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Abstract: Cancer is a severe threat to human life. Recently, various therapeutic strategies, such as
chemotherapy, photodynamic therapy, and combination therapy have been extensively applied in
cancer treatment. However, the clinical benefits of these therapeutics still need improvement. In recent
years, supramolecular chemistry based on host–guest interactions has attracted increasing attention
in biomedical applications to address these issues. In this review, we present the properties of the
major macrocyclic molecules and the stimulus–response strategies used for the controlled release of
therapeutic agents. Finally, the applications of supramolecular-macrocycle-based nanomaterials in
cancer therapy are reviewed, and the existing challenges and prospects are discussed.
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1. Introduction

Supramolecular chemistry has developed rapidly since Donald J. Cram, Jean-Marie
Lehn, and Charles J. Pedersen won the Nobel Prize in 1987 for their contributions to host–
guest systems. Supramolecular systems are assembled by non-covalent interactions such as
hydrogen bonds, coordination bonds, hydrophobic interactions, electrostatic interactions,
and π-π stacking [1,2]. Compared with covalent interaction, non-covalent interactions
demonstrate several advantages. First, non-covalent interactions offer a facile strategy
for constructing supramolecular materials, effectively avoiding complicated synthesis
and purification processes [3]. Such supramolecular-based strategies are generally envi-
ronmentally friendly and cost/time-saving, since supramolecular materials are readily
prepared by simply mixing functional units in solution under ambient conditions [4]. In
addition, this non-covalent interaction endows supramolecular materials with dynamic
and reversible properties, especially the ability to respond to external stimuli, which pro-
vides great potential for the design and construction of stimulus–response materials based
on supramolecular chemistry [5]. Most importantly, supramolecular chemistry allows
for the manipulation of functional units at the molecular level, enabling a “bottom-up”
strategy to control the size and morphology of supramolecular materials. In particular, the
construction of supramolecular materials with uniform sizes in the nanometer range has
attracted increasing attention in biomedical applications.

Among various non-covalent interactions, host–guest interactions have received in-
creasing attention in biomedical applications by integrating macrocyclic molecules into
supramolecular materials. During the past few decades, a series of macrocyclic hosts,
including crown ethers, cyclodextrins, calix(n)arenes, cucurbit(n)urils, and pillar(n)arenes,
have been developed [6–9]. Typically, these macrocyclic hosts possess a hydrophobic cav-
ity and a hydrophilic outer shell, allowing the accommodation of guest molecules into
their cavities. This unique host–guest interaction provides molecular-level encapsulation
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for drug molecules, thereby effectively protecting drug molecules from degradation or
inactivation. In addition, most host–guest interactions have a host–guest stoichiometry
of 1:1 at thermodynamic equilibrium and are determined by the characteristic constant of
association (Ka) [10]. As a result, the drug loading content can be directly predicted at a
given concentration and association constant.

Taking advantage of host–guest interactions, several limitations that hinder the clinical
application of anticancer drugs can be effectively addressed. For example, the solubility and
stability of anticancer drugs can be effectively improved by forming host–guest complexes
with macrocyclic hosts [11,12]. In addition, a high accumulation of therapeutic agents
can be guaranteed by forming supramolecular self-assembly, resulting in significantly
enhanced therapeutic efficacy and reduced toxic effects [13]. Furthermore, the upper and
lower rim of the macrocyclic hosts are easily modified to incorporate functional groups—for
example, imaging agents, targeting ligands, and even therapeutic agents—thus endowing
these macrocyclic hosts with therapeutic properties [14,15]. More importantly, the dynamic
binding nature of host–guest interaction allows the macrocyclic host to precisely control the
release of loaded cargo in response to abnormal biomarkers in tumor tissues—for example,
acidic pH, GSH, ATP, and hypoxic. The dynamic nature of host–guest interactions makes
macrocyclic host-based anticancer strategies more versatile than traditional nanomedicines
that lack stimulus responsiveness.

This review introduces the properties of four major macrocyclic hosts, including
cyclodextrins, calixarenes, pillararene, and cucurbiturils (Figure 1). Next, strategies for
the controlled release of therapeutic agents based on stimulus–response strategies (hy-
poxic, acidic, GSH, and ATP) are demonstrated. Finally, we summarize the recent ad-
vances in supramolecular-macrocycle-based nanomaterials for cancer treatment, including
supramolecular-macrocycle-based chemotherapy, supramolecular-macrocycle-based pho-
todynamic therapy, and supramolecular-macrocycle-based combination therapy [16,17].
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2. Macrocyclic Host Molecules

Poor solubility and stability are two major factors restricting the general applications
of 40–70% of newly developed anticancer drugs/probes in clinical cancer treatment. En-
capsulating therapeutic agents into macrocyclic hosts offers a feasible strategy to address
these issues. This section discusses four major types of macrocyclic hosts for fabricating
supramolecular therapeutic agents, including cyclodextrins, calixarenes, and cucurbiturils.
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2.1. Cyclodextrin

Cyclodextrins (CDs) have received increasing attention among the many macrocyclic
host molecules, especially for their biological applications. CDs refer to a class of water-
soluble macrocyclic oligosaccharides linked by multiple α-1,4 glycosidic bonds [18]. Since
the French scientist Villiers accidentally discovered CDs in natural products in 1891, it has
undergone hundreds of years of development [19]. Moreover, the easy accessibility of CDs
from starch precursors such as corn, rice, and potato also facilitated its development [20].
To date, CDs have been extensively applied in various fields, including pharmaceutics,
catalytic reactions, enzyme technology, and analytical chemistry [21–23]. The commercially
available CDs have three major subtypes, γ, β, and α-CD, consisting of eight, seven, and
six D-glucose units. CDs have a truncated cone-like molecular container structure with
a hydrophilic external surface and a hydrophobic interior cavity. This unique structure
enables CD to form host–guest complexes with various guest molecules, such as drugs,
amino acid residues, and fluorescent probes, in an aqueous solution through van der Waals
interaction, hydrogen binding, and hydrophobic interactions [24,25]. The resulting host–
guest complex effectively improves the safety, stability, and solubility of the loaded drugs,
thereby significantly reducing side effects and enhancing bioavailability [26,27]. In addition,
the saccharide nature of CDs determines their excellent biocompatibility. Benefiting from
these unique properties, more than 54 CD-based nanomedicines and prodrugs have been
developed and applied in clinical and preclinical studies.

