharmaceutical compounds (PCs) [1–3] an
additional treatment is required. One such thoroughly studied treatment is the advanced
oxidation process (AOP)-based ozonation [4,5]. PC degradation by ozonation processes
has been reported to be extremely efficient. Hansen et al. (2016) [6] reported ozonation
removal of 90% for 33 chosen PCs. Lin et al. (2016) [7] investigated the occurrence and
removal of 39 pharmaceutical and personal care products (PPCPs) by ozonation; whereas
14 of them were completely removed, one of the studied PCs, sulfamethoxazole (SMX),
presented 92% degradation. Paucar et al. (2019) [8] also suggested that ozonation can
remove a wide range of PPCPs from secondary effluent. Moreover, the infusion of hydrogen
peroxide (H2O2) into ozonation increased the percent removal of organic and inorganic
substances [9]. Von Gunten (2003) [10] demonstrated 50% removal of para-chlorobenzoic
acid in groundwater with the addition of H2O2, as opposed to 20% removal with only
ozonation. However, the term “removal” usually refers to degradation of the parent
compound without thoroughly addressing the obtained products. Are the latter more
biodegradable? Are they less toxic? Are they indeed chemically different from their parent
compounds? Are they less persistent? Many studies focusing on one or several compounds
have indicated the formation of “degradation products” that are correlated and related
only to “parent compound removal” during ozonation. The main purpose of this study
was to evaluate the degradation of six representative parent compounds, determine the
transformation products (TPs) generated by ozonation and answer the important question
of whether degradation has really occurred.
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2. Results and Discussion
2.1. Ozone and Ozone/H2O2

The efficiency of indirect versus direct ozonation was evaluated for degradation of the
six selected PCs. In addition, the kinetics of indirect ozonation was tested with changing
concentrations of H2O2 ranging from 0.05 mg/L to 0.15 mg/L, to determine the dosage
of H2O2 providing the best removal percentages (Figure 1). SMX, BZF and VAL were
highly susceptible to ozonation with almost no change between the direct and indirect
procedures. For IHX, CYP and LMG, better removal percentages were obtained with
the indirect procedure, and best removal efficiency was achieved with a concentration of
0.1 mg/L of H2O2. Although the removal appeared to be between 35% and 100% for all of
the PCs, the results indicated that neither direct nor indirect ozonation processes actually
degraded or removed the parent molecules, as no mineralization was observed by the TOC
measurements; however, ozonation did transform those compounds to create TPs. Von
Gunten’s (2018) [11] claim that three aspects of TPs should be considered when applying
AOP: (i) oxidation treatment leads to a loss of the parent compound’s primary biological
activity; (ii) the TPs of the biologically active molecules could potentially be more toxic than
the parent compound; (iii) toxic compounds can form from compounds with low biological
activity. Therefore, instead of using the term “degradation” as in most studies, the term
“transformation” is adopted herein. Transformation means that the parent molecules are
not broken down into more biodegradable products, but generally form similar molecules,
which differ slightly in structure, but have similar persistence, stability and toxicity.

Figure 1. Removal percentages of the six pharmaceutical compounds (PCs) by direct ozonation and
indirect ozonation with varying amounts of H2O2 after 20 min. PCs: iohexol (IHX), bezafibrate (BZF),
lamotrigine (LMG), valsartan (VAL), cyclophosphamide (CYP) and sulfamethoxazole (SMX).

2.2. TPs of the PCs

Oxidizing the PCs with ozone created TPs, without any degradation or mineralization.
It is important to emphasize that the mass balances of all the tested PCs and their TPs were
not balanced, similar to other studies [12–15], thus we cannot rule out the possibility that
other compounds were created through different pathways but were not detected by the
LC or gas chromatography techniques.

