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Abstract: A new Ag/Cu bimetallic cluster [Ag10Cu6(bdppthi)2(C≡CPh)12(EtOH)2](ClO4)4 (1, bdppthi
= N,N′-bis(diphenylphosphanylmethyl)-tetrahydroimidazole) exhibited strong phosphorescent (PL)
emission at 644 nm upon excitation at 400 nm. Removal of the coordinated EtOH molecules in 1
resulted in derivative 1a, which exhibited significant red-shifted emission at 678 nm. The structure
and PL of 1 was restored on exposure to EtOH vapor. Cluster 1a also exhibited a vapor-chromic PL
response towards other common organic solvent vapors including acetone, MeOH and MeCN. A
PMMA film of 1a was developed as a reusable visible sensor for MeCN.

Keywords: photoluminescence material; vapor-chromic response; Ag/Cu complex; volatile organic
vapor (VOC) detection

1. Introduction

Volatile organic compounds (VOCs) are hazardous air pollutants. Some coordina-
tion compounds can serve as photoluminescent (PL) probes for VOCs with a rapid and
reversible switching or chromic response [1–5]. Coinage metal complexes have been de-
veloped with useful photophysical properties such as sensitive and selective emission
color changes under external stimuli [6–13]. Bimetallic Ag/Cu complexes have attracted
considerable attention in this respect due to their low cost and rich luminescence behav-
iors. For example, Chen et al. have reported an Ag(I)-Cu(I) complex showing reversible
vapor-chromic phosphorescence, with the emission changing from bright yellow to green
in response to THF or CHCl3 [14].

Vapor-chromic UV and PL responses of coordination compounds originate mostly
from intramolecular structural distortion, such as the formation/disruption of metal–
solvent bonds [15], molecular deformation [16,17] or conformational transformation [18,19].
The PL vapor-chromic response of metal complexes towards VOCs can be attributed to
the interactions between the metal or their ligands and the VOC. In some cases, the small
VOC molecules enter the lattice voids but do not participate in coordination bonds. There
are only weak interactions, such as H-bonding, van der Waal’s forces or C-H···π or π···π
interactions between these ‘free solvent molecules’ and the main structure that partly affects
the complex’s energy levels [20–28]. In other cases, the VOC molecules coordinate with
the metal ions to form metal–solvent bonds, which can significantly change the emission
color or intensity [29–32]. For instance, Wang and co-workers have reported that the PL of
an Au/Ag cluster reversibly shifted between green and yellow when the weakly ligated
methanol molecules were removed or re-introduced [33].

Recently, we found that the strong emission of a Cu/Ag cluster [Ag10Cu6(bdppthi)2
(C≡CPh)12(MeOH)2(H2O)](ClO4)4 (2, bdppthi = N,N′-bis(diphenylphosphanylmethyl)-
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tetrahydroimidazole) could be quenched by NH3, which enabled its use as a rapid, re-
versible and visual sensor [34]. During this quenching, the Ag10Cu6 cluster remained
coordinated with MeOH and H2O molecules, while the NH3 only interacted with the
MeOH ligands. Hence, we expected that the PL of this cluster would change when the
MeOH and H2O molecules were removed or replaced by other small organic molecules,
such as VOCs, that could coordinate with the Ag/Cu cluster core directly. We therefore
prepared a new cluster [Ag10Cu6(bdppthi)2(C≡CPh)12(EtOH)2](ClO4)4 (1), in which the
solvates were replaced with EtOH. The luminescence of 1 significantly red-shifted on
elimination of EtOH to produce 1a, and was immediately restored upon exposure to EtOH.
Other VOC vapors also resulted in a vapor-chromic PL response.

