Studies on the Complexation of Platinum(II) by Some 4-Nitroisoxazoles and Testing the Cytotoxic Activity of the Resulting Complexes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Structural Analysis of Pt-Complexes
2.2. Lipophilicity
2.3. Cellular Platinum Uptake
2.4. In Vitro Cytotoxic Activity
2.5. Reactivity with L-Glutathione (GSH)
3. Experimental
3.1. Synthesis of 4-Nitroisoxazole Ligands
3.2. Synthesis of Platinum(II) Complexes
3.2.1. General Description of the Synthesis of Complexes
3.2.2. Complexation with 3,5-Dimethyl-4-nitroisoxazole Resulting in Cis and Trans Dichlorobis(3,5-Dimethyl-4-nitroisoxazole)Platinum(II)
3.3. Single Crystal X-ray Structure Determination of Complexes
3.4. Determination of logP by Shake-Flask Method
3.5. Reaction with L-Glutathione
3.6. Cell Culture Used for Testing
3.7. Preparation of Stock Solutions of Tested Compounds to In Vitro Studies
3.8. In Vitro Cytotoxicity Test through Sulforhodamine B Assay
3.9. Total Platinum Uptake Level Test
3.10. Statistical Analysis
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Baguley, B.C.; Kerr, D.J. Anticancer Drug Development; Academic Press: San Diego, CA, USA, 2002; pp. 1–11. [Google Scholar]
- DeVita, V.T., Jr.; Chu, E. A History of Cancer Chemotherapy. Cancer Res. 2008, 68, 8643–8653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, B.; van Camp, L.; Krigas, T. Inhibition of Cell Division in Escherichia coli by Electrolysis Products from a Platinum Electrode. Nature 1965, 205, 698–699. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xu, C.; Gao, X.; Yao, Q. Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics 2022, 12, 2115–2132. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, T.C.; Wilson, J.J.; Lippard, S.J. Monofunctional and Higher-Valent Platinum Anticancer Agents. Inorg. Chem. 2013, 52, 12234–12249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuwata, K.; Nakamura, I.; Ide, M.; Sato, H.; Nishikawa, S.; Tanaka, M. Comparison of changes in urinary and blood levels of biomarkers associated with proximal tubular injury in rat models. J. Toxicol. Pathol. 2015, 28, 151–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hazlitt, R.A.; Min, J.; Zuo, J. Progress in the development of preventative drugs for cisplatin-induced hearing loss. J. Med. Chem. 2018, 61, 5512–5524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, G.Y.; Woodward, N.; Coward, J.I. Cisplatin versus carboplatin: Comparative review of therapeutic management in solid malignancies. Crit. Rev. Oncol. Hematol. 2016, 102, 37–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazarević, T.; Rilak, A.; Bugarčić, D. Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives. Eur. J. Med. Chem. 2017, 142, 8–31. [Google Scholar] [CrossRef]
- Ndagi, U.; Mhlongo, N.; Soliman, M.E. Metal complexes in cancer therapy—An update from drug design perspective. Drug. Des. Devel. Ther. 2017, 11, 599–616. [Google Scholar] [CrossRef] [Green Version]
- Medici, S.; Peana, M.; Nurchi, V.M.; Lachowicz, J.I.; Crisponi, G.; Zoroddu, M.A. Noble metals in medicine: Latest advances. Coord. Chem. Rev. 2015, 284, 329–350. [Google Scholar] [CrossRef]
- Xue, Y.; Gao, S.; Gou, J.; Yin, T.; He, H.; Wang, Y.; Zhang, Y.; Tang, X.; Wu, R. Platinum-Based Chemotherapy in Combination with PD-1/PD-L1 Inhibitors: Preclinical and Clinical Studies and Mechanism of Action. Expert Opin. Drug Deliv. 2021, 18, 187–203. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, M.C.; Resasco, A.; Di Virgilio, A.L.; Ayala, M.; Cavaco, I.; Cabrera, S.; Aleman, J.; León, I.E. In vitro and in vivo anticancer effects of two quinoline–platinum(II) complexes on human osteosarcoma models. Cancer Chemother. Pharmacol. 2019, 83, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Gao, C.; Liu, Q.; Yu, C.; Zhang, Z.; Cai, L.; Yang, B.; Qian, Y.; Yang, J.; Liao, X. Research progress in modern structure of platinum complexes. Eur. J. Med. Chem. 2017, 140, 349–382. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Liu, Z.; Wang, M.; Yin, X.; Wang, Y.; Dai, L.; Wang, H. Platinum(IV) complexes conjugated with chalcone analogs as dual targeting anticancer agents: In vitro and in vivo studies. Bioorg. Chem. 2020, 105, 104430. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Yu, C.; Ba, L.; Liu, Q.; Qian, Y.; Yang, B.; Gao, C. Anticancer platinum-based complexes with non-classical structures. Appl. Organomet. Chem. 2018, 32, e4228. [Google Scholar] [CrossRef]