2.2. Calix(n)arenes

Calix(n)arenes (CAs), representing the third generation of macrocyclic hosts after
CDs and crown ethers, are typically prepared by bridging multiple phenolic units with
methylene groups at the 2- and 6-positions [28]. The CAs have a corn-like structure, with a
hollow cavity and two rims on the upper and lower sides [29]. Due to the fully synthetic
process, CAs exhibit several advantages over naturally available CDs, including ease of
modification, controllable conformations, and tunable scaffolds (usually composed of 4,
5, 6, or 8 units) [30]. With these characteristics, CAs are considered macrocycle hosts with
unlimited structure and possibilities [31]. As potential therapeutic modifiers and drug
carriers, the water-soluble CAs were synthesized by introducing functional groups such
as sulfonic acid, carboxylic acid, amino, or quaternary ammonium to the upper or lower
rim of CAs [32,33]. Like CDs, CAs can load guest molecules such as drugs and fluorescent
probes through host–guest interactions [34–36]. More importantly, their binding affinities
can be adjusted in response to abnormal biomarkers in tumor tissues, allowing for precise
control of drug release in tumor tissues.

2.3. Cucurbit(n)urils

Compared with CDs and CAs, the cucurbit(n)urils (CBs) have a relatively short history.
As early as 1905, Behrend et al. reported the synthesis of CBs by condensing glycoluril
and formaldehyde. However, it was only in 1981 that the Mock group gave the definite
chemical structure of CBs, and finally, Kim et al. isolated CB members around 2000 [37].
CBs have a highly symmetric pumpkin-like structure with a central hydrophobic cavity
and two hydrophilic carbonyl rims. The CB family possesses a uniform cavity depth of
0.91 nm, and the width depends on the number of glycoluril units [38,39]. Uniquely, the
cavity of CBs is hydrophobic and nonpolar due to the absence of lone pairs of electrons
or chemical bonds within the cavity [40]. Therefore, CBs are ideal macrocyclic hosts
for encapsulating neutral and positively charged guest molecules. For example, CB(6)
can host alkyl ammonium ions, while CB(7) can host adamantanamine. CB(8) is even
capable of hosting two guest molecules (2,6-bis(4,5-diydro-1H-imidazol-2-yl)naphthalene)
by forming 1:2 host–guest complexes [41]. Despite their extremely high binding affinities
toward various guest molecules, the low water solubility of CBs is a significant bottleneck
that limits their general application. To address these issues, functionalized CBs were
developed by using aldehyde or glycoluril derivatives in the condensation process [42,43].
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Although promising, the complicated synthesis and purification procedures still limit
their applications. Therefore, developing straightforward and efficient functionalization
strategies is crucial for CB’s applications.

2.4. Pillar(n)arene

Similar to CBs, pillar(n)arene (PAs) also have a short history. In 2008, Ogoshi syn-
thesized a type of phenol para-bridged “pillar” supramolecular macrocyclic molecule
called pillararenes [44]. Pillararenes have a rigid pillar structure and hydrophobic cav-
ities. The size of the cavities can be regulated by changing the number of repeating
units, which can be named pillar(n)arene (n = 5, 6, 7, 8) [6]. Moreover, water-soluble
pillar(n)arene, such as water-soluble pillar(5)arene (WP5) and water-soluble pillar(6)arene
(WP6), were developed through functional modification [45,46]. Similarly to CDs and CAs,
pillar(n)arenes have excellent host–guest recognition ability to achieve effective loading
of guest molecules [47]. Moreover, due to its electron-rich cavities and polyhydroxy or
alkoxy structures, pillar(n)arene can form supramolecular complexes with pyridine salts,
ferrocene, and quaternary ammonium salts through non-covalent interactions, which broad-
ens the variety of host–guest complexes [48–50]. Benefiting from these unique properties,
pillar(n)arene has attracted increasing attention in biomedical applications.

3. Strategies for Controlled Drug Release

The abnormal proliferation and metabolism of tumor cells lead to overexpressed
physiological indicators in TME. In addition, the dynamic binding nature of host–guest
interaction offers great potential for the macrocyclic host to respond to these indicators
to release loaded cargo in tumor tissues. This section will briefly introduce the recently
developed stimulus–response supramolecular-macrocycle-based nanomaterials for cancer
treatment based on acidity, redox, ATP, and hypoxia conditions.