2. Results and Discussion
2.1. Synthesis and Characterization
2.1.1. Synthesis of 1

The reaction of N,N′-bis(diphenylphosphanylmethyl)ethylene diamine (bdppeda),
[Cu(MeCN)4](ClO4) and AgC≡CPh (molar ratio 1:4:4) in CH2Cl2/EtOH (Figure 1) pro-
duced bimetallic cluster 1 in 73% yield. This methodology was similar to that used in
the synthesis of compound 2, except for the solvent [34] and that the ligand bdppthi was
generated in situ [35].
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cores in compounds 1 and 2 were somewhat analogous. The Ag-Ag and Ag-Cu distances 
were in the range of 2.829–3.310 Å and 2.701–3.180 Å, respectively, indicating the presence 
of substantial metallophilic interactions [36]. Nevertheless, the metal–metal distances in 1 
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Figure 1. Synthesis and structure of 1. The phenyl rings of -PPh2 groups and C≡CPh groups are
plotted as gray and yellow hexagons. CH2Cl2 solvent molecules are omitted for clarity.

2.1.2. Single Crystal Structure of 1·2CH2Cl2
Single-crystal X-ray diffraction (SCXRD) of 1·2CH2Cl2 revealed that it crystallized in

the monoclinic system P21/n space group. The asymmetric unit contained one [Ag10Cu6
(bdppthi)2(C≡CPh)12(EtOH)2)]4+ tetracation, four ClO4

− anions and two CH2Cl2 solvent
molecules. As shown in Figure 1, the Ag10Cu6 cluster core may be viewed as two smaller
Ag6Cu3 units joined by sharing two Ag(I) cations. The two bdppthi ligands stabilized and
connected the two Ag6Cu2 units through four Ag-P and four Cu-N bonds. Each Cu(I) atom
was coordinated oppositely by two C≡CPh anions. The average Ag-P, Cu-N and Cu-C
bond lengths were 2.383(3), 2.271(9) and 1.915(13) Å, respectively. The Ag10Cu6 cores in
compounds 1 and 2 were somewhat analogous. The Ag-Ag and Ag-Cu distances were
in the range of 2.829–3.310 Å and 2.701–3.180 Å, respectively, indicating the presence of
substantial metallophilic interactions [36]. Nevertheless, the metal–metal distances in 1
were slightly longer than those in 2. The smallest Cu-Cu distance of 2.969(2) Å (between
Cu2 and Cu3) was larger than the sum of the van der Waals radii of the two Cu atoms
(2.80 Å), which ruled out the existence of Cu-Cu interactions and revealed that the Ag10Cu6
cores in 1 and 2 were different. The two Cu(I) atoms at the end of the Ag10Cu6 cluster core
were further coordinated with the O atoms of two EtOH molecules (Cu1-O1, 2.043(8) Å;
Cu4-O2, 2.031(9) Å). These two Cu-O (EtOH) bond lengths were slightly shorter than the
Cu-O (MeOH) (2.1134(1) and 2.2071(1) Å) and Cu-O (H2O) (2.1428(1) Å) interactions in 2.
These differences in bond lengths demonstrated that the metallophilic interactions in the
Ag10Cu6 core were weakened when EtOH molecules were closely coordinated to the end
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Cu ions. In addition, there were weak interactions between two of the ClO4
− anions and

these two Cu atoms: (Cu1-O5, 2.758(1) Å; Cu4-O9, 2.715(1) Å), while the other two ClO4
−

anions remained free.

2.1.3. Characterization of 1

The CH2Cl2 molecules in 1·2CH2Cl2 readily escaped in air as evidenced by an ab-
sence of interaction in the solid-state structure. Thus, all other characterizations were
performed on 1. This cluster readily dissolved in common organic solvents such as CH2Cl2,
CHCl3, acetone, DMSO, DMF and MeCN, but was insoluble in Et2O, hexane and H2O.
The elemental analysis of 1 was consistent with its molecular formula. The powder X-ray
diffraction (PXRD) pattern of 1 correlated with the simulated spectra generated from the
SCXRD data and was clearly different from that of 2 (Figure 2). The IR spectrum showed
characteristic peaks at 2019 cm−1 for C≡C, 1082 cm−1 for ClO4