IHX (parent compound) concentration decreased by 40% after 20 min of direct oxi-
dation (Figure 1) and five major TPs were obtained (Figure 2); all the TPs retained their
aromatic ring, amide groups and the parent molecule’s general structure. TOC results
for IHX (Table 1) demonstrated that neither mineralization nor degradation had occurred,
supporting the premise of TP formation. Moreover, UV absorbance at 254 nm (A254)
measured before and after direct ozonation showed a 75% rise in the absorbance reading,
indicating an increase in molecular chromophore groups. IHX has been found to be the
iodine source for the formation of chloraminated iodo-trihalomethane and iodo-acid dis-
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infection by-products (DBPs) in chlorinated drinking water. Both by-products are highly
genotoxic and cytotoxic in mammalian cells [16]. Furthermore, ozonation of IHX in the
presence of bromide enhances DBP formation [17]. Ecosar acute toxicity results showed
increased toxicity of the TPs to fish and Daphnia compared to the parent compound, ex-
cept ID851, which showed decreased toxicity (Table S1 in Supplementary Materials). In
addition, ChV values for fish increased dramatically for the TPs ID621 and ID673, 2.5- and
18-fold, respectively, compared to that of the parent compound. The results in Figure 2 and
Table 2 provide more strong and solid evidence of molecule transformation, rather than
degradation All three iodines remained in four of the TPs, whereas ID621 retained only two
iodines; all TPs therefore remained as sources of iodine, meaning that they could continue
to be potentially genotoxic and cytotoxic through their persistence in the water cycle.

Figure 2. Iohexol and its major transformation products.

Table 1. Pharmaceutical compounds TOC and absorbance at 254 nm.

IHX CYP BZF LMG VAL SMX

TOC [ppm] Ozonation at t = 0 min 5.31 4.51 4.43 4.66 6.11 5.40

TOC [ppm] Ozonation at t = 60 min 5.26 4.59 3.16 4.65 5.93 4.66

Abs [mAU] at 254 nm for O3 t = 0 min 34 1 10 21 33 50

Abs [mAU] at 254 nm for O3 t = 20 min 60 29 33 41 37 36
IHX, iohexol; BZF, bezafibrate; LMG, lamotrigine; VAL, valsartan; CYP, cyclophosphamide; SMX, sulfamethoxazole.

Table 2. Iohexol transformation products’ identification information.

No Rt [min]
[M+H]+ [Da]

Formula Ref. Suggested OccurrenceObtained
Mass

Calculated
Mass

Deviation
(ppm)

Iohexol (IHX) 4.91, 6.01 821.8934 821.8876 −7.1 C19H26I3N3O9 [18–20]

ID851 4.26, 4.8 851.8254 851.8253 0.0 C18H20I3N3O12
Oxidation of three OH groups to

obtain three carboxylic acid

ID621 4.45 621.9617 621.9541 −12.1 C16H21I2N3O7 [18]
Elimination of

dihydroxypropyl group
Elimination of iodine atom

ID819 5.92, 6.34 819.8809 819.8719 −11.0 C19H24I3N3O9 [18] Oxidation of OH group
to aldehyde

ID747 6.35 747.8533 747.8508 −3.3 C16H20I3N3O7 [18] Elimination of
dihydroxypropyl group