3.1. pH-Responsive Supramolecular-Macrocycle-Based Nanomaterials

Acidity is a typical hallmark for distinguishing tumors from normal tissues, since most
solid tumors are accompanied by excessive accumulation of acidic metabolic organelles
in the TME [51]. Many pH-responsive macrocyclic hosts have been developed for tumor-
targeted delivery of anticancer drugs, which is mainly achieved by introducing ionizable
functional groups into macrocyclic hosts [52,53]. In acidic TME, the physical properties,
cavity size, and chemical structure of these functionalized macrocyclic hosts are changed
due to the protonation effect, resulting in a significant decrease in binding affinity and the
on-demand release of loaded drugs in the TME. For example, Li et al. presented an N, N-
diisopropylenediamine (DPA)-grafted β-CD (β-CD-DPA) to deliver succinobucol (SCB) for
the effective treatment of breast cancer [54]. SCB was loaded into the hydrophobic domain
of β-CD-DPA. Upon reaching tumor tissue, DPA efficiently protonated and transformed
β-CD-DPA to a hydrophilic state, leading to the release of SCB and tumor suppression in
the 4T1 breast cancer mouse model. Similarly, Li et al. reported a carboxylatopillar(6)arene
(CP6A) for the tumor-targeted delivery of oxaliplatin (OX) [55]. Under acidic conditions,
the binding affinity of CP6A to OX was significantly reduced due to the protonation effect,
thereby achieving the controlled release of OX in tumor tissues. In addition, introducing
pH-responsive motifs in guest molecules is also a promising strategy for constructing
pH-responsive supramolecular-macrocycle-based nanomaterials. For example, Liu et al.
reported a pH-responsive double positive charged guest molecule, ADA2+ [56]. They con-
structed a supramolecular nanoparticle (ADA2+@HACD) by complexing with hyaluronic
acid-modified β-CD (HACD) for efficient plasmid DNA (pDNA) delivery. The strong
positive charge of ADA2+ enabled ADA2+@HACD to condense and encapsulate pDNA ef-
ficiently. Under the acidic conditions, the ester bonds of ADA2+ were degraded to carboxyl
groups, resulting in the controlled release of loaded pDNA in tumor tissues.
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3.2. GSH-Responsive Supramolecular-Macrocycle-Based Nanomaterials

GSH is one of the essential biomarkers in tumor tissues and is closely related to the
occurrence and progression of tumors. In addition, the significantly different levels of GSH
in extracellular space (1–10 µM) and inside cells (2–10 mM) make GSH an ideal and ubiqui-
tous trigger for intracellular drug delivery [57,58]. For example, Wang et al. constructed a
β-D-galactose-modified pillar(5)arene (GlaP5) for tumor-targeted delivery of camptothecin
(CPT) [59]. Firstly, CPT was prepared as a prodrug by introducing trimethylammonium
groups and disulfide bonds. The trimethylammonium groups function as the binding sites
to efficiently deliver CPT prodrugs, and the disulfide bonds function as responsive units
to allow the controlled release of CPT in tumor tissues. With this strategy, they greatly
enhanced the cytotoxicity of CPT against HepG2 liver cancer cells. Xu et al. reported a
GSH-responsive poly-cyclodextrin nanocage (PDOP NCs) to deliver doxorubicin (DOX)
for enhanced cancer immunotherapy [60]. After systemic administration, PDOP NCs
accumulated in tumor tissues via the enhanced permeability and retention (EPR) effect.
Subsequently, DOX was released from PDOP NCs to activate immunogenic cell death (ICD)
of 4T1 cells, thereby enhancing cancer immunotherapy. Aside from disulfide bonds, the fer-
rocenium cation is another commonly used functional group to construct GSH-responsive
drug delivery systems. For example, Pei et al. reported a novel ferrocenium-capped
pillar(5)arene (FCAP) to deliver siRNA and DOX [61]. Driven by iron ions, FCAP self-
assembles into nanoparticles to facilitate the cellular uptake of DOX and siRNA. After
internalization, the ferrocene cation was efficiently reduced to neutral ferrocene by GSH,
leading to the disassembly of the nanoparticles and the release of the loaded cargoes. Simi-
larly, Zhu et al. reported a ferrocenium-integrated supramolecular block polymer (SBC)
and achieved intracellular delivery of pDNA with high transfection efficiency [62].

3.3. ATP-Responsive Supramolecular-Macrocycle-Based Nanomaterials

ATP is an essential compound for life, providing energy for most processes in living
systems, such as chemical synthesis, dissolution of condensates, transmission of nerve im-
pulses, and muscle contraction [63–65]. In particular, ATP is significantly elevated in tumor
tissues due to its rapid proliferation and metabolism [66]. Recently, several ATP-responsive
supramolecular-macrocycle-based nanomaterials have been developed for tumor diagnosis
and targeted delivery. For example, Guo et al. presented a novel amphiphilic guanidinium-
modified calix(5)arene (GC5A-12C) for tumor-targeted delivery of photosensitizers (PS) [67].
GC5A-12C is designed to contain multiple guanidine groups on its upper rim, which allows
GC5A-12C to form a salt bridge with ATP/PS through electrostatic interactions and hydro-
gen bonds. During blood circulation, the strong binding affinity between GC5A-12C and
PS effectively quenches PS fluorescence and avoids payload leakage. Upon reaching the
tumor tissues, the PS is outcompeted by overexpressed ATP, accompanied by restoration of
fluorescence and photoactivity. Similarly, Meng et al. presented a cationic water-soluble
pillar(6)arene (WP6A)-based ATP-responsive supramolecular drug delivery system for
tumor-targeted delivery of DOX [68]. In tumor tissue, a high concentration of ATP acts as
the competitive guest molecule. It bound to WP6A competitively, leading to the disassem-
bly of the supramolecular assembly and the release of DOX. In addition to being used as
a biomarker for designing responsive nanomaterials, capturing ATP offers an alternative
strategy for cancer treatment. For example, Huang et al. reported a trimethylammonium-
modified pillar(6)arene (WP6A), which recognized and exhausted intracellular ATP to
block the energy supply [69]. As a result, WP6A effectively overcame drug resistance and
significantly enhanced the cytotoxicity of DOX on MCF-7/ADR cells.