- Zhong, Y.; Jia, C.; Zhang, X.; Liao, X.; Yang, B.; Cong, Y.; Pu, S.; Gao, C. Targeting Drug Delivery System for Platinum(IV)-Based Antitumor Complexes. Eur. J. Med. Chem. 2020, 194, 112229. [Google Scholar] [CrossRef]
- Eskandari, A.; Kundu, A.; Ghosh, S.; Suntharalingam, K. A Triangular Platinum(II) Multinuclear Complex with Cytotoxicity Towards Breast Cancer Stem Cells. Angew. Chem. Int. Ed. 2019, 58, 12059–12064. [Google Scholar] [CrossRef]
- Maciel, L.L.F.; Silva, M.B.; Moreira, R.O.; Cardoso, A.P.; Fernandes, C.; Horn, A., Jr.; de Aquino Almeida, J.C.; Kanashiro, M.M. In Vitro and In Vivo Relevant Antineoplastic Activity of Platinum(II) Complexes toward Triple-Negative MDA-MB-231 Breast Cancer Cell Line. Pharmaceutics 2022, 14, 2013. [Google Scholar] [CrossRef]
- Sochacka-Ćwikła, A.; Mączyński, M.; Regiec, A. FDA-Approved Drugs for Hematological Malignancies—The Last Decade Review. Cancers 2022, 14, 87. [Google Scholar] [CrossRef]
- Sochacka-Ćwikła, A.; Mączyński, M.; Regiec, A. FDA-Approved Small Molecule Compounds as Drugs for Solid Cancers from Early 2011 to the End of 2021. Molecules 2022, 27, 2259. [Google Scholar] [CrossRef]
- Mastalarz, H.; Mastalarz, A.; Wietrzyk, J.; Milczarek, M.; Kochel, A.; Regiec, A. Synthesis of Platinum(II) Complexes with Some 1-Methylnitropyrazoles and In Vitro Research on Their Cytotoxic Activity. Pharmaceuticals 2020, 13, 433. [Google Scholar] [CrossRef] [PubMed]
- Quilico, A.; Musante, C. New research in the isoxazole series. X. Nitro, amino and diazo derivatives of the isoxazoles: Gazz. Chim. Ital. 1941, 71, 327–342. [Google Scholar]
- Katritzky, A.R.; Scriven, E.F.V.; Majumder, S.; Akhmedova, R.G.; Akhmedov, N.G.; Vakulenko, A.V. Direct nitration of five membered heterocycles. Arkivoc 2005, Part III, 179–191. [Google Scholar] [CrossRef] [Green Version]
- Vasilenko, D.A.; Sadovnikov, K.S.; Sedenkova, K.N.; Kurova, A.V.; Grishin, Y.K.; Kuznetsova, T.S.; Rybakov, V.B.; Volkova, J.A.; Averina, E.B. Synthesis of 4-Nitroisoxazoles via NO/NO2-Mediated Heterocyclization of Aryl-Substituted α,β-Unsaturated Ketones. Synthesis 2020, 52, 1398–1406. [Google Scholar]
- Nishiwaki, N.; Ogihara, T.; Takami, T.; Tamura, M.; Ariga, M. New Synthetic Equivalent of Nitromalonaldehyde Treatable in Organic Media. J. Org. Chem. 2004, 69, 8382–8386. [Google Scholar] [CrossRef]
- Jedrysiak, R.; Sawicki, M.; Wagner, P.; Suwinski, G. Ring transformations in the reactions of 1,4-dinitropyrazole with N-nucleophiles. ARKIVOC 2007, 2007, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Allen, A.D.; Theophanides, T. Platinum(II) complexes: Infrared spectra in the 300–800 CM−1 region. Can. J. Chem. 1964, 42, 1551–1554. [Google Scholar] [CrossRef]
- Tetko, I.V.; Jaroszewicz, I.; Platts, J.A.; Kuduk-Jaworska, J. Calculation of lipophilicity for Pt(II) complexes: Experimental comparison of several methods. J. Inorg. Biochem. 2008, 102, 1424–1437. [Google Scholar] [CrossRef] [Green Version]
- Reithofer, M.R.; Valiahdi, S.M.; Galanski, M.S.; Jakupec, M.A.; Arion, V.B.; Keppler, B.K. Novel Endothall-Containing Platinum(IV) Complexes: Synthesis, Characterization, and Cytotoxic Activity. Chem. Biodivers. 2008, 5, 2160–2170. [Google Scholar] [CrossRef]
- Wilson, J.J.; Lippard, S.J. In Vitro Anticancer Activity of cis-Diammineplatinum(II) Complexes with β-Diketonate Leaving Group Ligands. J. Med. Chem. 2012, 55, 5326–5336. [Google Scholar] [CrossRef] [Green Version]