−, and at 1483, 1435, 750, 687
and 619 cm−1 for the −Ph groups (Figure S1 (Supplementary Materials)). The positive-ion
electrospray ion mass spectrometry (ESI-MS) of 1 (Figure S2) contained peaks attributed
to [Ag2(bdppthi)(C≡CPh)]+ (m/z = 785.03) and [Ag(bdppthi)]+ (m/z = 575.09) cations
and {[Ag10Cu4(C≡CPh)9(H2O)](ClO4)3+e+H+}2+ (m/z = 1278.89) dications, indicating the
structure of 1 partly decomposed in the ESI-MS environment.
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2.1.4. Interconversions of 1 and 1a

Thermogravimetric analysis (TGA) of 1 in a N2 stream showed a weight loss of 2.2%
between 120 and 150 ◦C, which matched the elimination of the two coordinated EtOH
molecules (Calcd 2.24%) (Figure S3). We therefore treated 1 in vacuum by heating at 120
◦C for 1 h and obtained its solventless derivative [Ag10Cu6(bdppthi)2(C≡CPh)12](ClO4)4
(1a). Cluster 1a was less crystalline than 1 and not suitable for SCXRD analysis. The
weak IR vibration at 3420 cm–1 attributed to the −OH group of EtOH in 1 disappeared
in 1a (Figure S1). As shown in Figure 2, the PXRD pattern of 1a was similar to that of 1,
indicating its cell parameter and major structure remained unchanged. The elimination of
some weak peaks might be due to the elimination of the EtOH molecules. When 1a was
exposed to EtOH vapor for several minutes, the PXRD pattern fully recovered, indicating
re-coordination of the EtOH molecules. However, when 1a was treated with MeOH vapor,
the PXRD pattern resembled that of compound 2, indicating a phase-transition. This
transition was reversible, so that desolvation of 2 and re-exposure to EtOH produced 1
quantitatively.

2.2. Photoluminescent Properties
2.2.1. Photoluminescent Properties of 1

Upon excitation at 400 nm, crystals of 1 exhibited bright red emission at λmax = 644 nm
(Figure 3) with a quantum yield (QY) of 10% at ambient temperature. The PL lifetime
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(τ, excited at 373 nm) was 7.48 µs. This relatively long lifetime and large Stokes shift
(244 nm) suggested that this PL was a phosphorescent emission and likely arises from a
metal cluster-centered triplet excited state modified by metal –metal interactions, mixed
with a [C≡CPh→Ag10Cu6] 3LMCT transition [14,34]. The emission was not sensitive to
excitation wavelengths, as the spectrum excited at 365 nm was similar to that excited at
400 nm except for a small intensity decay.
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2.2.2. Photoluminescent Properties of 1a and Vapor-Chromic Responses toward Water and VOCs

Solid 1a emitted at λmax = 678 nm when excited at 400 nm (Figure 4). Compared to
that of 1, this emission exhibited a 34 nm red-shift, reduced intensity (QY = 6%), and a
slightly prolonged lifetime (τ = 8.82 us, excited at 373 nm). The emission of 1a could be
fully restored to that of 1 (644 nm) after exposure to EtOH vapor, and this process showed
good repeatability over four cycles (Figure S4). The PXRD of 1a remained steady during
these cycles and for as long as one month later (Figure S5). We believe that during the
interconversion of 1 and 1a, the departure and re-coordination EtOH molecules from the Cu
atoms affect the electron density of the Ag10Cu6 cluster center, which influences the T1→S0
energy band, and therefore the shifting of the emission wavelength and intensity arises.
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Complex 1a was relatively stable toward air and moisture. The emission of 1a shifted
to 718 nm when its powder was immersed in liquid water for 20 h (Figure S6). We
suggested this red-shift was caused by the interaction between the Ag10Cu6 cluster center
and water molecules. This interaction was weak and lessened when the content of water
was decreased. Therefore, a low-energy shoulder could be observed at the emission curve
of 1a, which indicated that a little portion of 1a was hydrated by moisture when it was put
in open air for days.