3.4. Hypoxia-Responsive Supramolecular-Macrocycle-Based Nanomaterials

Hypoxia is another indicator of tumors. Tumor hypoxia is usually caused by abnormal
angiogenesis and rapid proliferation of tumor cells [70]. The lack of oxygen in the tumor
site causes an imbalance in the redox state of the cancer cells [71]. Taking advantage of
this property, Guo et al. introduced azo groups into the upper rim of calixarenes and



Molecules 2023, 28, 1241 6 of 24

designed a series of hypoxia-responsive azocalixarenes [72–74]. For example, they reported
a carboxylated azocalix(4)arene (CAC4A) for hypoxia-targeted drug delivery [75]. CAC4A
exhibited a strong binding affinity to various anticancer drugs during blood circulation,
effectively avoiding payload leakage and side effects. Upon reaching the hypoxic TME, the
azo groups of CAC4A were effectively reduced by bio-reductase, resulting in significantly
decreased binding affinity and the release of drugs in tumor tissues. Additionally, the same
group also developed sulfonated azocalix(5)arene (SAC5A) and achieved tumor-targeted
delivery of paclitaxel (PTX) [76]. By integrating macrocyclic hosts in nanosystems, our
group reported a macrocyclic-amphiphile-based self-assembled nanoparticle (MASN) for
ratiometric delivery of drug combinations to tumor tissues [77]. In hypoxic TME, MASN
was reduced by bio-reductase, leading to the spontaneous release of drug combinations in
tumor tissues. Through precise loading and ratiometric co-delivery of drug combinations,
MASN achieved effective combination chemotherapy and significantly suppressed tumor
growth in a 4T1 breast cancer mouse model. Similarly, we developed a calixarene-integrated
nano-drug delivery system (CanD) and achieved tumor-targeted delivery and tracking of
anticancer drugs in vivo [67].

4. Supramolecular-Macrocycle-Based Nanomaterials for Enhanced Chemotherapy

Chemotherapy refers to the use of cytotoxic drugs to control and kill tumors. Despite
the remarkable success, common issues associated with low bioavailability and high
cytotoxicity of anticancer drugs still limit their general applications in clinical cancer
treatment [78,79]. In addition, increased interstitial fluid pressure (IFP) also limits the
penetration of anticancer drugs into deep tumor tissues, further restricting the therapeutic
efficacy of anticancer drugs [80]. Compared with traditional nanocarriers, supramolecular-
macrocycle-based nanomaterials possess the following advantages: (i) precise loading and
on-demand release of drugs; (ii) easy size manipulation at tumor sites due to the dynamic
nature of host–guest interactions [29,81]. With these properties, supramolecular-macrocycle-
based nanomaterials demonstrate great potential to improve the therapeutic efficacy of
anticancer drugs by enhancing tumor accumulation and promoting tumor penetration. This
chapter mainly discusses the progress of supramolecular-macrocycle-based nanomaterials
in these aspects.

4.1. Enhancing Tumor Accumulation

Compared with conventional anticancer drugs, nanomedicines have relatively con-
trollable biodistribution and can passively accumulate at tumor sites through the EPR
effects [82]. In addition, active tumor targeting is also feasible by introducing specific
targeting ligands. The mutation or overexpression of glycoproteins on the cell surface is a
typical class of tumor markers–for example, carbohydrate antigen (CA125), CAl5-3, and
CA50 [83–85]. Modifying the corresponding glycosylated ligands in drug delivery systems
is an effective strategy for active tumor targeting. For example, Pei et al. constructed a
mannose-modified GSH-responsive supramolecular vesicle (glycol-NV) for tumor-targeted
delivery of DOX (Figure 2, Table 1) [86]. The glycol-NV was formed by self-assembly of
mannose derivatives (Man-NH3+) and diselenium-bridged pillar(5)arene dimers (SeSe-
(P5)2). The decorated mannose effectively guided glycol-NV to tumor cells through the
interactions between mannose and mannose receptors. After cellular internalization, over-
expressed GSH led to the cleavage of the Se-Se bonds in glycol-NV, resulting in the efficient
release of DOX and enhanced antitumor efficacy. Similarly, Pei et al. presented a galactose-
integrated supramolecular vesicle (CAAP5G) for systemic delivery of DOX and achieved
significantly enhanced suppressions in HpeG2 cells [87]. Aside from glycosylated ligands,
antigens and peptides are also commonly used as targeting ligands. For example, the
tripeptide Arg-Gly-Asp (RGD) binds strongly to integrin αvβ3, which is overexpressed on
the surface of various cancer cells, including melanoma, breast, and ovarian cancer. Taking
advantage of RGD, Schmuck et al. reported size-controllable supramolecular nanocarriers
(WP5-DOX⊃RGD-SG) for targeted delivery of DOX (Figure 3) [88]. By adjusting the host–
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guest molar ratio, WP5-DOX⊃ ⋂
RGD-SG was assembled into both vesicles and micelles,

and it was found that the micellar WP5-DOX⊃ ⋂
RGD-SG demonstrated significantly

enhanced antitumor efficacy in a HepG 2 liver cancer mouse model. Similarly, Zhang et al.
developed an RGD-modified layer-by-layer film based on CD and Ada interactions for
tumor-targeted delivery of DOX, and achieved significantly enhanced antitumor efficacy in
an A549 tumor mouse model [89].
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Reproduced from ref. [86]. Copyright 2020 Royal Society of Chemistry.
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(A) Schematic illustration of the construction of supramolecular vesicles and micelles. (B) Tumor
volume and (C) tumor weight of different treated groups. Reproduced from ref. [88]. Copyright 2018
Wiley-VCH.