ID673 7.32 673.8154 673.8140 −2.1 C13H14I3N3O5 [18] Elimination of two
dihydroxypropyl groups
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BZF concentration decreased by 98% after 20 min of direct oxidation (Figure 1), due to
its high reaction rate (KO3 = 590 M−1 s−1) [21], giving five major TPs (Figure 3 and Table 3);
four retained their two aromatic rings and carbonyl groups, while in TP ID368, one aromatic
ring was opened by further oxidation. TOC results for BZF before and after (Table 1) showed
a decrease of 27%. Although some mineralization occurred, the parent compound had
almost completely disappeared; thus, most of the drug did not undergo full mineralization,
indicating that non-biodegradable TPs, which still retain most of their parent molecule’s
structure, were formed by ozonation. In addition, A254 values tripled after ozonation. BZF
is frequently found in wastewater, surface water, groundwater and even drinking water, in
some cases reaching concentrations of several micrograms per liter [22,23]; at 57 ng/L, BZF
has been reported to damage human sperm DNA [24]. Moreover, the TP ID292 has been
reported to be 2–6 times more toxic to algae, Daphnia (acute and chronic toxicity) and fish
(chronic toxicity) than the parent compound [25], meaning that the occurrence of TPs does
not represent degradation of the parent compound, but a similar compound that could be
even more toxic and chemically stable. Ecosar acute toxicity results also showed a 3- to
8-fold increase in toxicity levels (for fish and Daphnia) compared to the parent compound
for all of the TPs except ID368, which showed decreased toxicity (Table S2). ChV values
in fish increased dramatically for all the TPs, ranging from 3 to 19 times higher than the
parent compound toxicity levels.

Figure 3. Bezafibrate and its major transformation products.

Table 3. Bezafibrate transformation products’ identification information.

No Rt [min]
[M+H]+ [Da]

Formula Ref. Suggested OccurrenceObtained
Mass

Calculated
Mass

Deviation
(ppm)

Bezafibrate
(BZF) 15.37 362.1151 362.1154 0.7 C19H20ClNO4 [26–28]

ID292 12.89 292.0708 292.0735 9.2 C15H14ClNO3 [25,29,30]
Elimination of 2-methylpropanoic
acid group and hydroxylation of

aliphatic group

ID368 14.49 368.0883 368.0895 3.4 C17H18ClNO6 [31]

Two steps:
1. Two hydroxylation of aromatic

ring (ortho position)
2. Obtains two carbonyl groups af-

ter bond cleavage

ID290 14.82 290.0579 290.0578 −0.2 C15H12ClNO3 [25]
Elimination of H2O from ID292 to

obtain double bond
Hydroxylation of aromatic ring

ID394 14.91 394.1005 394.1052 11.9 C19H20ClNO6 [25,29,30] Hydroxylation of chloroaromatic ring

ID318 15.59 318.0895 318.0891 −1.3 C17H16ClNO3
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CYP concentration decreased by 36% after 20 min of direct ozonation (Figure 1), and
four major TPs were obtained (Figure 4 and Table 4); three presented minor changes
compared to the parent compound, whereas TP ID199 showed more considerable changes.
TOC results (Table 1) for CYP before and after ozonation showed that neither mineralization
degradation had occurred, even though the parent compound decreased by 36%; thus, most
of the drug did not undergo mineralization, as supported by the A254 values. CYP has
very weak chromophores absorbing at 254 nm; therefore, UV absorbance for the drug itself
is very low, but after direct oxidation, an increase in chromophores is observed. Results
showed an increase from 1 mAU to 29 mAU before and after direct oxidation, respectively.
CYP is an anticancer drug known for being mutagenic, genotoxic and teratogenic [32,33].
Its TPs ID275 and ID277 have been reported as mutagenic, and as harmful to aquatic
organisms [34]. Furthermore, TP ID259 was reported to be more toxic than its parent
compound. Ecosar acute toxicity results also showed that CYP and all of its TPs are very
toxic to Daphnia as well as harmful to fish. ChV results for fish showed that CYP and all of
its TPs are very toxic, confirming the environmental and health hazards posed by both the
parent compound and its TPs (Table S3).

Figure 4. Cyclophosphamide and its major transformation products.

Table 4. Cyclophosphamide transformation products’ identification information.