The emission of 1a changed when this cluster was exposed to other VOC vapors. The
less-coordinating VOC molecules, such as CH2Cl2, CHCl3 and Et2O, caused only minor
blue-shifting (λmax = 666, 671 and 670 nm, respectively), whereas those VOCs with stronger
donor groups, including acetone (C=O), MeOH (-OH) and MeCN (-CN), caused obvious
blue-shifted emissions with λmax = 658 nm (acetone), 628 nm (MeOH) and 594 nm (MeCN),
respectively. The changes in emission wavelength on exposure of 1a to MeOH and MeCN
were 50 nm and 84 nm, respectively, which is visible to the naked eye under 365 nm LED
irradiation (Figure 4).

2.3. Photoluminescent Probe for the Detection of MeCN

The significant vapor-chromic response of 1a encouraged us to prepare a PL sensing
film by compositing 1a with PMMA (3% w/w). This film showed a visible red-to-orange PL
change on exposure to a saturated atmosphere of MeCN vapor (Figure 5). The red emission
could be recovered upon heating in air at 100 ◦C. This color interconversion was repeatable,
giving a reusable PL probe for the detection of VOCs.
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3. Materials and Methods
3.1. Materials and Measurements

Bdppeda [37,38] and AgC≡CPh [39] were prepared by literature procedures. [Cu(MeCN)4]
(ClO4) was commercially available. Elemental analyses (C, H and N) were performed on a
Carlo Erba CHNO-S microanalyzer. PXRD measurements were recorded on a Bruker D2
Phaser X-ray diffractometer with a Cu Kα source (30 kV, 10 mA). IR spectra were obtained
on a VERTEX 70 FT-IR spectrometer (4000–500 cm−1) with an ATR probe. Thermogravimet-
ric analysis (TGA) was completed on a TA SDT-600 analyzer under an N2 atmosphere in the
range from room temperature to 900 ◦C, with a temperature heating rate of 10 ◦C/min. PL
measurements were performed on an Edinburgh FLS1000 spectrophotometer. Positive-ion
electrospray ion mass spectrometry (ESI-MS) was recorded on a Bruker microTOF-Q III
mass spectrometer using MeOH as the mobile phase.

3.2. Synthesis of 1 and 1a

A mixture containing bdppeda (46 mg, 0.1 mmol), [Cu(MeCN)4](ClO4) (131 mg,
0.4 mmol), 5 mL of CH2Cl2 and 5 mL of EtOH was stirred for 0.5 h at ambient temperature.
AgC≡CPh (84 mg, 0.4 mmol) was added into the resulting colorless solution and stirred
for 3 h. The mixture turned red and was subsequently centrifuged. The supernatant was
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diffused with Et2O and afforded red crystals of 1·2CH2Cl2 after 1 day. The CH2Cl2 solvate
escaped quickly in air, leaving 1 within an hour. Yield for 1: 117 mg (73% based on Ag).
Anal. Calcd for C158H132Ag10Cl4Cu6N4O18P4: C, 46.28; H, 3.24; N, 1.37. Found: C, 45.82;
H, 3.34; N, 1.26. IR (ATR, cm−1): 3419 (w), 3059 (w), 2019 (m), 1483 (m), 1435 (m), 1082 (vs),
750 (s), 687 (vs), 619(s).

Complex 1 was placed in a vacuum oven at 120 ◦C for 1 h and produced 1a on cooling
to room temperature. The yield was almost quantitative.