4.2. Enhancing Tumor Penetration

Although various strategies effectively enhance drug accumulation in tumors, their
clinical benefits are still unsatisfactory. The inherent properties of solid tumors, including
the dense extracellular matrix and high IFP, make it difficult for large-sized nanoparticles
to penetrate deeply into the tumor tissues [90,91]. Therefore, constructing small-sized
nanoparticles is a promising strategy to enhance tumor penetration. However, small-sized
nanoparticles may undergo rapid clearance by the reticuloendothelial system (RES) during
blood circulation [92]. Recently, several size-adjustable supramolecular-macrocycle-based
drug delivery systems have been developed to solve this dilemma [93–95]. These nanopar-
ticles usually have a relatively large size during blood circulation to ensure efficient tumor
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accumulation. Upon reaching tumor tissues, they transform into smaller nanoparticles, al-
lowing for efficient tumor penetration. For example, Xu et al. constructed a size-convertible
supramolecular nanocomponent (DCD SNs) for efficient tumor penetration (Figure 4) [96].
DCD SNs (126 nm) were prepared by self-assembly of β-CD-modified polyhydroxy dextran
(DA-CD) and DOX-modified polyhydroxy dextran (DA-DOX). Upon reaching acidic TME,
the DCD SNs dissociate into smaller particles (~30 nm), effectively penetrating deeply
into the tumor to enhance chemotherapeutic efficacy. Similarly, Guo et al. constructed a
size-switchable supramolecular self-assembly for DOX delivery via host–guest interactions
between WP5 and polyethylene glycol-modified aniline tetramer (TAPEG) [97]. They
achieved significantly enhanced tumor suppression in a CT26 colon cancer mouse model.
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5. Supramolecular-Macrocycle-Based Nanomaterials for Enhanced Photodynamic Therapy

Photodynamic therapy (PDT), as a non-invasive, highly selective, and controllable
strategy, has attracted more and more attention in cancer treatment [98]. PDT requires three
essential elements: light, oxygen, and photosensitizers (PS). PDT employs PS to absorb
light, transfer energy to the surrounding oxygen, and generate cytotoxic ROS to destroy
proteins, DNA, and lipids in tumor cells, and also induce apoptosis [99]. Although PDT
has made significant progress in clinical practice, it suffers from several limitations: (1) the
inherent limitations of PS: for example, the aggregation-caused quenching (ACQ) effect and
dark toxicity; (2) insufficient oxygen (O2) supply: oxygen, an important PDT element, provides
the raw material for ROS generation [100]. However, abnormal neovascularization may lead
to insufficient O2 supply, resulting in limited ROS generation and tumor suppression [101].
The rapid development of supramolecular-macrocycle-based nanomaterials offers great op-
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portunities to address these issues in PDT. For example, these nanomaterials can efficiently
improve PS’s water solubility and stability, thereby effectively avoiding the ACQ effect and
dark toxicity [102,103]. In addition, supramolecular-macrocycle-based nanomaterials can carry
O2 or O2-generation agents, thereby improving O2 supply and ROS generation. This section
will discuss the recent advances in supramolecular-macrocycle-based nanomaterials for PDT.

5.1. Overcome the Inherent Defects of PS

The ACQ effect and dark toxicity are two defects of PS that restrict the general applica-
tion of PDT. The following describes the application of supramolecular-macrocycle-based
nanomaterials in overcoming these limitations for enhanced PDT.

ACQ effect. ACQ refers to the unique phenomenon in which a fluorophore is highly
luminescent in the solution state, but becomes weak or non-luminescent in the aggregated
state [104]. However, most PSs are hydrophobic and easily aggregated in an aqueous
solution, significantly reducing singlet oxygen generation efficiency [105,106]. Therefore,
increasing the water solubility of PS to avoid aggregation is a promising strategy to over-
come the ACQ effect of PS and enhance the antitumor efficacy of PDT. For example, Zhang
et al. reported a linear supramolecular polymer based on the host–guest interaction be-
tween β-CD and AD-modified porphyrin (Figure 5) [107]. The unique linear structure
increases the water solubility of the porphyrin, and the introduction of β-CD increases the
steric hindrance between PSs, which significantly inhibits the aggregation of the porphyrin
and improves the efficacy of PDT. Similarly, introducing β-CD to tetraphenyl porphyrin
also overcame the ACQ effect and greatly enhanced tumor suppression in a 4T1 breast
cancer mouse model [108].
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Dark toxicity. Dark toxicity refers to the inherent toxicity of PS without irradiation.
The in vivo dark toxicity of PSs is mainly associated with the non-specificity biodistribution
of PSs [109,110]. Therefore, optimizing the biodistribution of PSs is a feasible strategy to
address this issue. For example, Guo et al. developed an ATP-responsive supramolecular
assembly (GC5A-12C) for enhanced PDT (Figure 6) [111]. During blood circulation, the
PS was loaded into the cavity of GC5A-12C to avoid undesired dark toxicity, and was
competed out by overexpressed ATP as tumor tissues were reached. As a result, GC5A-12C
achieved a significantly enhanced antitumor effect in the 4T1 breast cancer mouse model
without causing noticeable toxic effects. Similarly, Tang et al. reported a supramolecular
PDT system based on the host–guest interaction between p-sulfonatocalix(4)arene and
pyridinium-functionalized tetra phenylethylene, which effectively avoided the dark toxicity
of PS and significantly suppressed tumor growth in a 4T1 breast cancer mouse model [112].
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5.2. Alleviating Tumor Hypoxia