No Rt [min]
[M+H]+ [Da]

Formula Ref. Suggested OccurrenceObtained
Mass

Calculated
Mass

Deviation
(ppm)

Cyclophosphamide
(CYP) 12.15 12.61 261.0330 261.0321 −3.4 C7H15Cl2N2O2P [34,35]

ID199 7.27 199.0386 199.0398 5.9 C5H12ClN2O2P [34,35] Elimination of
chloroethyl group

ID275 10.53 275.0096 275.0114 6.4 C7H13Cl2N2O3P [34,35]

Oxidation of the
oxazaphosphinan group
(possibly obtained from

product ID277)

ID277 10.53 277.0212 277.0270 21.0 C7H15Cl2N2O3P [34,36] Hydroxylation of the
oxazaphosphinan group

ID259 11.72 259.0150 259.0164 5.6 C7H13Cl2N2O2P [35] Elimination of H2O from
product ID277

LMG concentration decreased by 48% after 20 min of direct oxidation (Figure 1).
Four TPs were identified (Figure 5 and Table 5); three retained their two aromatic rings,
while the TP ID306 had an open benzene ring. TOC results for LMG before and after
ozonation (Table 1) showed that neither mineralization nor degradation had occurred, even
though the parent compound decreased by 48%; thus, most of the drug did not undergo
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mineralization. In addition, A254 doubled after ozonation. According to previous studies
and Ecosar, LMG is neither toxic nor harmful [37] Nevertheless, all of its major TPs were
toxic or harmful to fish and Daphnia, while their ChV values for fish were classified as
very toxic, with 7 to 33 times higher toxicity levels compared to the parent compound
(Table S4). LMG is resistant to advanced treatments such as ozonation and photolysis; it is
also very stable in the environment and not susceptible to conventional water treatment
processes, and is therefore persistent in the water cycle [38]. Although LMG by itself is not
harmful, in the presence of carbamazepine, it is taken up by plants at a higher rate; it was
also suggested that exposure to a mixture of PCs, even at low concentrations, could induce
its transformation due to enzymatic activation [39].

Figure 5. Lamotrigine and its major transformation products.

Table 5. Lamotrigine transformation products’ identification information.

No Rt [min]
[M+H]+ [Da]

Formula Ref. Suggested OccurrenceObtained
mass

Calculated
mass

Deviation
(ppm)

Lamotrigine
(LMG) 10.12 256.0144 256.0151 2.9 C9H7Cl2N5 [38]

ID270 3.12,
3.86 270.0369 270.0388 7.2 C9H8ClN5O3

Oxidation of amine group to
nitro group

ID306
3.58,
3.77,
4.13,
4.32

306.0133 306.0155 7.3 C9H9Cl2N5O3

Two steps:
1. Two hydroxylation of aro-

matic ring (ortho position)
2. Obtains two carbonyl groups

(one aldehyde and one car-
boxylic acid) after bond cleavage

ID238 5.09,
7.12 238.0487 238.0490 1.3 C9H8ClN5O [38]

Exchange of chlorine atom with
hydroxyl group—two possible

substitution options

ID272 8.92,
9.85 272.0112 272.0100 −4.3 C9H7Cl2N5O [38] Hydroxylation of aromatic ring

VAL concentration decreased by 92% after 20 min of direct ozonation (Figure 1) due to
its relatively high reaction rate (KO3 = 38 M−1 s−1, (Y. Lee et al., 2014)). Four major TPs were
identified (Figure 6 and Table 6), all of which retained their aromatic rings and carbonyl
groups. TOC results (Table 1) for VAL before and after ozonation showed a small decrease
of 3%, indicating that neither mineralization nor degradation had occurred, even though
levels of the parent compound decreased by almost 92%. In addition, A254 increased
by 13% after direct oxidation. These results suggest a decrease in TP biodegradability
and indicate that the TPs are more persistent than their parent molecule. The TPs ID366
and ID450 demonstrated decreased levels of toxicity compared to the parent compound,
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both in previous studies [40] and by Ecosar; the latter showed that TPs ID336 and ID452
are more toxic than the parent compound. Both were found harmful to fish and Daphnia
and to be very toxic to fish with long exposure (Table S5). The influence of combinations
of the other compounds and their TPs with VAL and its TPs is unknown and requires
further research [40].