- Cherian, M.G. The significance of the nuclear and cytoplasmic localization of metallothionein in human liver and tumor cells. Environ. Health Perspect. 1994, 102, 131–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagrman, D.; Goodisman, J.; Dabrowiak, J.C.; Souid, A.-K. Kinetic study on the reaction of cisplatin with metallothionein. Drug Metab. Dispos. 2003, 31, 916–923. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Nevozhay, D. Cheburator Software for Automatically Calculating Drug Inhibitory Concentrations from In Vitro Screening Assays. PLoS ONE 2014, 9, e106186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bird, C.W. A new aromaticity index and its application to five-membered ring heterocycles. Tetrahedron 1985, 41, 1409–1414. [Google Scholar] [CrossRef]
- Bean, G.P. Application of Natural Bond Orbital Analysis and Natural Resonance Theory to Delocalization and Aromaticity in Five-Membered Heteroaromatic Compounds. J. Org. Chem. 1998, 63, 2497–2506. [Google Scholar] [CrossRef]
- Regiec, A.; Wojciechowski, P.; Pietraszko, A.; Mączyński, M. Infrared spectra and other properties predictions of 5-amino-3-methyl-4-isoxazolecarbohydrazide with electric field simulation using CPC model. J. Mol. Struct. 2018, 1161, 320–338. [Google Scholar] [CrossRef]
- Kano, H.; Makisumi, Y.; Ogata, K. Studies on isoxazole derivatives. XI. Synthesis of 4-ethoxycarbonyl- and 4-cyano-5-aminoisoxazoles and their ring cleavage. Chem. Pharm. Bull. 1958, 6, 105–107. [Google Scholar] [CrossRef] [Green Version]
- Fox, R.I.; Herrmann, M.L.; Frangou, C.G.; Wahl, G.M.; Morris, R.E.; Strande, V.; Kirschbaum, B.J. Mechanism of Action for Leflunomide in Rheumatoid Arthritis. Clin. Immunol. 1999, 93, 198–208. [Google Scholar] [CrossRef]
- Ishikawa, T.; Ali-Osman, F. Glutathione-associated cis-diamminedichloroplatinum(II) metabolism and ATP-dependent efflux from leukemia cells. Molecular characterization of glutathione-platinum complex and its biological significance. J. Biol. Chem. 1993, 268, 20116–20125. [Google Scholar] [CrossRef] [PubMed]
- Regiec, A.; Wojciechowski, P. Synthesis and experimental versus theoretical research on spectroscopic and electronic properties o–f 3-methyl-4-nitroisothiazole. J. Mol. Struct. 2019, 1196, 370–388. [Google Scholar] [CrossRef]
Compound | ng Pt/106 Cells | logP ± SD |
---|---|---|
1(cis) | 35 ± 8 * | −0.295 ± 0.145 |
2(trans) | 19 ± 5 * | 1.012 ± 0.05 |
Cisplatin | 74 ± 20 | −2.05 ± 0.17 |
Compound | Cancer Cells | Normal Cells | |||||
---|---|---|---|---|---|---|---|
MCF-7 | ES-2 | A549 | BALB/3T3 | ||||
Normoxia | Hypoxia | Normoxia | Hypoxia | Normoxia | Hypoxia | Normoxia | |
1(cis) | 4.19 ± 0.13 ** | 7.37 ± 2.37 * | 6.13 ± 0.71 * | 7.37 ± 2.75 * | 7.08 ± 0.42 ** | 9.31 ± 3.12 ** | 8.31 ± 0.51 * |
2(trans) | 0.27 ± 0.16 ** | 0.78 ± 0.13 ** | 0.47 ± 0.20 ** | 0.84 ± 0.07 ** | 0.60 ±0.13 ** | 7.7 ± 7.4 ** | 0.80 ± 0.018 ** |
3,5-dimethyl-4-nitroisoxazole | Inactive | inactive | inactive | inactive | inactive | inactive | >100 |
Cisplatin | 12.6 ± 2.6 | 14.7 ± 5.8 | 8.6 ± 2.6 | 13.7 ± 5.7 | 9.8 ± 1.2 | 23.9 ± 9.3 | 8.67 ± 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mastalarz, H.; Mastalarz, A.; Wietrzyk, J.; Milczarek, M.; Kochel, A.; Regiec, A. Studies on the Complexation of Platinum(II) by Some 4-Nitroisoxazoles and Testing the Cytotoxic Activity of the Resulting Complexes. Molecules 2023, 28, 1284. https://doi.org/10.3390/molecules28031284
Mastalarz H, Mastalarz A, Wietrzyk J, Milczarek M, Kochel A, Regiec A. Studies on the Complexation of Platinum(II) by Some 4-Nitroisoxazoles and Testing the Cytotoxic Activity of the Resulting Complexes. Molecules. 2023; 28(3):1284. https://doi.org/10.3390/molecules28031284
Chicago/Turabian StyleMastalarz, Henryk, Agnieszka Mastalarz, Joanna Wietrzyk, Magdalena Milczarek, Andrzej Kochel, and Andrzej Regiec. 2023. "Studies on the Complexation of Platinum(II) by Some 4-Nitroisoxazoles and Testing the Cytotoxic Activity of the Resulting Complexes" Molecules 28, no. 3: 1284. https://doi.org/10.3390/molecules28031284
APA StyleMastalarz, H., Mastalarz, A., Wietrzyk, J., Milczarek, M., Kochel, A., & Regiec, A. (2023). Studies on the Complexation of Platinum(II) by Some 4-Nitroisoxazoles and Testing the Cytotoxic Activity of the Resulting Complexes. Molecules, 28(3), 1284. https://doi.org/10.3390/molecules28031284