Oxygen, a critical PDT element, is essential for ROS generation and tumor abla-
tion. However, abnormal proliferation of tumor cells and dysfunctional angiogenesis lead
to the formation of a hypoxic microenvironment that significantly limits the efficacy of
PDT [70,113]. Recent studies have shown that several types of nanomaterials can interact
with, store, and release O2 in a controlled manner at tumor sites [113–115]. Integrating
these nanomaterials into the supramolecular system is a promising strategy to alleviate
tumor hypoxia for enhanced PDT. For example, metal–organic framework (MOF) is a
porous nanomaterial that can adsorb and transport oxygen. Taking advantage of MOF, Pei
et al. reported a zeolitic imidazolate frameworks-8 (ZIF-8)-based supramolecular system
(OCZWM) for enhanced PDT (Figure 7) [116]. The OCZWM was formed by coordinating
the host–guest complex formed by WP6 and methylene blue (MB) with ZIF-8. After inter-
nalization, the OCZWM efficiently decomposes to release loaded MB and O2 in response to
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acid. As a result, OCZWM effectively alleviated tumor hypoxia and significantly enhanced
the anti-tumor efficacy of PDT.
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Although delivering O2 directly to the tumor can effectively increase the O2 content,
O2 leakage limits its effectiveness. In situ oxygen generation is an alternative strategy to
alleviate tumor hypoxia [117]. For example, Tian et al. reported ruthenium (II)-coordinated
supramolecular complexes (RuSMDC) for in situ oxygen production to alleviate tumor
hypoxia (Figure 8) [118]. RuSMDC was constructed by host–guest complexing of WP5 with
Ru metal complexes. After internalization, Ru catalyzed hydrogen peroxide to generate O2,
providing sufficient raw materials for ROS generation. In vitro and in vivo experiments
showed that RuSMDC effectively alleviated tumor hypoxia and enhanced the efficacy
of PDT. Furthermore, the Fenton reaction can also be used to generate O2 [119]. For
example, Gao et al. reported the β-CD and Ce6-modified Cu2–xSe nanoparticles (CS–CD–
Ce6 NPs) to alleviate tumor hypoxia via the Fenton reaction [120]. In tumor tissue, Cu+
ions effectively decomposed H2O2 to O2 and •OH, increasing the O2 concentration and
providing substrates for Ce6 to generate ROS. As a result, the CS–CD–Ce6 NPs effectively
alleviated tumor hypoxia and improved the antitumor effect of PDT in a 4T1 cancer mouse
model. Similarly, Lu et al. constructed a supramolecular micelle by host–guest complexing
β-CD with ferrocene (Fc) [121]. In tumor tissue, Fc is oxidized to Fc+ and catalyzes O2
generation, thereby significantly alleviating tumor hypoxia and enhancing PDT therapy.
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6. Supramolecular-Macrocycle-Based Nanomaterials for Enhanced Combination Therapy

Cancer is one of the most malignant diseases worldwide, involving various genetic
alterations and cellular abnormalities and posing significant challenges to traditional
monotherapy [122,123]. Common issues associated with monotherapy include low re-
sponse rate, drug resistance, and side effects [124]. A combination therapy that employs
two or more anticancer drugs is a promising strategy to solve these problems. Generally,
conventional “cocktail” therapies were achieved by co-administrating multiple drugs [125].
However, different physicochemical properties of these drugs may lead to different phar-
macokinetics (PK) and biodistribution in vivo, resulting in limited synergistic effects. The
development of the drug delivery system offers great potential to solve these problems by
co-loading multiple drugs within a single nanocarrier [126,127]. With this strategy, the PK
and biodistribution of combined drugs can be effectively unified, ensuring the synergism
of multiple drugs in tumor tissues. In this chapter, we will first introduce the rationale for
combination therapies and then discuss the recent advances in supramolecular-macrocycle-
based nanomaterials for enhanced combination therapy.

6.1. Rationales for Combination Therapy

Combination therapy is meaningful if it produces better clinical outcomes than a single
drug [128]. To this end, the choice of drugs for combination therapy is the priority to be con-
sidered, which should be based on the following general principles: (1) the selected drugs
should have non-overlapping toxicities so that they can be administered at near-maximal
doses; (2) the selected drugs should have different mechanisms of action and minimal
cross-resistance to avoid the development of multidrug resistance (MDR) [129]; (3) the
selected drugs should be demonstrated to have synergistic or additive anticancer efficacy
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relative to single drugs, which is currently quantified by the Chou–Talalay method. In the
Chou–Talalay method, the synergistic effect of drug combinations is usually expressed in
terms of combination index (CI), in which CI < 0.9 represents synergism, 0.9 < CI < 1.1
represents additive effect, and CI > 1.1 represents antagonism [130].

6.2. Supramolecular-Macrocycle-Based Combination Therapy

Combination therapy can be roughly divided into three categories according to the
molecule nature of anticancer therapeutics, including small molecule–small molecule,
small molecule–biologics, and biologics–biologics. This chapter mainly introduces the
recent progress of supramolecular-macrocycle-based nanomaterials in small molecule-
small molecule combination therapy.