Figure 6. Valsartan and its major transformation products.

Table 6. Valsartan transformation products’ identification information.

No Rt [min]
[M+H]+ [Da]

Formula Ref. Suggested OccurrenceObtained
Mass

Calculated
Mass

Deviation
(ppm)

Valsartan
(Val) 15.93 436.2324 436.2343 4.4 C24H29N5O3 [40]

ID366 13.81 366.15647 366.1561 −1.1 C19H19N5O3 [40] Oxidation of methylene group and
elimination of the pentanoyl group

ID452 14.54 452.2324 452.2292 −7.0 C24H29N5O4 [40] Hydroxylation of aromatic ring (more
than one option of each aromatic ring)

ID450 14.91 450.2141 450.2139 −1.2 C24H27N5O4 [40] Oxidation of methyl group to
aldehyde group

SMX has a very high reaction rate (KO3 = 4.7 × 104/5.7 × 105 [41,42] and its concen-
tration decreased by 100% under 3 min of ozonation (Figure 1). Three major TPs were
obtained (Figure 7 and Table 7); TP ID99 lost a substantial part of the parent compound
and was actually degraded to a non-biodegradable degradation product, while the other
two TPs had only minor structural changes. TPs formed and then decreased to unde-
tectable levels after 20 min of oxidation. TOC results (Table 1) for SMX before and after
ozonation showed a decrease of 14%. Although some mineralization occurred, the par-
ent compound completely disappeared, and therefore most of the drug did not undergo
mineralization, indicating that the non-biodegradable TPs, which still contained most of
the parent molecule’s structure, were formed by ozonation. Moreover, SMX was the only
drug that showed a decrease in A254 after ozonation, by 28%. Thus, SMX demonstrated a
decrease in chromophores, which is in agreement with its transformation product (ID99).
Despite these results, the chemical structure of the SMX TPs still included aromatic rings
and a sulfamide group, indicating their non-biodegradability and chemical stability. SMX is
an antibiotic that has been reported to induce both cytotoxic and chromosomal damage in
cultured human lymphocytes [36]. Both SMX and its TPs have been reported to be toxic to
Daphnia magna (acute) and Pseudokirchneriella subcapitata (chronic), with the TPs after ozone
treatment showing greater toxicity [43]. The Ecosar results supported this and indicated
that TP ID270 is 7 times more toxic than the parent compound (acute) and 18 times more
toxic to fish (chronic) (Table S6).
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Figure 7. Sulfamethoxazole and its major transformation products.

Table 7. Sulfamethoxazole transformation products’ identification information.

No Rt [min]
[M+H]+ [Da]

Formula Ref. Suggested OccurrenceObtained
Mass

Calculated
Mass

Deviation
(ppm)

Sulfamethoxazole
(SMX) 11.41 254.0586 254.0594 3.1 C10H11N3O3S [4,44]

ID284 8.83, 9.98 284.0327 284.0336 3.1 C10H9N3O5S [44,45] Oxidation of amine group to
nitro group

ID270 8.78, 10.86 270.0549 270.0543 −2.2 C10H11N3O4S [44,45] Hydroxylation of
aromatic ring

ID99 4.26 99.0545 99.0553 8.0 C4H7N2O [44,45] Cleavage of N-S bond of the
sulfonamide group

TPs of five of the six studied PCs demonstrated an increase in chromophores and
therefore an increase in double-bond conjugation (based on A254). This implies that the
formed molecules are more stable, and therefore more persistent than their parent molecule,
suggesting a decrease in TP biodegradability.

2.3. Summary

The efficiency of AOP-based ozone for the degradation of six selected PCs was evalu-
ated with and without H2O2. The ozone and radical concentrations used in the study were
well accepted (~1 mg ozone/1 mg DOC (dissolved organic carbon)) and affordable.