3.3. Preparation of 1a/PMMA

A 9 mg sample of 1a was carefully ground in a mortar and pestle, dispersed in
PMMA/toluene solution (20% w/w, 1.5 g) and sonicated for 30 min. The mixture was
applied to glass slides (3 × 6 cm2) and left to dry in air over several hours. The dried film
was removed from the slide and cut into small pieces (1.5 × 4 cm2).

3.4. Single-Crystal Crystallography

A single crystal of 1·2CH2Cl2 was collected from the above synthesis. SCXRD analysis
was performed on a Bruker D8 Venture diffractometer using graphite-monochromated Ga
Kα (λ = 1.34138 Å) radiation at 120 K. All data were integrated with Bruker SAINT and a
multi-scan absorption correction was applied. The structure was solved by direct methods
using SHELXS 2016/6 (Sheldrick, 2016) and refined by full-matrix least-squares methods
against F2 by SHELXL-2016/6 (Sheldrick, 2016) [40]. All non-hydrogen atoms were refined
anisotropically. The hydrogen atoms of the -OH groups of EtOH were first located from
a Fourier map and then refined to ride on the O atoms. All other hydrogen atoms were
added in idealized positions and constrained to ride on their parent atoms. The data were
deposited to the Cambridge Crystallographic Data Centre (CCDC number 2226387). A
summary of the key crystallographic data is given in Table 1. Selected bond lengths and
angles are listed in Table S1.

Table 1. Selected crystallographic data and refinement parameters for 1·2CH2Cl2.

Compound 1·2CH2Cl2

Empirical formula C160H136Ag10Cl8Cu6N4O18P4
Formula weight 4270.14
Crystal system monoclinic

Space group P21/n
a/Å 30.834(2)
b/Å 16.5897(11)
c/Å 33.5688(19)
β/◦ 116.652(2)

V/Å3 15,346.8(17)
Z 4

ρcalc/g·cm−3 1.848
µ/mm−1 12.665

F(000) 8432
θmax/◦ 56.966

No. of reflections measured 345,696
No. of independent reflections 31,366 (Rint = 0.1724)

Data/restraints/parameters 31,366/79/1867
R1 [I > 2.00 σ(I)] a 0.1049

wR2 (all reflections) 0.3419
Goodness of fit 1.209

a R1 = Σ||Fo|–|Fc||/Σ|Fo|, wR2 = {Σw(Fo2 – Fc2)2/Σw(Fo2)2}1/2, GOF = {Σw((Fo2 – Fc2)2)/(n – p)}1/2, where
n = number of reflections and p = total number of parameters refined.

4. Conclusions

An Ag10Cu6 cluster 1 stabilized by PNNP ligand bdppthi and C≡CPh anions was
prepared. The two Cu ends of the Ag10Cu6 core were coordinated with EtOH molecules.
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Removing these solvates from 1 by vacuum heating produced 1a, which could be restored
to 1 by exposure to EtOH vapor. The maximum PL emission of 1 at 644 nm shifted to 678 nm
when converted to 1a. This reversible vapor-chromic response also occurred with other
VOCs, particularly those with polar functional groups such as MeCN and MeOH, which
exhibited the largest blue-shift of emissions up to 50 and 84 nm, respectively. A reusable
chromic PL probe containing 3% (w/w) 1a in PMMA exhibited a visible red-to-orange
emission change when exposed to MeCN vapor.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28031257/s1, Figure S1: IR spectra of 1 and
1a; Figure S2: Experimental and simulated isotopic pattens in the positive ion ESI-MS spectra of 1
in MeOH; Figure S3: TGA curve of 1 in a N2 stream; Figure S4: Emission of 1a over four cycles of
exposure to EtOH vapor and vacuum heating; Figure S5: PXRD patterns of as-synthesized 1a, 1a
after four EtOH exposure/elimination cycles and being left in air for another 1 month; Figure S6:
Emission spectra of 1a in air and its powder after immersed in water for 20 h.; Table S1: Selected
bond lengths and angles for 1·2CH2Cl2.
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