Chemo-Chemotherapy. In combination chemotherapy, the synergistic effect mainly
depends on the concentration relationship, in which a certain proportion of the drug
combination produces synergistic effects, while other proportions may be additive or antag-
onistic [131]. Therefore, ratiometric co-delivery of drug combinations in an optimized molar
ratio to tumor tissues is essential for effective combination chemotherapy [132]. Macrocyclic
molecules with defined chemical structures, predetermined cavity size, and characteristic
binding affinity are ideal candidates for precise multidrug loading and ratiometric co-
delivery. For example, our groups presented calixarene-modified albumin (CaMA) for the
ratiometric delivery of multiple drugs in combination chemotherapy (Figure 9) [133]. Mul-
tiple hypoxia-responsive calixarenes (sulfonate azocalix(4)arene, SAC4A) were integrated
into one albumin, which ensured the precise load and ratiometric co-delivery of multiple
drugs to tumors via host–guest interaction. As it reached the hypoxic tumor microenviron-
ment, SAC4A was reduced by reductase, leading to the spontaneous release of the drugs.
By taking DOX and mitomycin C (MMC) as an example, delivering this drug combination
at the optimal ratio via CaMA significantly enhanced tumor suppression compared to
conventional cocktail therapy. Similarly, we developed a macrocyclic-amphiphile-based
self-assembled nanoparticle and achieved the ratiometric co-delivery of PTX and NLG919
to tumor tissues [77].

Chemo-photodynamic therapy. Chemo-photodynamic therapy is a promising combi-
nation therapy strategy for cancer treatment, since (1) PDT usually has non-overlapping
toxicity with chemotherapy; (2) PDT can overcome MDR by reducing the expression of
P-gp to reduce drug efflux; and (3) ROS generated by PDT can be used as a stimulus to
promote the drug’s release from the nanocarrier [134]. Loading chemotherapeutic agents
and PS into nanocarriers is the most common method for combining these two therapies.
For example, Wang et al. presented a supramolecular micelle to co-deliver Chlorin e6 (Ce6)
and banoxantrone (AQ4N) for chemo-photodynamic therapy (Figure 10) [135]. Ce6 and
AQ4N were loaded into the cavity of cucurbit(7)uril (CB(7)) and were precisely released
in tumor tissues in response to overexpressed spermine. After irradiation, the hypoxic
environment activated the prodrug AQ4N to chemotherapeutic AQ4, enabling synergistic
chemo-photodynamic therapy. In another example, Xu et al. designed a ROS-responsive
cyclodextrin-based polymeric micelle to co-deliver DOX and purpurin 18 (P18) [136]. After
irradiation with a near-infrared laser, P18 in polymer micelles generated ROS, promoting
DOX release and tumor cell apoptosis. Both in vitro and in vivo studies suggested that this
strategy provided an effective method for the combination of chemotherapy and photody-
namic therapy. Similarly, Yao et al. fabricated a WP6-based supramolecular polypeptide
nanomedicine (BPC/DOX-ICG) for the co-delivery of DOX and indocyanine green (ICG),
resulting in enhanced antitumor efficacy in an MCF-7/ADR tumor mouse model [137].
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Photothermal immunotherapy. Photothermal therapy (PTT) is another promising
cancer treatment strategy with the advantages of minimal invasiveness and high preci-
sion [138]. PTT utilizes photothermal reagents to absorb light, convert the light energy
into local hyperthermia, disrupt cell membrane integrity, and induce tumor cell apoptosis
or necrosis. In addition, PTT also promotes the release of damage-associated molecular
patterns (DAMPs), including calreticulin (CRT), high mobility group box 1 (HMGB-1),
and adenosine triphosphate (ATP), thus effectively triggering immunogenic cell death
(ICD) and eliciting an antitumor immune response [139,140]. With this unique prop-
erty, supramolecular-macrocycle-based nanomaterials are widely used in photothermal
immunotherapy [141]. Nanogold is an ideal photothermal reagent with high photother-
mal conversion efficiency. For example, Yan et al. integrated gold nanoparticles into a
supramolecular system and reported a gold nanorod-based nanosystem (GNR) for en-
hanced photothermal immunotherapy [142]. GNR was formed by layer assembly of
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γ-CD-crosslinked PEI on the surface of gold nanorods, and then the N6-methyladenosine
demethylase inhibitor meclofenamic acid (MA) was loaded into the cavities of γ-CD to
form GNR-CDP8MA. As it reached tumor tissues, the NIR-II induced the release of MA
from γ-CD of GNR-CDP8MA, thus effectively decreasing the stability of PD-L1 tran-
scripts. As a result, GNR-CDP8MA achieved effective photothermal immunotherapy
in prostate cancer tumor-bearing (RM-1) mice. Similarly, Ping et al. reported a novel
gold nanorod-based supramolecular nanomaterial (ANP/HSP) to disrupt the program-
ming death-1/programming death ligand-1 pathway (PD-1/PD-L1) for enhanced pho-
tothermal immunotherapy [143]. The disruption of the PD-1/PD-L1 pathway synergized
with PTT-induced ICD, resulting in significantly enhanced antitumor efficacy in B16F10
melanoma mice.
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illustrations of AQ4N@CPC-FA for chemo-photodynamic therapy. (B) The tumor volume and the
relative body weight (C) of mice after different treatments. Reproduced from ref. [135]. Copyright
2021 Elsevier.