The obtained LC-MS results indeed showed a decrease in the parent compound, but
also the formation of molecules that were chemically similar to the parent compounds, i.e.,
TPs. The results were supported by LC-MS, TOC, A254 and Ecosar toxicity analysis. From
the 6 studied PCs, 25 major TPs were identified and quantified; similarly, Gulde et al.
(2021) [46] found 153 new signals, which they identified and associated to 84 TPs and 40
micropollutants after ozonation treatment. From a mass balance perspective, only one-sixth
of the mass of the original six PCs was accounted for by the obtained TPs, while the rest
remained unaccounted for. The formation of 25 new molecules from 6 molecules should
raise a big question regarding the AOP treatment, especially because the TOC results
showed only minor mineralization through a decrease in organic carbon for some of the
PCs (SMX, BZF, VAL), and no mineralization at all for the others (CYP, IHX, LMG). The UV
absorbance of five out of the six PCs demonstrated an increase in aromaticity. Furthermore,
for each of the studied PCs, a few or all of their major TPs had higher toxicity levels
than their respective parent compounds, posing a greater risk to the environment and to
the health of many organisms. Further research is needed to assess the affiliation of the
studied PCs’ toxicity to indirect processes, such as enzymatic activation, as suggested for
LMG [39]. According to these results, AOP treatment-based ozonation (direct and indirect)
should be reassessed, especially where biological treatment combined with activated carbon
treatment after ozonation are not sufficient [46,47]. The same applies to the use of a catalyst
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as a major or only treatment for eliminating pharmaceutical residues from the aquatic
environment [9]. The implementation of traditional AOP treatment mostly produces TPs
that are characterized as persistent and toxic, calling for the upgrading and improvement
of these treatments.

3. Materials and Methods
3.1. Standards and Reagents

Iohexol (IHX), bezafibrate (BZF), lamotrigine (LMG), valsartan (VAL), cyclophos-
phamide (CYP) and sulfamethoxazole (SMX) were obtained from Merck-Sigma (Israel).
The solvents were LC-grade. Methanol and formic acid were purchased from Bio-Lab
(Israel). Individual stock solutions of each compound at a concentration of 100 mg/L were
prepared by dissolving the compound in deionized (DI) water. The six PCs were selected
based on their presence in Tel Hashomer hospital wastewater and their ubiquity in treated
wastewater in Israel, which represent different chemical classes, considered as toxic to
various organisms, and have different oxidation reaction rates with ozone and OH, as
specified in Table 8.

Table 8. Properties of the pharmaceutical compounds used in this study.

Name Class pKa * Rate Constants
Ref.kO3 [M−1 s−1] k·OH [109 M−1 s−1]

Iohexol (IHX) Contrast media 11.3 1.4 3.3 [21,48]

Bezafibrate (BZF) Lipid regulator 3.3 (acid) 590 7.4 [21]

Lamotrigine (LMG) Anticonvulsant 5.4 (base) 4 2.1 [38]

Valsartan (VAL) Blood pressure 3.6, 4.2 (acid) 38 10 [49]

Cyclophosphamide (CYP) Anticancer 2.84 2.8 1.3 [50]

Sulfamethoxazole (SMX) Antibiotic 5.8 (acid) 4.7 × 104

5.7 × 105 5.5, 8.5 [21,41,42]

* Obtained from ACDLABS, ACD/Percepta 2016.

3.2. Laboratory Scale Ozone Experiments

Laboratory scale ozone experiments were conducted using a 500 mL batch scale
cylindrical glass reactor, containing 200 mL at 1 mg/L of each drug, separately, mixed
with DI water at a starting pH of 7.0. A laboratory ozone generator (OEM Collecting
Industrial, Shenzhen Guangdong, China) was used; the oxygen source was atmospheric
air, introduced through the air inlet. A diffuser connected to the ozone generator via PVC
tubing bubbled ozone with an output of 200 mg/h at a flow rate of 2.5 L/min for 20 min.
The residual ozone concentration was evaluated using the indigo colorimetric method
at 5.6 mg/L [51].