6.3. Supramolecular-Macrocycle-Based Combination Therapy in Overcoming Drug Resistance

Multidrug resistance (MDR) refers to the ability of cancer cells to develop resistance
to other anticancer drugs while being induced by a single anticancer drug during cancer
therapy [144]. MDR is mainly associated with the overexpression of channel proteins on
the cell membrane, such as p-glycoprotein (P-gp) [145]. As a typical ATP energy-dependent
efflux pump, P-gp can efflux anticancer drugs to the extracellular TME, thereby reducing the
antitumor efficacy of chemotherapy [146–148]. Therefore, co-delivering P-gp inhibitors with
anticancer drugs is a promising strategy to reverse MDR. For example, Tian et al. developed
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a supramolecular assembly (SDDNMs) to reverse MDR based on the host–guest interactions
between curcumin-modified β-CD and ferrocene-CPT [149]. After internalization, high
levels of H2O2 efficiently disrupted host–guest complexation, leading to the rapid release of
CPT and curcumin derivatives. As a result, SDDNMs effectively reversed MDR and greatly
enhanced the antitumor efficacy of CPT in a B16F10 melanoma mouse model. In addition to
p-gp inhibitors, low levels of nitrogen monoxide (NO) can down-regulate p-gp expression,
reduce drug efflux, and alleviate MDR. Yao et al. constructed a supramolecular polypeptide
nanomedicine to co-deliver ICG, DOX, and S-nitrosothiol (SNO, NO donors) for enhanced
combination cancer therapy (Figure 11) [137]. After internalization, the nanomedicine
disintegrated in response to acid and released the ICG and DOX. Upon irradiation, S-
nitrosothiol efficiently generates NO due to PTT-induced hyperthermia. As a result, this
strategy effectively reversed MDR and suppressed tumor growth in an MCF-7/ADR breast
mouse model. In addition, cutting off the energy supply to P-gp is another strategy to
reverse MDR [150]. Wu et al. reported a supramolecular assembly based on the host–guest
complexation of β-CD with 1-adamantaneacetic acid to co-deliver DOX and adjudin (ADD),
which is a mitochondrial inhibitor [151]. The controlled and sustained release of DOX and
ADD in response to internal tumor acidity inhibited mitochondrial function and reduced
ATP synthesis, thereby reducing the efficiency of P-gp.
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(C) The tumor volume in each treatment group. Reproduced from ref. [137]. Copyright 2022 The
Royal Society of Chemistry.
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Table 1. Advanced supramolecular-macrocycle-based nanomaterials in cancer treatment.

Types Macrocycles Formulations Payloads Tumor Refs

Chemotherapy WP5 Supramolecular vesicles DOX MCF-7 [86]
Chemotherapy WP5 Supramolecular vesicles DOX HpeG2 [87]
Chemotherapy WP5 Vesicles or micelles DOX HpeG2 [88]
Chemotherapy β-CD LbL films DOX A549 [89]
Chemotherapy β-CD Supramolecular nanoparticles DOX 4T1 [90]
Chemotherapy WP5 Supramolecular nanoparticles DOX CT26 [96]

PDT β-CD Supramolecular nanoparticles TPP 4T1 [107]

PDT β-CD Supramolecular organic
framework TPP 4T1 [108]

PDT GC5A-12C Supramolecular nanoparticles AlPcS4 4T1 [111]
PDT SC4A Supramolecular nanoparticles TPE-PHO 4T1 [112]
PDT WP6 Supramolecular photosensitizer system MB HepG2 [116]

PDT WP5 Supramolecular metallodrug
micelles Curcumin B16 [118]

PDT β-CD Supramolecular nanoparticles Ce6 4T1 [119]
PDT β-CD Supramolecular vesicles Ce6 4T1 [121]

Chemo-chemotherapy SAC4A Calixarene-modified albumin DOX and
MMC 4T1 [133]

Chemo-chemotherapy QAAC4A-
12C Supramolecular nanoparticles PTX and

NLG919 4T1 [77]

Chemo-photodynamic
therapy CB(7) Supramolecular vesicles Ce6 and AQ4N MCF-7 [135]

Chemo-photodynamic
therapy β-CD Supramolecular micelles DOX and P18 4T1 [136]

Chemo-photodynamic
therapy WP6 Supramolecular polypeptide

nanomedicine DOX and ICG MCF-7/ADR [137]

Chemo-chemotherapy β-CD Supramolecular micelles CPT and Cur B16 [149]

Combination therapy AWBpP6 Supramolecular polypeptide
nanomedicine DOX and SNO MCF-7/ADR [137]

Chemo-chemotherapy β-CD Supramolecular nanoparticles DOX and ADD MCF-7/ADR [151]
Photothermal

immunotherapy γ-CD Gold nanorod-based
supramolecular nanomaterial MA RM-1 [142]

Photothermal
immunotherapy β-CD Gold nanorod-based

supramolecular nanomaterial
HSP-Cas9
plasmid B16F10 [143]

7. Conclusions and Perspectives

With the rapid development of supramolecular chemistry, supramolecular macrocycle-
based nanomaterials with diverse functions have shown great potential in biomedical
applications. Because of their dynamic, reversible host–guest interactions and sensitivity to
abnormal tumor indicators (acidic, redox, ATP, and hypoxic), supramolecular-macrocycle-
based nanomaterials have been widely explored in chemotherapy, photodynamic therapy,
and combination therapy for cancer treatment. Despite the remarkable success, the clini-
cal benefits of supramolecular-macrocycle-based nanomaterials still face many obstacles,
including (1) the introduction of chemical groups to modify the host or guest molecules
is often accompanied by complex chemical synthesis and purification processes, and the
resulting new host or guest molecules may have toxic effects; (2) dynamic and weak non-
covalent interactions may lead to leakage of immature drug into the blood circulation,
resulting in poor therapeutic efficacy and severe side effects; (3) the self-assembled nature
of supramolecular-macrocycle-based nanomaterials may result in batch-to-batch variability.

For the better development of supramolecular-macrocycle-based nanomaterials in
biomedical applications, the following aspects need to be considered in the future: (1) the
potential toxicity of the introduced modification groups should be thoroughly analyzed
to avoid unnecessary toxicity; (2) new supramolecular hosts with better biocompatibility
should be developed; (3) diagnostic and imaging capabilities of supramolecular nano-
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systems should be enhanced for more accurate therapy; and (4) the assembly and prepara-
tion process should be optimized to reduce batch variance.
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