3.3. Analytical Measurements

Total organic carbon (TOC) method was used to measure and evaluate levels of
mineralization. TOC was measured in an Aurora TOC Analyzer (O.I. Analytical, Texas,
USA). The instrument measures TOC by acidifying and oxidizing the organic molecule’s
carbon in the sample solution into CO2 and calculating its concentration using a calibrated
infrared reading detector.

Chromatographic analysis was performed by high-pressure liquid chromatography
(HPLC; Agilent 1100 series, CA, USA) equipped with a Synergi polar RP 2.1 × 250 mm,
4 µm analytical column (Phenomenex, CA, USA) at 50 ◦C. The flow rate was 0.45 mL/min
with injection volume of 100 µL. The mobile phase contained 0.1% formic acid (Merck,
MO, USA) in water (solution A) and 0.1% formic acid in methanol (solution B). A gradient
program was implemented, starting from 0–1 min (hold at 5% solution B), 1–14 min
(to 90% solution B), 14–18 min (hold at 90% solution B), 18–21 min (change back to 5%
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solution B) and 21–28 min (hold at 5% solution B for column equilibration). Detection
and quantification were carried out using high-resolution mass spectrometry (HRMS)
(Q-TOF Premier, Waters, MA, USA) via an electrospray ionization interface in positive
mode. Data were assessed using Waters chromatography Mass Lynx software (v4.1). The
selected PCs were identified according to their retention time and molecular ion exact mass
[MH]+ (Table 9).

Table 9. LC-MS chromatographic characteristics of the selected pharmaceutical compounds.

Compound Iohexol
(IHX)

Bezafibrate
(BZF)

Lamotrigine
(LMG)

Valsartan
(VAL)

Cyclophosphamide
(CYP)

Sulfamethoxazole
(SMX)

RT (min) 4.4, 5.2 15.02 9.7 15.6 12.01 10.87

[MH]+ 821.893 362.115 256.014 436.232 261.033 254.059

3.4. Transformation Products’ Identification

The TP were identified and their molecular structures were confirmed according to
numerous parameters. The molecular weight was determined by obtaining the [M+H]+
mass by the LC/MS technique, some time by the combination of [M+H]+ and [M+Na]+.
The empirical formula was determined by using the high-resolution mass spectrum capacity
of the used Q-TOF LC/MS. In addition, as indicated in Tables 2–7, the identification of the
molecular structures of the TP was based on expected molecular structures, obtained, as a
result of the oxidation process of the parent molecules, accompanied and supported also
by the literature.

3.5. Toxicity Assessment Using the Ecological Structure–Activity Relationships Program (Ecosar 2.0)

Ecotoxicity of the PCs and their TPs was evaluated using Ecosar 2.0. This program uses
a computerized system to predict the acute and chronic toxicity of a pollutant to aquatic
organisms through structure–activity relationships (SARs). Acute toxicity is measured
as LC50, representing the concentration of the toxic substance that causes 50% mortality
in fish and Daphnia after 96 h and 48 h exposure, respectively. Chronic toxicity (ChV)
in fish assesses the effect of long-term exposure to a pollutant on the organisms. The
classifications are very toxic (LC50/EC50/ChV ≤ 1), toxic (LC50/EC50/ChV ≤ 10), harmful
(LC50/EC50/ChV ≤ 100) and not harmful (LC50/EC50/ChV > 100) [52].

4. Conclusions

Traditional direct and indirect AOP is insufficient for persistent compound degradation
and/or mineralization. Results indicated that TPs are obtained, therefore, degradation
or mineralization of the persistent parent compounds is not achieved. The detected TPs
are more toxic, chemically similar (still contain the toxic moiety) and less biodegradable
than parent compounds, meaning that no degradation was obtained. Upgraded and more
efficient AOP technologies are needed for the full degradation/mineralization of persistent
compounds detected in wastewater and effluent.
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